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Abstract: Carbon dots (CDs) have attracted considerable interest from the scientific community
due to their exceptional properties, such as high photoluminescence, broadband absorption, low
toxicity, water solubility and (photo)chemical stability. As a result, they have been applied in several
fields, such as sensing, bioimaging, artificial lighting and catalysis. In particular, CDs may act
as sole photocatalysts or as part of photocatalytic nanocomposites. This study aims to provide a
comprehensive review on the use of CDs as sole photocatalysts in the areas of hydrogen production
via water splitting, photodegradation of organic pollutants and photoreduction and metal removal
from wastewaters. Furthermore, key limitations preventing a wider use of CDs as photocatalysts are
pointed out. It is our hope that this review will serve as a basis on which researchers may find useful
information to develop sustainable methodologies for the synthesis and use of photocatalytic CDs.

Keywords: carbon dots; photocatalysis; hydrogen generation; photodegradation; photoreduction

1. Introduction

In recent years, nanostructured materials have arisen as potential substitutes for
traditional materials due to the unique properties and functionality enabled by their
nanosized composition. Carbon nanomaterials have been studied for applications in
diverse fields, one of them being photocatalysis, a process through which radiation is
used to promote a chemical reaction without consuming the photocatalyst. Carbon is a
black material that, when in bulk, is non-soluble in water and incapable of displaying
photoluminescence. However, this is not true for carbon-based nanomaterials, which
display properties that greatly differ from those of the bulk material [1–4]. These carbon-
based nanomaterials include single and multi-wall carbon nanotubes [1–3], nanofibers [4],
nanodiamonds [5], graphene [6], buckminsterfullerene [7] and, more recently, CDs. First
discovered in 2004 by Xu et al. [2] during the synthesis of single-wall carbon nanotubes,
CDs are a class of carbon nanomaterials that gained their name in 2006 from Sun et al. [8]
and have been under the focus of the scientific community ever since.

As seen in Figure 1, CDs display a spherical or quasi-spherical shape with a sp2-
conjugated amorphous or nanocrystalline core and are typically sized between 1 and 10 nm,
depending on the synthesis. Whereas oxygenated functional groups can be found on the
surface (e.g., -OH, -COOH and CHO) [9,10], CDs’ cores are mostly composed by sp2 carbon
or graphene/graphene oxide sheets connected by sp3 carbon atoms in-between [11,12]. The
CDs’ surface may present several functional groups (e.g., alcohols, amines and carboxylic
acids) that contribute towards the CDs superior water solubility while also allowing the
CDs to undergo additional steps of functionalization by providing a binding site for other
molecules if needed [11]. The result from this, and considering that the CDs’ core type
can also be controlled during the synthesis, is that these nanoparticles present a complex
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internal and external structure, whose constitution is highly dependent on the precursors
and synthetic conditions [13].
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Figure 1. (a) TEM image of plant soot-derived CDs; (b) size distribution of the CDs determined by
measuring 150 CDs via TEM. Reproduced with authorization from [14].

Depending on the chosen method, the synthesis of CDs can be divided into two cate-
gories: top-down and bottom-up approaches (Figure 2). Synthesis via top-down method-
ologies is based on breaking macroscopic carbon-based materials (e.g., graphite or activated
carbon) into smaller nanosized particles, the CDs. This can be achieved using methods
such as arc discharge [2], laser ablation [8], chemical [15] and electrochemical oxidation [16],
and ultrasonic synthesis [17]. On the other hand, we have the bottom-up approach, which
is based on the fabrication of CDs from molecular components, such as citric acid. This can
be conducted via microwave treatment [18], thermal decomposition [19], hydrothermal
treatment [20], template-based routes [21] and plasma treatment [22]. Due to the low cost
and relative easiness of the preparation in some methods, the fabrication of CDs is possible
in virtually any environment without requiring expensive and time-consuming techniques.
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One of the reasons behind the interest in CDs is their many desirable properties, such
as high photoluminescence (PL) [9,24], broadband optical absorption and large photore-
sponsive region [25], high photo- and chemical stability [26], good water solubility [9,26],
biocompatibility [8,27] and low toxicity [28]. It is also possible to fabricate CDs with up-
conversion PL (UCPL), which can convert lower-energy higher-wavelength radiation into
higher-energy lower-wavelength radiation, which is useful for photocatalytic nanocom-
posites [29]. Characterization of the CDs properties is usually performed using methods
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such as TEM/SEM (Figure 1), UV-Vis and fluorescence spectroscopy (Figure 3a), FTIR
(Figure 3b) and XPS (Figure 3c), among others.
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Figure 3. (a) UV-Vis absorption spectrum (left) and photoluminescent emission spectra of plant
soot-based CDs at several excitation wavelengths; (b) FTIR spectrum of Fennel seeds-based CDs;
(c) XPS spectrum of plant soot-based CDs. Reproduced with authorization from [14,30].

Photocatalysis refers to the conversion of materials induced by a synergistic effect
between photocatalysts and light. It aims to accelerate reactions, such as the generation
of hydrogen from water [31,32] or the photodegradation of organic pollutants (e.g., azo
dyes) [33,34], consisting of an environmentally-friendlier technology when compared to
traditional catalysts [35]. The critical step in the process is the light-induced separation
of charge carriers, with an ideal photocatalyst presenting both a broad absorption range
and a high separation efficiency of the photogenerated charge carriers [36]. This charge
separation depends on the absorption, by the CDs, of light with enough energy to overcome
the nanoparticles’ energy bandgap [37]. Several factors might impact a CD energy bandgap.
The CDs’ structure configuration impacts the bandgap [38,39]. The size of the CDs is also an
important factor, and it is known that larger nanoparticles present a smaller bandgap [38,39].
Finally, doping with heteroatoms and higher degrees of surface functionalization on the
CDs can be used to decrease the energy bandgap [40–42].

CDs are able to photogenerate charge carriers upon the absorption of light. Further-
more, the highly functionalized surface of the CDs provides adsorption spots for organic
compounds, such as organic dyes. This promotes the photocatalytic reaction, as the reaction
takes place on the CDs’ surface and there is less energy wasted due to charge recombi-
nation (that could occur due to the small band gap presented by CDs). Due to this and
considering the properties of CDs, it is not surprising that their use in photocatalytic ap-
plications has been reported, with the nanoparticles being used in roles such as electron
mediators [43–45], photosensitizers [46–48], spectral converters [49–51] and, finally, as a
sole photocatalyst [31–34,52–57]. Whereas this review focuses on the use of CDs in photo-
catalysis, the use of CDs in photocatalytic nanocomposites is not under the scope of this
study. More specifically, we focused only on cases in which CDs were used as sole photocat-
alysts without any additional component. We intend to provide a basis where researchers
may find useful information for future developments of CDs as sole photocatalysts.

