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Abstract: For a large amount of spent lithium battery electrode materials (SLBEMs), direct recycling
by traditional hydrometallurgy or pyrometallurgy technologies suffers from high cost and low ef-
ficiency and even serious secondary pollution. Therefore, aiming to maximize the benefits of both
environmental protection and e-waste resource recovery, the applications of SLBEM containing redox-
active transition metals (e.g., Ni, Co, Mn, and Fe) for catalytic decontamination before disposal and
recycling has attracted extensive attention. More importantly, the positive effects of innate structural
advantages (defects, oxygen vacancies, and metal vacancies) in SLBEMs on catalytic decontamination
have gradually been unveiled. This review summarizes the pretreatment and utilization methods
to achieve excellent catalytic performance of SLBEMs, the key factors (pH, reaction temperature,
coexisting anions, and catalyst dosage) affecting the catalytic activity of SLBEM, the potential ap-
plication and the outstanding characteristics (detection, reinforcement approaches, and effects of
innate structural advantages) of SLBEMs in pollution treatment, and possible reaction mechanisms.
In addition, this review proposes the possible problems of SLBEMs in practical decontamination and
the future outlook, which can help to provide a broader reference for researchers to better promote
the implementation of “treating waste to waste” strategy.

Keywords: spent lithium battery; catalytic oxidation; pretreatment; reaction mechanism

1. Introduction

To further achieve the environmental goal of sustainable development, electric vehi-
cles (EVs) have been developed rapidly. Currently, the EVs are approximately 7.2 million
units, which are predicted to further increase to 245 million units in 2030 [1]. The lifespan
of lithium batteries (LIBs) used in EVs is usually 3–10 years. Statistically, the number of
end-of-life EVs will reach 6.76 million in 2035, directly leading to the explosion of spent
LIBs [2]. High quantities of spent LIBs may pose a significant safety threat for both the envi-
ronment and human health. The recycling of spent LIBs is important in terms of economics
and environmental sustainability, pursuing maximum economic benefits while reducing
environmental pollution. However, the recycling of SLBEMs by conventional recycling
methods (e.g., hydrometallurgical and pyrometallurgical) has temporary difficulties at
the current stage. Large amounts of equipment costs, energy costs, and toxic gases are
incurred in pyrometallurgical recovery processes. The recovered products are often lower-
purity mixed-metal oxides that require further processing and refining [3]. Compared to
pyrometallurgy, the operational steps of hydrometallurgy are more complex. Various acid
or alkaline solutions are used in the pursuit of high-purity products. Their subsequent
treatment and leakage can significantly reduce the economic benefits of LIBs recovery,
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and may even pose safety hazards to human health and the environment [4]. From the
perspective of environmental protection and maximum utilization of e-waste resources,
greener and more economical recycling methods for SLBEMs deserve further investigation.

In recent years, increasing concentrations of various organic pollutants have been
identified (volatile organic pollutants, pharmaceuticals, pesticides, azo dyes, etc.), which
may be harmful to human health and environmental safety [5–8]. With the low efficiency
in traditional water treatment methods (e.g., biodegradation, physical filtration, and UV
disinfection) for the removal of persistent organic pollutants, advanced oxidation technolo-
gies (AOPs) with high efficiency, easy operation, and low cost have been widely considered
and applied [9–12]. Transition metals (e.g., Ni, Co, Mn, Al, and Fe) are known to induce
Fenton-like reactions, photocatalytic reactions, and thermocatalytic reactions for the pu-
rification of organic pollutants in water and air [13–15]. Typically, spent LIBs are mainly
composed of a cathode material, anode material, electrolyte, separator, and steel case, in
which the separator and electrolyte undertake the functions of separating the cathode
and anode material and medium in the charging and discharging process, respectively
(Figure 1a). It is noteworthy that SLBEMs have inherent advantages as catalysts in catalytic
decontamination. On the one hand, the cathode material contains abundant transition
metals. Lithium nickel cobalt aluminum acid (NCA), lithium cobaltate (LCO), lithium
nickel cobalt manganate (NCM), and lithium iron phosphate (LFP) batteries contain 31 wt%,
41 wt%, 26 wt%, and 25 wt% of cathode materials, respectively [16,17]. It is expected that
abundant transition metals on electrode material surfaces may facilitate the catalytic reac-
tion in pollutants decontamination by providing more reactive active sites and enhancing
the redox capacity of catalysts.

On the other hand, the charge and discharge cycles require lithium ions (red balls)
to successfully complete the embedding and de-embedding cycles between the cathode
and anode materials (Figure 1b). When lithium ions cannot be de-embedded from the
anode materials, the performance of LIBs decreases with the loss of more lithium ions.
Collapses, distortions, or cracks may be formed in the crystal structure of the cathode
materials. Vacancies and defects may be created on the cathode material surface during this
process, which greatly facilitates the promotion of catalytic reactions on the LIBs surface by
improving the electron transfer capacity and oxygen adsorption capacity [18,19]. Moreover,
carbon resources (up to 7 wt%) in anode materials can be used as high-performance catalyst
substrates [20,21]. The properties of carbon materials with high electrical conductivity
and specific surface area are beneficial to improve the catalytic performance of catalysts.
Moura et al. initially synthesized the nanostructure LIBs-based photocatalyst (CoFe2O4)
using the co-precipitation method to establish a photo-Fenton system for MB removal [22].
More than 85% MB was degraded within 400 min. The feasibility and good potency of the
combination of spent LIBs electrode materials and AOPs for organic pollutant removal were
demonstrated. Up to now, various LIBs-based catalysts have been applied in the catalytic
reactions. For example, Xin et al. adopted lithium manganate (LMO) to prepare a high-
performance manganese-based thermal catalyst (LMO-MnO2). Toluene was completely
removed at low temperatures (T90 = 224 ◦C) [23]. In addition, spent LIBs have inherent
advantages in catalytic decontamination. Wang et al. found that structural defects and
oxygen vacancies (Ov) created on the LFP surface due to lithium-ion loss during charging
and discharging were more favorable for catalytic reactions, and the removal rates of
bisphenol S (BPS) and rhodamine B (RhB) in the LFP/S(IV) system were 75% and 100%
within 45 min, respectively [24]. Similarly, Yue et al. used the hydrothermal method to
synthesize a photocatalyst (NaFeS2), which achieved 98% degradation of methylene blue
(MB) in 20 min under visible light [25]. Therefore, the combination of spent LIBs and AOPs
for the removal of organic pollutants holds good development prospects.
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Currently, the review on spent LIBs recovery focuses on the pretreatment of LIBs
(e.g., discharging, pre-sorting, and separating), recovery of metal resources (e.g., hydromet-
allurgical and pyrometallurgical methods), or synthesis of other functional materials for
diverse applications [3,28–33]. Other reviews have given a broad introduction to the en-
vironmental issues of lithium-ion batteries or different applications (e.g., photocatalysis,
thermal catalysis, and transition metal catalysis) [32–37]. Possible problems in the current
development of LIBs-based catalysts, more in-depth discussion on the catalytic mechanism,
and key influencing factors for catalytic activity are not being systematically discussed from
pretreatment and catalyst synthesis to practical application of catalytic decontamination.
In our review, the combination of spent LIBs and AOPs in catalytic decontamination is
clearly summarized and analyzed based on previous reports. First, this review provides
an overview of treatment methods about spent LIBs synthesized as catalysts, such as pre-
treatment, dissolution in acid/alkaline solutions, and different synthesis methods, and the
effect of treatment methods on catalytic activity is also discussed. Then, the key factors
influencing catalytic activity, the main issues in the practical decontamination process, and
the reaction mechanisms are proposed. Finally, possible problems and future trends in
catalytic decontamination are discussed.

2. Spent LIBs for Catalysts Preparation
2.1. LIBs Components

LIBs are usually divided into four parts (cathode, anode, separator, and electrolyte) [38,39].
The cathode material consists of active metal oxides containing transition metals (e.g., Ni,
Co, Mn, Fe, and Al), binder, carbon black (conductive carbon), and aluminum foil (Figure 2a).
The anode material mainly consists of carbon material and copper foil (Figure 2b). The
binder serves to fix active metal oxides and carbon material on aluminum or copper foil,
respectively. The average proportion of each component in LIBs is shown in Figure 2c.
Active metal oxides (31%) occupy the highest percentage in LIBs. More details of metal
oxides are shown in Figure 2d. The stable arrangement of transition metals in diverse
crystal structures and the large distribution on material surfaces offer great possibilities for
the catalytic processes on catalyst surfaces and a good stability of LIBs-based catalysts.
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Usually, the generation of spent LIBs is caused by the deterioration of battery perfor-
mance. Structural failure of electrode materials during cycling, severe shedding, dissolution,
and dendrite accumulation phenomena are common causes of cell performance decay [40].
Furthermore, electrolyte leakage, decomposition, and cell short-circuiting can also diminish
cell performance [41]. The components of LIBs, material structure, and metal valence may
suffer from these factors. Typically, the cation mixing phenomenon may directly change
the material structure and the metal valence state [42]. During the long-term charging
and discharging process, some Li may be irreversibly de-embedded into graphite, while
Ni, Co, Mn, and Fe in the cathode material may occupy Li positions. The structural and
valence changes of metal oxides may lead to changes in adsorption characteristics and
redox properties of active sites on the catalyst surface [43]. Therefore, suitable methods for
the preparation of LIBs-based catalysts can maximize the utilization of inherent structures
of electrodes and further improve catalyst performance.