2. Application as Sole Photocatalysts

Regarding photocatalysis, CDs have already been employed in several roles. Despite
this, the use of CDs as sole photocatalysts is somewhat rare, and thus worthy of a detailed
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analysis. Thus far, they have been mainly used in the fields of hydrogen production via
water splitting [31,58–60], photocatalytic degradation of organic compounds [33,54,57,61]
and photoreduction [52,53,55,56].

2.1. Hydrogen Generation via Water Splitting

The use of hydrogen as an energy source is a cleaner alternative to evermore depleted
fossil fuels. First discovered by Fujishima and Honda in 1972 [62], hydrogen production via
solar-driven photocatalytic water splitting has been vastly studied as a green pathway for
the obtention of H2 to cover our energy requirements. Thus, it is not surprising that there is
a strong demand for a renewable energy source of this kind. H2 is regarded as an optimal
energy carrier due to being environmentally friendly, carbon-free and renewable, all of this
while also having a high energy density. The generation of H2 via water splitting has been
under the spotlight, as H2O, the initial reagent, is the only product after H2 combustion,
thus enabling a cyclic use of the fuel [63]. Near 237 kJ mol−1 of energy is required to
produce H2 and O2, being the overall process endothermic. That being said, the bandgap
of a suitable photocatalyst must be in a way that its conduction band is more negative than
the redox potential of H+/H2, which sits at 0 V vs. NHE, and the valence band should be
more positive than the potential of O2/H2O, 1.23 V vs. NHE. Hence, the smallest possible
bandgap required for the reaction is 1100 nm, which corresponds to the 1.23 V difference
between the reactions [64]. The water splitting reaction is made of two half-reactions: the
H2 evolution reaction (HER) and the O2 evolution reaction (OER).

The typical four electron half-reactions are as follows:

2 H2O (l)→ O2 (g) + 2 H2 (g) (1)

H2 generate site : 4 H+ + 4 e− → 2 H2 (g) (2)

O2 generate site : 2 H2O (l)→ O2 (g) + 4 H+ + 4 e− (3)

While the two-step 2e−/2e− first generates H2 and H2O2 from water, followed by the
release of energy due to the disproportion of H2O2:

2 H2O (l)→ H2O2 (l) + H2 (g) (4)

H2 generate site : 2 H+ + 2 e− → H2 (g) (5)

H2O2 generate site : 2 H2O (l)→ H2O2 (l) + 2 H+ + 2 e− (6)

H2O2 (l)→
1
2

O2 (g) + H2O (l) ∆G = −106.1 kJ mol−1 (7)

There is a multitude of photocatalysts capable of H2- and O2-evolution via water
splitting under irradiation. The photocatalytic mechanism, as seen in Figure 4, begins when
under a suitable light source, the photocatalyst’s electrons are excited into the conduction
band, leaving behind holes in the valence band. Then, the newly generated electron/hole
pairs transfer to the photocatalyst’s surface, with the electrons moving to the H2 generation
sites and the holes to the O2 generation sites. Because of this, and due to their properties
(such as a large photoresponsive absorbing region and a convenient bandgap for HER),
CDs are now used for photocatalytic H2 evolution in aqueous solutions, being regarded as
an effective way of broadening the light-range on which the reaction takes place into the
visible [48].
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Regarding hydrogen evolution via water splitting, CDs are mostly used in conju-
gation with other components, such as NiP and TiO2 [46,48], to obtain a photocatalytic
nanocomposite, seldom being used as sole photocatalysts. However, in the last few years,
development of CDs has been a constant trend, and some teams already achieved H2
evolution using CDs as the sole photocatalytic agent [31,32,59,60,66,67].

In this regard, Yang et al. reported the preparation of glucose-based CDs via light
irradiation for both the detection of Fe3+ and the photocatalytic production of hydrogen
under Xe lamp irradiation [32]. Upon characterization, the CDs were observed to present
homogeneous sizes and displayed a typical CD absorption spectrum with broadband
absorption, ranging from the UV to the NIR. FTIR and XPS experiments confirmed the
presence of the expected C=C, C-OH, C-O-C and C-H groups on the CDs surface, whereas
Raman spectroscopy confirmed the presence of sp2 and sp3 carbon atoms on its core [32].
The photocatalytic H2 production was tested using both the CDs alone and in conjugation
with a Pt co-catalyst, under a 300 W Xe lamp. The team estimated hydrogen evolution
rates as high as 1.004 and 2.329 mmol g−1 h−1 for the CD alone and with a Pt co-catalyst,
respectively [32]. Despite the fact that with Pt the rate is over twice that of the CDs alone, it
is still important to notice that a non-metallic, inexpensive and low toxicity photocatalyst
was able to produce H2 by itself [32].

In another example, Yang et al. prepared photocatalytic CDs via an ultrasonic hy-
drothermal procedure from multi-walled carbon nanotube oxide to promote hydrogen
generation through water splitting [66]. As in the previously mentioned work [32], the CDs
present an oxygenated surface (with groups such as C-O-C, C=O and C-OH) and a char-
acteristic broadband absorption [66]. The photocatalytic hydrogen generation under UV
radiation, in pure water and in without any sacrificial agent, reached 423.7 µmol g−1 h−1,
which is below half of that achieved in [32], whereas by employing methanol as a sacrificial
donor (20 vol%) the rate reached 3615.3 µmol g−1 h−1, over 8.5 times that of the CDs
alone [66]. Furthermore, when compared to commercial Degussa P25 TiO2, the CDs present
a higher hydrogen generation rate both in the absence (423.7 vs. 16.25 µmol g−1 h−1) and
presence of methanol (3615.3 vs. 103.7 µmol g−1 h−1) as a sacrificial donor. Control tests in
the absence of either CDs or UV light irradiation failed to yield any hydrogen, indicating
that its production is the result of a photocatalytic process involving the CDs. Finally, the
CDs stability as a photocatalyst was tested, and its reusability confirmed, as the HER had
negligible changes after four cycles of testing [66].

A final example regarding the evolution of HER with CDs is the 2021 work of
Jana et al. [59], which describes the making of a modified CD, from citric acid and urea,
that allowed for an efficient hydrogen production from both water and seawater via water
splitting. The CDs were prepared by subjecting the precursors to microwave irradiation
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under pressure (15 bar) for 5 min, followed by purification via dialysis (MWCO 1000 Da,
24 h) and evaporation of the solvent. Afterwards, the resulting solid nanoparticles (pCD)
were subjected to a post-synthetic photo-oxidation treatment. This consisted of white light
irradiation in the presence of oxygen and took place until absorption peaks at 600 and
450 nm were maximized, yielding two different activated CDs (CD1 and CD2, the latter
being the result of a more prolonged exposure) [59].

Upon characterization, the three types of CDs appear to be similar in terms of shape
and size, presenting an amorphous body sized between 2.5 and 3.5 nm, as seen by AFM and
XRD. However, their fluorescence peaks differ when excited at 350 nm, with CD2 showing
a red-shifted emission (500 nm) compared to pCD and CD1 (440 nm). The quantum yields
also decrease in function of the irradiation time, going from 12% for the pCDs to 2% for
CD2 [59]. It should be noted that lower quantum yields have been correlated with increased
HER activity in similar materials [68]. Cyclic voltammetry tests show that, based on their
electrocatalytic proton reduction potentials, all CDs are active HER electrocatalysts. More
importantly for our review, tests using methyl viologen demonstrate the potential of pCDs,
CD1 and CD2 for HER photocatalysis, with CD2 being the most active photocatalyst in the
presence of sacrificial electron donors [59].

Regarding the efficiency of the HER reaction itself, it was evaluated with optimal
conditions being found to be 0.015 mg of catalyst, pH of 8.5 and a 10 vol% solution of the
sacrificial donor triethanolamine (TEOA) [59]. Control experiments revealed that in absence
of CDs, TEOA produces small amounts of H2, so this was taken into consideration in all
subsequent experiments. Regarding HER catalysis, CD2 was the most effective, achieving
a maximum turnover frequency (TOF) of 15.15 mmol (H2) g(CD2)−1 h−1 after 1 h of Xe
lamp illumination in water and 19.70 in seawater [59]. The different TOF may be explained
by the different ionic strength of the two media, which might impact electron transfer rates.
As for their stability, whereas pCD and CD1 appear to remain relatively unchanged after
the reaction, CD2 shows a different spectral profile, suggesting some degree of degradation
or modification after the catalysis, possibly due to TEOA [59]. Finally, when assessing the
mechanism behind the catalysis, the team found that one of the components produced
during the CDs synthesis, citrazinic acid, could be responsible for the enhanced catalytic
activity of the CDs [59]. Thus, some further characterization of the system should be
performed to better understand the photocatalytic mechanism.

2.2. Photocatalytic Degradation of Organic Pollutants

The continuous development of manufacturing methods by mankind has improved
the quality of life found around our planet. However, it has also led to the production of
new potential pollutants, causing the number of chemicals known to be in circulation (in
2011) to be nearly 38,000, with an estimated 300 new compounds being added to the list
each year [69,70]. Tons of domestic and industrial pollutants enter the waterways daily,
being harmful not only to human health, but also to the environment and surrounding
ecosystems [71,72]. As a result of this, we find ourselves with an ever-smaller unpolluted
supply of drinkable water [73,74]. Common causes of water pollution that need to be
addressed are industrial effluents, heavy metals (e.g., cadmium and chromium) and organic
compounds. The latter, and the focus of this section, can consist of either small organic
compounds (such as drugs or dyes) or longer chained molecules (such as perfluorooctane
sulfonate or perfluorooctanoic acid). This prompts the need for obtaining efficient and
cost-effective means for their removal after they have been used, discarded or lost their
functionality. Several alternatives are available for use nowadays, including photocatalytic
technologies that take advantage of a renewable energy supply and sunlight, to eliminate
these pollutants [75].

Photocatalytic degradation is a process through which a photocatalyst, upon absorp-
tion of suitable radiation, can transform a pollutant adsorbed onto its surface into a less
harmful degradation product. Photocatalysis has several advantages over traditional
chemical oxidation, such as being environmentally friendlier, achieving a near complete
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degradation of the pollutants, and not originating any by-products from the photocatalyst
during the reaction [35]. In typical photocatalytic degradation (Figure 5), a semiconductor
absorbs suitable radiation to overcome its bandgap, which excites an electron (e−) from the
valence band into the conduction band, leaving behind an electron–hole (h+). The photo-
generated e− and h+ are photoreactive and can cause a cascade of reactions that end in the
degradation of the pollutants by converting them into CO2 and H2O. Thus, using photocat-
alysts enables us to convert solar energy into a chemical reaction that degrades a pollutant
into a benign/less harmful form [76]. This process is however severely limited by a rapid
recombination of the photogenerated charge carriers, which can release energy as heat or
radiation. The latter consists of a phenomenon known as photoluminescence, a property
which CDs are known to possess. However, it is a competing process to photodegradation
itself, and might lead to a decay in its efficiency.
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The use of CDs or CDs-composites for the photodegradation of organic pollutant has
been a widely developed field over the last decade. They have been employed, both as sole
photocatalysts and in conjugation with other materials (such as TiO2), to degrade a vast ar-
ray of organic pollutants, ranging from organic dyes to antibiotics [33,57,77–86]. Properties
commonly associated with CDs, such as their tunable structure and functionalized surface
(providing affinity to organic compounds), low-cost, water solubility, non-metallic and
non-toxic nature, (photo)chemical stability, and strong absorption across the light spectrum,
makes these nanoparticles potentially viable candidates to be employed in photocatalysis.
While these properties benefit both the use of CDs as parts of catalytic systems and as sole
photocatalysts, this review focuses only on the latter.