2.2. Catalysts Preparation

To gain good catalytic performance and maximize economic efficiency, the preparation
of catalysts usually focuses on the efficient use of valuable transition metals in the cathode
material. For anode materials, graphite and copper foil are often recycled for further
application. The comparison of different LIBs recovery methods is shown in Figure 3.

The preparation of LIBs-based catalysts is mainly a two-step process: the obtainment of
cathode or anode materials (pretreatment) and the synthesis of high-performance catalysts.
During the pre-treatment step, short-circuit explosions in LIBs and the negative effects
of binder should be especially considered. Discharging is usually used to eliminate the
remaining charge in LIBs, by immersing them in a salt solution (e.g., NaCl, MnSO4, KCl,
MgSO4, FeSO4, and NaNO3) [44]. The main purpose of calcination is to remove binder from
the material surface, given that the presence of binder is not conducive to the acquisition of
cathode powder from aluminum foil. Furthermore, the catalytic performance of cathode
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powder may be deteriorated due to the coverage of active sites on the catalyst surface by
binder. Wang et al. investigated the effect of binder on the removal of sulfamethoxazole
(SMX) by LFP-activated PMS. The results showed that the degradation rate of SMX was
faster in the LFP/PMS system with a complete binder removal (100% during 30 min)
than that without binder removal (79% during 150 min) [45]. In addition, binder removal
methods include alkaline solution dissolution [45–47] and organic solution extraction
methods [48,49]. Calcination is a more common method for binder removal, but overly
high temperatures and different gas atmospheres (air roasting and anaerobic pyrolysis)
may affect the material’s structure and even destroy it. The choice of suitable operating
conditions for different materials is particularly important. Generally, the temperature is
controlled between 300 and 900 ◦C during the heat treatment [33].
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The cathode material surface contains rich metal elements and surface oxygen, and
it has the inherent advantage to be directly utilized as catalysts in catalytic reactions,
such as transition metal catalysis [50,51], photocatalysis [52], and thermal catalysis [53].
Significantly, the lithium-ion loss during charging and discharging tends to cause struc-
tural changes in the electrode material, such as defects, distortions, or vacancies (cation
vacancies and Ov) [18]. Defects and vacancies facilitate the improvement of active site
quantities, electron transfer capacity, and oxygen adsorption capacity, thus providing bet-
ter catalytic performance compared to pristine electrode materials [19,24]. In addition to
the characteristics of their own structures, rich carbon resources (binder and conductive
carbon in cathode materials and carbon materials in anode materials) are very favorable
to enhance the catalyst adsorption capacity, and they should be considered in catalyst
synthesis processes. Moreover, LIBs-based catalysts can be synthesized by other ways,
such as doping, deposition, mechanical enhancement, etching, or heterogeneous synthesis.
For example, the high-performance photocatalyst MnO2/Fe(0) was synthesized via the
reaction of LMO and ferric sulphate heptahydrate (Equation (1)) [54]. The conversion of
LMO to MnO2 improved the electron transfer between substrates during •OH generation.
The introduction of Fe(0) further enhanced the degradation of sulphadiazine (SDZ) [55].
According to different requirements of catalyst performance, LIBs-based catalysts can be
transformed into other transition metal oxides (CoOx and MnOx) [56]. In addition, these
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transition metal oxides can be used as substrates and their catalytic performances can be
further promoted by introducing specific metal elements (Co2+, Cu2+, and Ni2+) [57].

2LiMn2O4+FeSO4·7H2O → Li2SO4 + 4MnO2 + Fe + 7H2O (1)

Mechanical strengthening, acid treatment, and etching can facilitate the formation of
Ov and cation vacancies by releasing metal ions from the material, which is beneficial to
further promote the catalytic properties. Spent ternary battery-based catalysts (NCM 622)
produced more Ov and cation vacancies by alkali etching, which achieved complete removal
of propane at only 200 ◦C due to the enhanced lattice oxygen migration on the material
surface and reduction capacity [58]. During mechanochemical activation, the cathode
material suffers from mechanical friction and impact forces, thus becoming loose and small.
Meanwhile, more Ov and cation vacancies are potentially created on material surfaces. Such
a structure is conducive to the exposure of more active sites, which can facilitate catalytic
reactions [59]. These methods suggest that catalytic decontamination can be effectively
enhanced by changing the material structure. For metal heterojunction materials, it is
characterized by good stability, high surface area, and high adsorption capacity. Particularly
in the field of photocatalysis, good adsorption and photocatalytic capabilities greatly
enhance the practical application ability [60,61]. Kumar et al. employed in situ deposition
to synthesize LFP-based nanojunction photocatalysts, which are characterized by easy
recovery (with magnetic properties), high visible-light absorption, and high adsorption [62].
In addition, the formation of conjugate structures is favorable for photocatalytic reactions,
which can effectively reduce the electron transition energy and the reaction energy barrier
by reducing the energy band gap and changing the material interlayer spacing [63].

3. Application in Catalytic Decontamination
3.1. Persulfate/Sulfite-Based AOPs

In recent years, persulfate-based AOPs have been widely used in water treatment due
to the high removal efficiency, wide pH range, and high mineralization rate [64]. Typically,
SO4

•− can be generated by activation of peroxymonosulfate (PMS) or peroxydisulfate (PS)
through transition metals over catalysts. SO4

•− has a higher oxidation potential (2.5–3.1 V),
longer half-life (30–40 us), and higher selectivity compared to other active species (•OH,
O2
•−, and 1O2) [65]. Although both PMS and PDS are strong oxidizing agents and can

produce SO4
•− through activation by transition metal ions, cheaper PMS is more suitable

for practical applications in the catalytic decontamination process.
LIBs-based catalysts activate PMS primarily through the electron transfer of transition

metals on the catalyst surface. However, the great difference is reflected in the structure and
catalytic performance of LIBs-based catalysts compared with traditional catalysts. Currently,
LIBs-based catalysts for PMS activation are mainly divided into the direct application of
electrode materials (after pretreatment) [45,59,66,67] and secondary synthesis (electrode
materials are dissolved by inorganic acids to synthesize new catalysts by various methods,
such as co-precipitation, hydrothermal, and sol-gel methods) [68–70]. Compared with
secondary synthesis, direct application possesses simpler operation and higher economic
efficiency, while it still has good catalytic properties for PMS activation due to its inherent
structural advantages. On the one hand, the structure of electrode materials suffers from
continuous lithiation/delithiation cycles during the charge/discharge process. Distortion
and dislocation interspersed among crystal lattices, lattice expansion, and irreversible
phase transition may be caused, which reduces the battery performance while possibly
promoting PMS activation. For example, cracks (indicated by yellow circles in the figure)
and folds on the material surface may lead to a decrease in transition metal valence and
increase in adsorption capacity for contaminants (Figure 4a) [67,71]. The valence reduction
of partial transition metals may be beneficial to decrease the consumption of PMS (self-
decomposition or other competing reactions) by increasing the efficiency of redox reactions,
while contaminants are more easily mineralized by being rapidly adsorbed on the catalyst
surface. Similar findings were presented by Wang et al. and Dang et al. in their studies
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of the LMO/PMS and NCM/PMS systems, respectively [50,72]. The generation of more
Ov and metal vacancies can facilitate the adsorption of O2, electron transfer, and exposing
more active sites during the activation of PMS, which contributes to the efficient utilization
of PMS [50,72].
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On the other hand, the binder and conductive carbon during calcination (one of the
pretreatment steps) may be effective to increase the specific surface area of LIBs-based cata-
lysts by the self-decomposition of binder and the generation of gases [73,74]. More active
sites could be exposed on the catalyst surface, which has a positive effect on systems with
PMS. This was also found during a study of the NCM-650/PMS system by Zhao et al. [74].
The specific surface area of NCM-650 catalyst was significantly enhanced after calcination,
which greatly improved the utilization of PMS in the catalytic decontamination process.
This positive effect may be due to the increase in the number of exposed active sites, en-
hanced adsorption capacity, and oxidation capacity. In addition, the binder and conductive
carbon on the LIBs-based catalysts surface during calcination may also cause a partial
reduction in metal valence state through carbon-thermal reduction reactions. This effect
may accelerate electron transfer between transition metals, thus accelerating the catalytic
decontamination process [73].