Despite the large advances achieved in the synthesis of CDs, photocatalysis and
photocatalytic removal of pollutants, there are still very few reports where CDs were directly
used as the photocatalytic agent. However, the number of such reports is continuously
growing as the scientific community becomes more interested in the potential of CDs.
One of the first reports concerning this topic came from Umrao et al., who achieved
the photodegradation of methylene blue (MB), under blue and green light, by using
multilayered CDs from graphene oxide via a hydrothermal method [77]. The resulting CDs
showed a high degree of crystallinity and an average size of 9 nm. They presented the
typical C-C, C=O, C-OH and COOH groups on their surface and displayed an absorption
that extends well into the visible range [77]. A degradation efficiency of 93.3% was observed
under 60 mins of green light irradiation with a rate constant of 0.056 min−1, which was
~17 times higher than bare TiO2 (0.0033 min−1) [77,87]. In another example, Zhu et al.
prepared xylose-based CDs that achieved 92.06% photodegradation of MB within 2.5 mins
of Xe lamp irradiation [54].



Catalysts 2023, 13, 179 8 of 21

Zhou et al. fabricated gel-like CDs from citric acid and ethylenediamine, and used
them under solar light irradiation to photodegrade several common organic dyes [57]. The
CDs managed to degrade all the tested pollutants, MB, methyl orange (MO) and rhodamine
B (RhB), in 20, 40 and 60 mins, respectively [57]. Several other examples can be found for
varied organic dyes, such as MB [33,34,78,88–93], RhB [33,78,89,93], MO [61,94,95], crystal
violet (CV) [84,96], indigo carmine (IC) [79,85], methyl violet [95], metanil yellow (MY) [61]
and malachite green (MG) [95]. A list can be found below, in Table 1, containing a summary
of several studies concerning the topic.

Table 1. Summary of studies concerning CDs’ mediation photodegradation of organic pollutants.
NA—not available; CFL—compact fluorescent lamp.

Ref. CDs’ Precursors Synthesis/
Purification CDs Loading Pollutant/

Concentration
Light

Source/Power
Dye Removal

Efficiency and Time

[77] Graphene Hydrothermal/
Centrifugation NA MB-83 mg L−1 LED (520 nm)