Notably, vacancies and defects are not always present on the SLBEM surface, or the
degree of scrap is not sufficient to promote catalytic reactions. Although those catalysts
without inherent structural advantages after calcination treatment above 450 ◦C may pos-
sess a modest catalytic capacity in catalytic decontamination [67,74,75], their catalytic
efficiency for persistent organic pollutants is still inferior to that of SLBEMs with inherent
structural advantages. The loss of lithium in the material may signify the presence of
structural vacancies and defects. Typically, the shifts in characteristic peaks in X-ray diffrac-
tion (XRD) (Figure 4b) [24,66], the loss of lithium by inductively coupled plasma-atomic
emission spectrometry (ICP-AES) testing, and the dislocation maps with the presence of
distorted interlacing in transmission electron microscopy image (TEM) (Figure 4c) can



Catalysts 2023, 13, 189 8 of 23

be used as primary diagnosis methods, while vacancies can be directly demonstrated by
electron paramagnetic resonance (EPR) spectra (Figure 4d) [45,72]. Currently, there are two
ways to enhance the catalytic performance of such “normal” LIBs-based catalysts, namely
electrochemical enhancement and mechanochemical enhancement [50,59]. The changes
in morphological structure (e.g., pore size, specific surface area, and particle size), metal
vacancies, and Ov usually occur to improve catalytic performance during the strengthening
process. Dang et al. successfully prepared LIBs-based catalysts using mechanochemical
enhancement, and more active sites and vacancies were generated on LIBs-based catalysts
surfaces during the mechanochemical enhancement [59]. It is noteworthy that the stability
and decontamination efficiency of the enhanced catalyst are double those of pristine LCO,
which is more suitable for practical applications.

Compared to persulfate, sulfite (S(IV)) is a common industrial contaminant, which is
cheaper and more readily available. It has been documented that S(IV) can be activated
using transition metals [76–82]. The process of the LIBs-based catalyst activating S(IV) for
pollutant removal has good economic benefits and environmental protection significance.
Typically, SO3

•− is initially formed in the reaction process of S(IV) and transition metals,
while SO3

•− produces other active species through chain reactions [78,83–85]. Interestingly,
PMS may be first generated in LIBs-based catalyst/S(IV) systems [24,86], which, in turn, is
activated by transition metals on the catalyst surface to produce active species for pollutant
removal. In the SLFP/S(IV) system, SLFP·O2·SO3H− is predominantly generated through
complexation of SLFP and S(IV), and, in turn, PMS is released into the system to participate
in redox reactions (Equations (2) and (3)) [24,87,88]. Unlike the SLFP/S(IV) system, PMS is
also generated initially in the LCO/S(IV) system, but the pathway of PMS generation is
through two-step hydrogen shifts (Figure 5) [86].

SLFP + O2 + HSO−3 
 SLFP ·O2 · SO3H− · Rapid (2)

SLFP ·O2 · SO3H− → SLFP + HSO−5 (3)
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3.2. Fenton-Like AOPs

The Fenton-like process has some advantages over the homogeneous Fenton reaction,
such as wide pH range, good stability, and easy recovery of catalysts [89]. The heteroge-
neous Fenton reaction destructs organic pollutants mainly through the H2O2 activation
by transition metals on the catalyst surface, which generates •OH with high oxidation
capacity [90]. Currently, it has been studied that LIBs-based catalysts can provide a new
strategy for the development of Fenton-like catalysts. However, the current research mainly
focuses on the synthesis of new catalysts only by extracting transition metals from SLBEMs.
The structural advantages of SLBEMs are not fully discovered. Usually, LIBs-based cata-
lysts have good catalytic activity for H2O2 activation through the redox reaction of rich
transition metals to produce highly oxidative •OH for water purification [44]. Abreu et al.
fabricated LCO catalysts from cell phone batteries and established a LCO/H2O2 system for
MB removal via electron transfer of Co(II)/Co(III) to activate H2O2 [44]. The degradation
rate of MB was close to 100% within 150 min.

The electron transfer of transition metals (e.g., Fe(II)/Fe(III), Co(II)/Co(III), and
Mn(II)/Mn(III)) is usually the main way to activate H2O2 in Fenton-like reactions. No-
tably, transition metals have low cycling efficiency in both homogeneous and hetero-
geneous systems. For example, the reaction rate between Fe(II) and H2O2 to Fe(III)
(k = 40–80 M−1 s−1) is much higher compared to the reaction of Fe(III) and H2O2 to Fe(II)
(k = 0.001–0.01 M−1 s−1) [91]. Some electron-rich materials have been used as reductants to
accelerate the redox cycle of transition metals, thereby enhancing the catalytic performance
of LIBs-based catalysts in catalytic decontamination processes. For example, carboxylates,
carbon materials, metal sulfides, NH2OH, and other reductive materials can significantly
improve the Fenton reaction efficiency [92–96]. Zou et al. synthesized sea-urchin-like cata-
lyst (SULM) as an activator of H2O2 (Figure 6a) [91]. The addition of NH2OH effectively
promoted the redox cycle of Fe(III)/Fe(II) on the SULM surface and Fe2+/Fe3+ in solution
via the function of NH3OH+, thus promoting the reactive oxygen species (ROS) generation
(Figure 6b). The synergistic effect of surface and homogeneous reactions in the SULM +
NH2OH + H2O2 system was established for the removal of organic pollutants (Figure 6c).
The degradation rate of RhB within 30 min was higher in the SULM + NH2OH + H2O2
(100%) system compared to that of SULM + H2O2 (10%). Surprisingly, except for •OH, 1O2
was also supposed to be the main active oxidant during RhB removal. A few O2