1 W/mm2 93.3%/60 mins

[54] Xylose
Hydrothermal/

Filtering
Dialysis

30 mg MB-1 g L−1 Xe lamp
150 mW/cm2 92.06%/2.5 mins

[57] Citric acid
Urea

Solvothermal/
Acetone wash 12 mg

MB-10 mg L−1

MO-10 mg L−1

RhB-10 mg L−1
Hg/Xe lamp

100%/20 mins
100%/40 mins
100%/60 mins

[93] Pyrene

Hydrothermal/
Centrifugation

Filtering
Dialysis

0.3 mg RhB-10 mg L−1

MB-10 mg L−1
LED and CFL

Flux of 1000 lm
55%/360 mins
39%/360 mins

[34]
Citric acid

1,2-
phenylenediamien

Microwave/
Filtration

Chromatography
3 mg RhB-0.5 mg L−1

MB-2.5 mg L−1
Hg/Xe lamp

310 W
100%/150 mins
100%/150 mins

[78] Palm powder
Thionyl chloride

Hydrothermal/
Filtering
Dialysis

NA-added in
solution

MB-15 mg L−1

RhB-15 mg L−1
Xe lamp

400 mW/cm2
94.2%/50 mins
71.7%/50 mins

[88]
Glucose

Ethylenediamine
Phosphoric acid

Microwave/
Centrifugation

Dialysis
2 mg MB-10 mg L−1 Sunlight

~832 W/m2 100%/25 mins

[89]
Citric acid

1,2-diboranyethane
Dimethylformamide

Hydrothermal/
Centrifugation

Dialysis
3 mg MB-2.5 mg L−1

RhB-0.5 mg L−1
Hg/Xe lamp

310 W
100%/170 mins
100%/170 mins

[90]
Citric acid

Hexamethylene-1,6-
diamine

Hydrothermal/
Centrifugation

Dialysis
10 mg MB-5 µM

Xe lamp
110 mW/cm−2 96.7%/40 mins

[91] Pear juice Hydrothermal/
Filtration

NA-added in
solution MB-45 µM Tungsten lamp

60 W 99.5%/130 mins

[92] Citric acid
Diethylenetriamine

Hydrothermal
None 0.2 mg MB-18.75 mg L−1

Sunlight and
Halogen lamp

(500 W)
97%/160 mins

[61]
Polyethylene glycol

Phosphoric acid
Cysteine

Microwave/
Dialysis 25 mg MO-20 mg L−1

MY-20 mg L−1 Sunlight 100%/90 mins
100%/60 mins

[94] Glucose
Ammonia

Ultrasonic
treatment/

Dialysis
NA-added in

solution MO-10 ppm Xe lamp
150 W 90%/120 mins

[95]
Cornus walteri leaves

Malei anhydride
Hydrogen peroxide

Hydrothermal/
Centrifugation

Filtration
Dialysis

1 mg
MO-30 mg L−1

MG-30 mg L−1

MV- 30 mg L−1
Sunlight

97.1%/50 mins
98.0%/40 mins
63.6%/60 mins

[84] Bitter apple peel Calcination/
None 10 mg CV-200 ppm Sunlight 100%/90 mins

[79] 2-aminonaphthalene
Potassium persulfate

Hydrothermal/
Centrifugation

Dialysis

NA-added in
solution IC-10 mg L−1 Natural light 97%/120 mins

[85] Glyoxal
Ethanol

Solvothermal
None 0.265 mg IC-38.8 mg L−1 Sunlight 91%/4.5 mins
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Heteroatom doping is a process through which the optical properties of CDs, such
as PL, can be improved. The presence of nitrogen and oxygen atoms in the structure of
the CDs could cause an upward band bending electric field near their surface, and thus
spatially separate the photogenerated e−-h+ pair and reduce the rate of recombination,
promoting h+ and e− to the surface, where they can generate ROS [36,97]. Furthermore,
tuning the surface charge of the CDs via doping, such as is the case with N-doping, might
promote the adsorption of organic pollutants, based on their own charge, via electrostatic
interactions [93]. This being said, N-doped CDs have been synthesized and employed in
organic pollutant photodegradation. The work of Sabet et al., who fabricated photocatalytic
N-doped CDs via hydrothermal treatment from a green carbon source, grass, is a great
example of this and of the versatility of the CDs in terms of degradation targets [98].
The CDs were effectively used for the UV-light-driven photodegradation of four different
dyes, which showcases their versatility in the field of pollutant photodegradation. When
characterized, the nanoparticles were revealed to be under 10 nm in size, to be effectively
N-doped (as seen by EDS) and to present all the common surface functional groups, in
addition to N-H, on their surface. The nanoparticles were capable of absorbing both
UV and visible radiation, thus increasing their photocatalytic region [98]. Results from
photocatalytic tests demonstrated the CDs’ efficiency in decomposing the selected dyes,
and that the degradation was due to the production of ROS in aqueous medium by the CDs.
Regarding the individual results for each dye under UV irradiation: acid blue and acid red
were completely degraded after 30 mins whereas eosin Y and MB were fully decomposed
after 90 mins. The authors state that the CDs also worked under visible light irradiation,
but no data has been provided regarding this [98]. In another example of N-doped CDs,
Aghamali et al. described the making of citric acid and diethylenetriamine-based N-doped
CDs for the photocatalytic degradation of MB [92]. The hydrothermally-prepared CDs
displayed a spherical shape with an average size of 4.5 nm, an impressive quantum yield of
95%, and presented the functional groups expected on a N-doped CD (including C-N and
N-H, in addition to oxygen-based groups) [92]. The authors evaluated the photocatalytic
efficiency of the CDs towards MB degradation under sunlight, UV and visible irradiation.
When exposed to sunlight/visible light, the photodegradation efficiency was very high, as
the CDs achieved nearly complete degradation of MB (97%), which was the best catalytic
performance obtained. These results suggest that the N-doped CDs may be an efficient
visible and sunlight-driven photocatalyst [92].

Other kinds of doping and combinations thereof can also be employed to enhance
the CDs’ optical properties, and thus, their photocatalytic efficiency. Peng et al. syn-
thesized boron-doped CDs towards the photocatalytic degradation of RhB and MB [89].
Their CDs were made from citric acid, 1,2-diboranyethane and dimethylformamide via
a hydrothermal method. In terms of photocatalytic efficiency, the CDs achieved com-
plete degradation of both RhB and MB within 170 mins under solar light irradiation [89].
Zhu et al. made N,Cl-doped CDs out of palm powder and thionyl chloride via hydrother-
mal treatment [78]. The CDs displayed good photocatalytic efficiency, degrading 71.7 and
94.2% of the initial concentrations of RhB and MB within 45 mins of visible light irra-
diation [78]. Yashwanth et al. fabricated N,P-doped CDs from glucose, phosphoric acid
and ethylenediamine via a microwave-assisted methodology [88]. The CDs completely
photodegraded MB within 25 mins of visible light irradiation [88]. Saini et al. prepared
N,S,P-doped CDs from polyethylene glycol, phosphoric acid and cysteine via a microwave
charring process [61]. The CDs were effective in removing both metanil yellow and methyl
orange under sunlight irradiation [61].

Several parameters and properties affect the photocatalytic potential of the CDs.
To study this, Ibarbia et al. compared the effect that different types of CDs have on
the photodegradation efficiency of organic dyes [93]. The authors evaluated the photo-
catalytic potential of similarly sized CDs, but with different compositions and different
bandgaps (ranging between 2.63 and 3.63 eV). The three kinds of similarly sized CDs were
made using both bottom-up and top-down methodologies, as follows: (1) CDOC-oxidative
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cleaving of carbon black; (2) CDHP-hydrothermal pyrolysis of glucose; and (3) CDHC-
hydrothermal condensation of pyrene [93]. As intended, and derived from the different
synthesis and precursors, the three CDs have considerably different compositions. CDOC
had the highest oxygen content (circa 37%), whereas CDHC showed a higher nitrogen con-
tent (15%). Moreover, the three CDs had significantly different sp2/sp3 carbon ratios, with
the high sp2-carbon content of CDHC suggesting a large amount of highly organized crys-
talline domains, while CDOC and CDHP seem to have a less organized, more amorphous
structure [93]. Regarding the surface functional groups of the CDs, as observed via FTIR,
some are common to the three kinds, such as C=C and O-H. Others are specific to each
CD: CDOC presents a more oxygenated nature, with C=O and C-O-C groups on its surface;
CDHP shows nitrogen-containing bonds, such as C-N and C=N; finally, CDHC showed
bands corresponding to C-N and N-H, also suggesting a nitrogen-rich surface [93]. The
functional group results show that, as observed by zeta-potential measurements, the CDs
are negatively charged in different degrees, namely −23.9 mV for CDOC, −29.4 mV for
CDHP and −56.0 mV for CDHC. This negative charge could be important, as it influences
the electrostatic interactions between the CDs and the target dye in solution [93].

The absorption spectra of those CDs were analyzed and displayed the typical ab-
sorption band at 200–220 nm that corresponds to the excitation of delocalized π electrons
in the graphitic sp2 into the π* orbital [99]. Additionally, features at longer wavelengths
were also observed and ascribed to n orbitals (originated by the functional groups), which
enable n-π* transitions [100]. The different combinations of functional groups give place
to different energy levels and n orbitals, meaning that additional electronic transitions are
permitted, which is fundamental for a visible light-driven photocatalyst. A more intense
absorption may take place, as seen by the team when they integrated the total absorbance
values between 380 and 740 (covering the visible region). CDHC presented the more intense
absorption while CDHP presented the least intense absorption. A large difference in terms
of absorptivity was observed [93]. Furthermore, the optical bandgaps of the different CDs
also varied greatly, with CDHP showing the largest bandgap (3.63 eV-out of the visible
range), while CDOC and CDHC presented bandgaps of 2.88 and 2.63 eV, respectively, which
are within the visible region [93]. Furthermore, the CDs exhibit excitation-dependent
photoluminescence, with the CDHP and CDHC presenting a higher quantum yield (0.10 and
0.44, respectively) than CDOC (0.01), possibly due to the higher degree of functionalization
of the latter, is itself a result of the strong oxidizing environment of its synthesis [93].

RhB was used to study the photocatalytic activity of the CDs (Figure 6). Under 6 hours
of visible light irradiation, CDHC degraded nearly 55% of the initial pollutant vs. 2% in
the absence of the CD. Further experiments revealed that a higher CDHC dosage led to a
higher photodegradation yield. The two other CDs, CDOC and CDHP, were less efficient,
resulting in a 25% decrease and no decrease whatsoever of the pollutant, respectively. It
is worth noting that, under dark conditions, a small amount of RhB (between 4 and 12%)
appears to be adsorbed to the CDs, most likely due to the electrostatic interactions between
the negatively charged CDs and the cationic dye [93]. The different efficiencies observed
for the CDs confirm that factors inherent to each CD, such as chemical composition and
crystallization degree, impact the performance of the photocatalysts. The team suggests
that the main reason for the differences can be found in each CD capacity of absorbing
visible light. CDHC was the most absorbing CD, and so, it was potentially able to originate
the largest amount of e−h+ pairs, an essential step for an efficient photodegradation. On
the other hand, CDHP has a relatively large bandgap, preventing the absorption of visible
light, and CDOC has an intermediate absorptivity, explaining their respective photocatalytic
efficiencies when compared to CDHC [93]. Additionally, the more negative surface of CDHC
might favor the adsorption of RhB, and thus facilitate its degradation. The influence of
the electrostatic interactions was tested by performing assays with both MB and methyl
orange, which are cationic and anionic, respectively. Under visible irradiation, CDHC
achieved a 39% MB degradation in 6 hours, whereas only 5% of the methyl orange was
degraded [93]. Even though a slight amount of MB was degraded via direct photolysis
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(17% when in the absence of CDHC), the negatively charged CD seems to favor the degra-
dation of positively charged dyes. Repulsive interactions difficult the interaction of the CD
with methyl orange while favoring the interaction with MB [93]. In summary, the work of
Ibarbia et al. highlights the role that parameters such as chemical composition, crystallinity,
energy bandgap and light absorptivity have on the photocatalytic efficiency of the resulting
CDs. Factors governing the CDs’ performance were identified and correlated with the CDs’
properties, granting insights valuable for a more rationale design of visible light-driven
photocatalytic CDs [93].
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The photocatalytic mechanism of CD-driven degradations is mostly similar across
the different reports available so far, and comparable to that of semiconductors such as
TiO2 [101]. Generally speaking, the photocatalysts absorb photons of enough energy to
overcome their bandgap, which induces the separation of e−h+. These photogenerated
charge carriers then migrate to active sites on the photocatalysts, where they react with
H2O and dissolved O2. This prompts the generation of ROS, such as •OH and •O2

−. These
ROS are an extremely oxidative species with a known power for the degradation of organic
pollutants, such as dyes.

A good schematic presentation of the mechanism can be found in the work of Ibarbia et al.,
who studied that photodegradation of RhB (Figure 7) using three different kinds of CDs
and several scavenger species that could react selectively with one type of radical at a
time [93]. Additionally, due to the suggestion by some studies that the h+ might directly
degrade dye pollutants [34,86], a possible mechanism based on direct hole transfer from
the CDs into the pollutants was also studied via photoluminescence quenching studies in
the presence of RhB [93].

The reaction starts when electrons in the CDs’ valence band are photoexcited into the
conduction band by suitable light. This way, the electron detaches from its corresponding
hole and the charge carriers e− and h+ are photogenerated and migrate to the CDs’ catalyti-
cally active sites. Due to the electron donor and acceptor properties of CDs, some of the
charge carriers may even be transferred directly to the adsorbed pollutant and initialize
the degradation by themselves. However, the charge carriers can also react with H2O and
O2 adsorbed in the CDs surface to produce ROS. The h+ interact with adsorbed H2O to
originate •OH, whereas the e− react with O2 to produce •O2

−. It is also possible that, by
its turn, •O2

− might also react with water and prompt the production of more hydroxyl
radicals. In addition, the CDs may also transfer the excited states energy to O2 to produce
highly reactive 1O2, which is in line with other studies [102,103]. The team’s results sug-
gest that •OH and 1O2 are the primary radicals in the degradation, whereas •O2

− may
contribute to secondary steps [93].
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authorization from [93].

In summary, there are three potential photodegradation pathways: direct transfer of
charge carriers to the adsorbed pollutant; production of highly oxidative ROS via interaction
of photogenerated charge carriers with H2O and dissolved O2; and production of singlet 1O2
via energy transfer from photoexcited CDs [93]. Ibarbia’s suggested mechanism, comprised of
both ROS-mediated degradation and direct charge transfer degradation, has been supported
by other reports concerning the use of CDs as photocatalytic agents [34,86,104].

2.3. Photocatalytic Photoreduction Reaction and Metal Removal

As previously established, CDs possess several properties that makes them suitable for
several applications, among which are the photoreduction reactions and removal of heavy
metals. Due to their characteristics, CDs present electron acceptor/donor behaviors, which
have been characterized and are known to the scientific community. These studies, focusing
on the PL quenching of CDs in the presence of acceptor/donor molecules, promoted a
better understanding of the transference of electrons to other species [46,52,105,106].

Cailotto et al. studied these properties using citric acid or citric acid/ethylenediamine-
based CDs synthesized via either hydrothermal or pyrolytic treatment [107]. The study
permitted the assessment of the photoreduction potential of four CDs, both non-doped and
doped, and of an either graphitic or amorphous nature. To this end, the team evaluated the
CDs potential to promote the photoreduction of methyl viologen (MV2+ to MV+·), which
is considered as an easy and established way of confirming the photoinduced electron
transfer (PET) capacity of CDs via monitoring the absorbance at 605 nm [46,71,108]. The
team verified the occurrence of PET between the CDs and methyl viologen, as observed by
the quenching of the CDs fluorescence in the presence of increasing concentrations of MV2+.
Interestingly, they also observed that the quenching depended heavily on the CDs’ nature.
Two structural characteristics act independently to favor the CDs’ photoredox potential.
Purely carbon-based, non-doped CDs are best in photoreducing methyl viologen when
their structure is graphitic in nature, as carbonaceous amorphous particles lack photoactive
molecules and graphitic defect states capable of promoting electron excitation. By their
turn, N-doped CDs’ photoredox potential is greatly favored by a more amorphous nature,
where nitrogen is incorporated as photoactive molecules responsible for photocatalysis,
as a graphitic nature leads to the co-presence of molecular fluorophores and defect states
that may quench each other [107]. In another work by the same team [107], the authors
once again observed the photoredox potential’s dependence on the CDs nature (a graphitic
nature favoring non-doped CDs), with the additional finding that, in one of the cases,
a reverse structure–activity dependence occurred because of the formation of a large
supramolecular graphitic-like assembly [107]. In another study, by Kaushal et al. [56], N-
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and N,S-doped CDs were synthesized from citric acid and urea/thiourea via microwave
synthesis. By monitoring the photoreduction of methyl viologen, the team found that
N-doped CDs present a better photoreduction potential than N,S-doped CDs. As the
precursors are equal in everything except the substitution of an O heteroatom by a S
heteroatom, the results suggest that single N-doping is a better way of promoting the
photoreduction than N,S-co-doping [56].