•− were
detected by radical scavengers containing p-benzoquinone (BQ). The literature mentions
that 1O2 and O2

•− may be generated due to the coupling of •OH (Equation (4)) and the
reaction between O2 and Fe2+, respectively [96]. The same situation was not observed in
other applications of LIBs-based catalysts, but a possibility was identified in favor of a
more comprehensive consideration of degradation mechanisms in future studies.

4•OH→ 1O2 + 2H2O (4)
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In addition, UV or visible light as energy is provided in the heterogeneous photo-
Fenton to promote the formation of H2O2 and conversion of metal valence to enhance
organic removal [98]. Moura et al. produced nanostructured catalysts (CoFe2O4-LIBs) for
the activation of H2O2 by co-precipitation [21]. The MB removal rate was 87.7% in the
CoFe2O4-LIBs system. Notably, additional H2O2 was generated during the catalytic process
(Equations (5)–(8)). The combinational effects of photocatalysis and heterogeneous catalysis
can effectively improve the activation efficiency of H2O2, accelerating the generation of
free radicals and achieving rapid removal of pollutants. The carbon material of the anode
in spent LIBs possesses a special advantage unlike the cathode material, which provides
good carbon structures and conductivity. In particular, as a substrate, it has great potential
for high-performance catalysts in diverse catalytic applications. Guan et al. successfully
prepared zero-valent iron-loaded expanded graphite (ZVI/EG) using the carbothermal
reduction method [97]. The synergistic effect of Fe(0) and the generated H2O2 in the
ZVI/EG system effectively improved the decontamination efficiency (Figure 6d) [99–101].
The degradation rate of 4-CP reached 97% within 60 min. In addition, the EDS-mapping
results of Fe before and after the reaction maintained a stable mass ratio. The degradation
rate of 4-CP remained above 75% after 7 cycles. It can be seen that the good adsorption
ability of the carbon material is beneficial to improve the catalyst stability in the catalytic
decontamination process.

Fe(0) + 2H+ + O2 → H2O2 + Fe2+ (5)
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e− + O2 → O•−2 (6)

O•−2 + H+ → HO
•
2 (7)

HO•2 + H2O→ H2O2 +
•OH (8)

3.3. Thermocatalysis

Currently, the synthetic materials for LIBs-based thermocatalysts are mainly derived
from spent LMO, NCM, and LCO. Although electrode materials are not used directly as ther-
mocatalysts, they are still potentially useful for contaminant removal in terms of structural
characteristics and material components. It is well known that Ov, the redox of transition
metals (Mn3+/Mn4+, Cu2+/Cu+, Ni2+/Ni3+, and Co2+/Co3+), and metal vacancies (Li,
Al, and Co) on the catalyst surface are favorable factors for the sustainable and effective
removal of contaminants. LIBs-based catalysts possess innate structural advantages in
catalytic applications that have been discussed and demonstrated in the above sections,
such as efficient electron transfer capability, generation of defects and vacancies, and better
adsorption capacity. This may have a positive impact on thermocatalytic decontamination.

The presence of lithium is usually detrimental to thermocatalytic reactions (Figure 7a).
The reason is attributed to the probable cause of the reduction of oxygen species on the
catalyst surface [102]. It is known that abundant oxygen species play an important role in
thermal catalytic oxidation. It is especially important for systems where the removal of
pollutants is dominated by surface-active oxygen oxidation. For example, LCO catalysts
without excessive Li2CO3 have a higher efficiency for benzene removal compared to pristine
LCO. The efficiency of benzene removal is greatly enhanced by exposing the bulk lattice
oxygen on the catalyst surface due to removing excess Li2CO3 [53]. In the case of catalysts
with inherent structural advantages, more loss of lithium ions may lead to more active
sites on the catalyst surface, which facilitates thermocatalytic reactions. In addition, Ov
and redox cycling of transition metals support the continuous replenishment of reactive
oxygen species during thermocatalysis by capturing O2 (Figure 7b) [23]. This may also be
one of the positive effects of LIBs-based catalysts on thermocatalytic decontamination. The
application of LIBs-based thermocatalysts with inherent defects is relatively rare compared
to other application methods, which is perhaps the main reason why acid treatment and
alkali etching are used as common treatment methods for generating vacancies and defects
in catalyst structures [102–105].