The visible light/sunlight-driven photocatalytic conversion of CO2 (via photoreduc-
tion) into more valuable materials, such as liquid fuel, could provide a green, sustainable
way of decreasing the atmospheric levels of CO2 [109]. During the CD-mediated photo-
catalytic conversion of CO2, upon light absorption, photogenerated e−h+ charge carriers
interact with CO2 and H2O through several reactions, causing the production of hydrocar-
bons (e.g., carbon monoxide, formaldehyde, formic acid, methanol, among others) [110].
Zhao et al. reported the computational and experimental study of the photocatalytic use
of 9-hydroxyphenyl-1-one CDs (synthesized via ultrasonic treatment) towards CO2 pho-
toreduction to CO [111]. The experimental section of the report results in an estimated
photocatalytic rate for CO2 conversion of 5.81 µmol g−1 h−1. The computation section
reveals that the formation of COOH•, for which the hydroxyl oxygen atom is the active
center, is the rate-limiting step of the conversion [111].

Another practical application of the PET potential displayed by CDs is the pho-
tocatalytic reduction of highly toxic hexavalent Cr(VI) to Cr(III), a much less harmful
species [53,55,112]. Cr(VI) is a toxic, non-biodegradable, by-product of several industrial
processes that is discarded into wastewater where, due to easily mixing with water systems,
continuously damages the aquatic system [113–115]. Due to its highly carcinogenic and
mutagenic potential, Cr(VI) is considered a prominent threat to human health [116,117].
This is aggravated by the fact that Cr(VI) is conventionally treated via expensive and techni-
cally difficult treatments, such as membrane nanofiltration, chemical precipitation and ion
exchange [118–120]. However, unlike the hexavalent Cr(VI), Cr(III), its reduced counterpart,
is less toxic and is easily removable via adsorption or precipitation as a salt by methods
already in existence [121]. Therefore, the conversion of Cr(VI) to Cr(III) via a sustainable
method (e.g., sunlight-driven photocatalysis) is highly coveted and needed to remedy
the problem. The use of CDs for sensing and biosensing is widely known [27,122,123], in
particular, for metal sensing [32,124–126]. Thus, the interaction between CDs and metals,
such as chromium, is widely documented. This, in conjugation with the PET properties of
CDs, make them suitable candidates for the photoreduction of Cr(VI) and already led to a
limited number of publications in this regard [53,55,112].

In 2019, Bhati et al. prepared N,P-doped CDs for the photoreduction of Cr(VI) to
Cr(III) [53]. The CDs were made from polyethylene glycol, phosphoric acid and imidazole
via microwave-assisted synthesis. The CDs were spherical with an average size of 3.3 nm
and presented the expected surface characteristics for a N,P-doped CD, including C-N,
C-P, C=N-C, C=N, and O-N/P bindings. The absorption spectra displayed the typical
π-π* (210 nm) and n-π* (270 nm) peaks corresponding to C=C and C=N/P, respectively.
The CD-catalyzed photoreduction of Cr(VI) under natural sunlight was evaluated. After
attaining an adsorption–desorption equilibrium, a nearly complete photoreduction of the
initial Cr(VI) concentration was achieved within 110 mins of sunlight irradiation, with the
adsorption being responsible for only ~10% of the Cr(VI) decrease [53]. A similar test in
the absence of the N,P-doped CDs, in which the changes on the concentration of Cr(VI)
(400 ppm) were nearly negligible, confirmed that the CDs were indeed the responsible
agent for the photoreduction [53].

Despite the small amount of literature regarding the CD-mediated photoreduction of
Cr(VI), another example can be found from the same team in the 2020 work of Saini et al. [55],
who fabricated N,S-co-doped CDs from polyethylene glycol, imidazole and thiourea via a
microwave-assisted synthesis. The CDs achieved a virtually complete removal of Cr(VI)
(initial concentration of 20 ppm) over 90 mins of sunlight irradiation, whereas in dark
conditions only a 5% removal of Cr(VI) was observed and in the absence of the CDs, no
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removal whatsoever occurred [55]. Increasing the initial concentration of Cr(VI) while
maintaining the amount of photocatalyst led to larger removal times (300 mins for 100 ppm),
but still ended in a complete removal of Cr(VI). Furthermore, when tested in wastewater
samples (from a chemical laboratory and a Cr(VI) spiked industrial sample), Cr(VI) removal
was once again efficient, confirming that the photocatalyst is also efficient in complex
samples [55]. In a subsequent 2022 report by the same team, Aggarwal et al. fabricated
photocatalytic cellulose-based CDs via calcination for Cr(VI) reduction [112]. These CDs,
in addition to being photoactive, are based on a readily available natural resource, and
so could be an eco-friendly alternative, as they promote a circular economy. Similar to
before, the team managed to achieve a virtually complete removal of Cr(VI) (20 ppm) under
120 mins of sunlight irradiation, whereas only 5% was removed in dark conditions and
none in the absence of the CDs [112]. Again, larger initial Cr(VI) loading delays the removal,
as there is some hindrance preventing the photons from reaching the CDs and there are
fewer active sites available for a larger number of Cr(VI) atoms. Finally, the photocatalyst
showed reusability for up to four cycles (and the authors suggest that it may be so possibly
up to 20 cycles), which is on par with most semiconductor photocatalysts [112]. Despite
the similar results in both works, the more recent 2021 report [112] is a step forward
in terms of sustainability. Chemical grade reagents are substituted by easily available,
environmentally friendlier biomass, and the synthesis, at 90 ◦C for 30 mins, which is, by
CDs standards, much less intensive and shorter than usual (temperatures above 200 ◦C
and times over 2 hours). Considering all this, and the considerable efficiency displayed by
the CDs in removing hexavalent Cr(VI) using sunlight irradiation, the overall process can
be considered efficient, economical, sustainable, and easy to perform [112].