Highly valent Mn (Mn4+) has also been demonstrated to directly oxidize pollu-
tants [106,107]. Although LIBs-based thermocatalysts contain abundant transition metals,
most of the valence states of transition metals may be reduced after heat treatment due
to carbon-thermal reduction reactions. In addition, the effects of other metals (e.g., Co2+,
Ni2+, and Cu2+) and acid treatment may also reduce the valence state of transition metals
during the preparation of catalysts (Figure 7c) [23]. Fortunately, according to the principle
of electroneutrality, low-valence Mn is closely related to the formation of Ov in thermocat-
alytic processes [108]. This greatly enhances the utilization value of LIBs-based catalysts.
In addition, the good adsorption capacity of LIBs-based catalysts is equally important.
LIBs-based catalysts containing carbon materials (conductive carbon and binder in cathode
material and carbon material in cathode material) may have a large specific surface area.
Unfortunately, the current research in LIBs-based thermocatalysts based on the innate
structure of LIBs is less compared to other applications of LIBs-based catalysts. Although
the structure and composition of SLBEMs may be relatively fixed compared to newly
synthesized catalysts, the known structural advantages are still valuable for in-depth study.
Furthermore, the comprehensive utilization of various components of LIBs in AOPs also
deserves to be further explored.
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3.4. Photocatalysis

The application of LIBs-based catalysts in photocatalysis is slightly different compared
to other applications. LIBs-based catalysts exhibit some unique structural advantages for
catalytic reactions, but it cannot be directly applied in photocatalysis, due to its structural
limitations. More critically, LIBs-based catalysts cannot be induced to produce a large
number of hole–electron pairs under visible or UV light. For example, Guo et al. studied
spent LFP for methyl orange (MO) removal by UV light [109]. The results are shown
in Figure 8a, and MO was almost not degraded. The energy band gap of LFP (3.65 eV)
has been reported to be much higher than that of g-C3N4 (2.7 eV) (a commonly used
photocatalyst) [62]. LIBs-based catalysts cannot be directly applied in photocatalysis,
probably due to their large energy band gap that inhibits hole–electron pair generation and
electron migration.
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As is known, g-C3N4 is one of the most popular visible-light photocatalysts. Un-
fortunately, the practical applications of g-C3N4 face a challenge because of its low spe-
cific surface area, poor solar light utilization efficiency, and high recombination rate of
photo-generated electrons and holes [110,111]. Moreover, the photocatalytic activity of
TiO2 is limited by two important drawbacks: the wide band gap (3.0–3.2 eV) resulting
in the use of only UV light energy, and its low adsorption capacity for pollutants in so-
lution [112,113]. Fortunately, LIBs-based catalysts possess good promotive effects for the
photocatalytic performance of other catalysts (e.g., g-C3N4 and TiO2), thus achieving ef-
ficient photocatalytic decontamination in practical applications. This facilitative effect
mainly resulted from the structural characteristics of LIBs-based catalysts. As discussed
in Section 3.1, LIBs-based catalysts may contain vacancies and defects due to the loss of
lithium during charge and discharge, which facilitates photocatalytic decontamination.
Surprisingly, de-lithiated LFP exhibited superior photocatalytic properties (wider photoab-
sorption boundary (200–800 nm), lower recombination rate, and lower photoluminescence
intensity) compared to TiO2 in photocatalytic applications (Figure 8c) [25,114,115]. Ku-
mar et al. synthesized heterojunction photocatalysts [62] from LFP. The results revealed that
the combination of LFP and other materials serve as a critical function in the enhancement
of photocatalytic performance. Among them, the presence of structural defects in LFP is
mainly responsible for greatly reducing the recombination rate. In addition, the band edges
of LFP have a favorable position in the heterojunction catalyst (Figure 8d), which, in turn,
promotes charge separation.