The team’s suggested mechanism for the CD-mediated photoreduction of Cr(VI)
(Figure 8) is common across the reviewed articles [53,55,112]. Under visible light irradiation,
e− from the valence band are excited into the conduction band (i), leaving behind a h+ [53].
The photogenerated h+, when recombination is delayed, reacts with water (ii), generating
highly reactive H+, whereas the e− initially react with Cr(VI) on the CDs’ periphery [53].
The H+ and e− cumulatively reduce Cr(VI) to Cr(III) (iii and iv), thus reducing the overall
toxicity and enabling precipitation of Cr(III) as a hydroxide salt by adding NaOH [127]. The
mechanism was further completed by tests with scavengers for reactive species (hydroxyl
radicals, superoxide radicals, e− and h+) [55,112]. Regarding the scavenger tests made in
the presence of e− and h+ scavengers, the Cr(VI) removal via photoreduction is largely
inhibited, with removal rates decreasing as much as 73%. On the opposite side, scavengers
for other species have a significantly less pronounced effect in Cr(VI) removal, suggesting
a more secondary role by these species [55,112].
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3. Limitations and Future Challenges

This review focus was to describe studies reporting the use of CDs as sole photocat-
alysts in diverse applications, namely hydrogen production via water splitting, organic
pollutant photodegradation and photoreduction and metal removal. While the benefits of
using CDs are notorious, there still several limitations and unanswered questions that limit
a wider use of CDs for photocatalysis.

For starters, the CDs were not always properly purified, although the authors de-
note a clear tendency evolving towards a proper purification of the CDs over the years.
A thorough purification for CDs should consist of centrifugation followed by dialysis
or chromatography. However, this was not followed in a number of reports. This is
quite troublesome, as it is known that bottom-up synthetic routes (e.g., hydrothermal
treatment and microwave-assisted synthesis) commonly originate fluorescent molecular
impurities/by-products alongside the CDs. These impurities, which are frequently a major
part of the products resulting from the CDs’ synthesis, can only be efficiently removed by
either dialysis or chromatographic purification [18,128]. Moreover, it was observed that
these impurities, when not properly removed, can mask, or even modify the properties
and reactivity of the CDs [18,128]. Thus, without proper purification, it is uncertain if the
photocatalytic effect observed is due to the CDs themselves or due to reactive impurities
produced alongside the CDs during the synthesis. Further information in this regard is
crucial for a rational and target-oriented synthesis of photocatalytic CDs. Still, in the same
topic, despite some good results regarding the use of CDs as photocatalysts, there is still a
lack of data regarding how to ensure that the obtained CDs have the desired properties to
be an effective photocatalyst. In fact, the available data still do not allow us to determine
which synthesis parameters (precursors, route, duration, etc.) are to be chosen (and why) to
obtain photocatalytic CDs with good performance, in a rational and well-defined manner.

Furthermore, while CDs are thought to have potential for the photodegradation of
organic pollutants, the truth is that most studies in this topic have focused more on or-
ganic dyes (such as MB and RhB). This bears the question of how efficient CDs would
be to degrade non-dye compounds (such as antibiotics, for example). Furthermore, CDs
tend to possess negative charge, which bears the question of how this feature affects the
photodegradation of non-cationic compounds. In fact, this could explain why photodegra-
dation studies of CDs tend to focus on cationic dyes (despite some non-cationic dyes still
being included).

It should also be considered that the application of photocatalytic CDs in a “real-world”
environment requires the successful scale-up of a typically small, laboratory-sized, method-
ology into a full-scale industrial production procedure. However, CDs synthetic routes
typically have a low synthesis yield (commonly below 10%) [129–131]. The reason behind
this can be found in the synthetic methodologies most employed by researchers, namely
bottom-up strategies such as hydrothermal treatment, which generate large quantities
of solid carbon material as a secondary product [129–131]. Recent studies have tried to
address this problem by relying on non-conventional procedures to synthesize CDs. This
includes adding a eutectic mixture of salts in the carbonization process or subjecting the
solid carbon material to a posterior alkaline-peroxide treatment [132,133]. Thus, researchers
should also start to focus on increasing the synthesis yield of their CDs, and how processes
aimed to do so could affect the properties of these materials. Furthermore, further work is
needed to devise strategies capable of recycling a CD photocatalyst in a way that allows its
easy recovery and reusability. Current studies regarding recyclability rely on adding more
reactants/pollutants to the photocatalytic solution after the previous cycle was finished.
While this approach can allow for evaluating the performance of the CDs over different
cycles, it does not really allow for recovering the photocatalyst from the reacting mixture.

Last, but not least, a major part of the studies reviewed here used commercially
available chemicals, such as the frequently employed citric acid, as the carbon sources for
the CDs, with the occasional addition of extra precursors for doping. This is a problem, as
recent reports demonstrated that one of the major factors determining the sustainability
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and environmental impact of CDs’ synthesis is the identity and origin of the carbon
source [20,130,131]. Thus, the use of waste material should be preferred as carbon source
instead of commercially available chemicals [124,134]. This should favor more circular
economy-based approach, in which waste can have a new role instead of just being discarded.

4. Conclusions

This review consisted of a comprehensive study of several areas in which the CDs
were already successfully employed as photocatalysts, areas in which they sometimes
even excel the more widely used conventional methodologies. Photocatalysis is a process
that can be used to make our lives easier. Be it to fulfill our energetic requirements by
producing hydrogen or purify our wastewaters from organic pollutants or toxic metals,
the option of using an environmentally friendlier and more efficient way of doing so in
comparison to conventional methods brings us one step closer to sustainability and carbon
neutrality. Due to their properties, CDs are a class of carbon nanomaterials well suited to
be used for photocatalysis, as confirmed by several publications that study their use as sole
photocatalysts or part of a photocatalytic nanocomposite. Their large absorption region,
their PET potential, their low cost and water solubility are all important properties for a
photocatalyst. More important is the CDs’ capacity of, upon absorption of suitable radiation,
to produce photogenerated charge carriers (e− and h+). Furthermore, whereas traditional
semiconductor photocatalysts require highly energetic UV radiation to work, CDs, due to
their excellent optical properties, can work using visible light. The potential of CDs for
photocatalysis was reviewed and some limitations were pointed. Further developments
in the development of photocatalytic CDs may lead to a cleaner, less wasteful, way of
promoting everyday reactions by taking advantage of a renewable energy source, sunlight.
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