The carbon material in both anode and cathode electrodes may modify the structural
morphology of photocatalysts (e.g., specific surface area and particle size), which would
greatly enhance the removal ability for pollutants in photocatalytic decontamination [116].
Photocatalysis is an interfacial reaction; only when contaminants are diffused onto the
surface of photocatalysts can they be degraded at a faster rate [117]. Therefore, good adsorp-
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tion capacity is very critical for pollutant removal in photocatalytic processes. Moreover,
the effective combination of abundant transition metals in anode materials with other pho-
tocatalysts may effectively reduce the energy band gap of photocatalysts. This beneficial
effect may be attributed to the fact that embedding transition metals changes the structure
of photocatalysts and, thus, promotes photocatalytic reactions. Niu et al. prepared a highly
active photocatalyst through the effective combination of LCO and g-C3N4 [63]. The study
found that the energy band gap of LIBs-based photocatalysts was significantly reduced
from 0.92 eV to 0.27 eV due to the embedding of Co.

4. Key Factors Influencing Catalytic Activity
4.1. Initial Solution pH

The initial pH of the solution in LIBs-based catalytic reactions is more important for
the catalytic performance of LIBs-based catalysts compared to other newly synthesized
catalysts. This is mainly attributed to the relatively fixed structure and composition of LIBs-
based catalysts. The activation of the oxidizing agent is mainly dependent on the redox
reaction of the transition metal on the LIBs-based catalysts surfaces. Although vacancies
and defects on the material surface can promote catalytic reactions, an unsuitable pH may
inhibit the catalytic activity of the LIBs-based catalysts through the leaching of metal ions
or passivation on the catalyst surface. Moreover, the catalyst surface charge, distribution of
oxidizing agent, and target contaminant speciation are all likely to be influenced by pH [118].
Taking the LFP/S(IV) system for catalytic removal of BPS as an example [24], the highest
degradation rate of BPS was observed at pH 3.0–5.0. At pH 6.0 and 7.0, the degradation rate
of BPS became slow. BPS degradation was almost completely inhibited at pH 9.0 and 11.0.
Considering the isotropic point of LFP (pHzpc = 5.8), the S(IV) speciation (HSO3

−/SO3
2−),

and the BPS dissociation constants (pKa,1 = 7.42, pKa,2 = 8.03) [119], at pH > 5.8, the LFP
surface is negatively charged, with BPS in the anionic state (BPS−/BPS2−) and SO3

2− being
the predominant forms. Therefore, the degradation efficiency of BPS is negatively affected
mainly due to the electrostatic repulsion between the species. The precipitation of Fe(OH)3
on the material surface under alkaline conditions may also lead to the LFP poisoning [78].
In addition, pH determines the type and level of active oxidizing species in the catalytic
decontamination process. Under alkaline conditions, large amounts of OH− may react
with the SO4

•− in water, contributing to the production of •OH (Equation (9)) [120]. In
addition, the pH effect is also present in the photocatalytic process. At lower pH conditions,
h+ is preferentially formed compared to •OH. Conversely, when the pH is neutral or basic,
•OH plays a key role in catalytic decontamination [121,122]. Evidently, selection of the
appropriate pH has a direct impact on the catalyst activity for the contaminant removal.

SO•−4 + OH− → SO2−
4 + •OH (9)

4.2. Reaction Temperature

For thermal catalysis, the relationship between catalytic performance and reaction
temperature of different LIBs-based thermocatalysts is compared (Table 1). Remarkably, the
contaminants can be rapidly degraded only when the reaction temperatures reach a certain
critical temperature. This may be attributed to different surface activation energies (Ea)
for contaminant oxidation over the catalyst [123]. The thermocatalytic decontamination
process is accelerated when the reaction temperature meets Ea required by the LIBs-based
thermocatalysts. Moreover, the relationship between reaction temperature and pollutant
removal is usually positively correlated in AOPs. For example, Liu et al. investigated the
catalytic oxidation of benzene VOCs by LCO [60]. Only 40% of pollutants were removed
at reaction temperatures ranging from 0 ◦C to 200 ◦C, while pollutants were completely
removed when the temperature was increased to 500 ◦C. Guo et al. prepared manganese-
based catalysts from LMO for enhancing VOC removal [106]. The decay of 1-methoxy-2-
propyl acetate (MPA) also reflected a positive correlation between reaction temperature
and pollutant removal. A similar trend was observed in Fenton-like catalytic reactions
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where the decay of organic pollutants and the decomposition of H2O2 were higher at 60 ◦C
as compared to 20 ◦C [124].

Table 1. The relationship between catalytic performance of different LIBs-based thermocatalysts
and temperature.

Catalysts Ict
a T50

b T90
b Pollutants Ref

SLMB-MnO2-2 1000 208 224 Toluene [23]
H2O-LCO 407–467 250 430 Airborne benzene [60]

MnOx(SY)-0.1 1000 150 180 2-ethoxy-ethanol [102]
GdMnO3(SY)-0.05 1000 190 220 2-ethoxy-ethano [102]
SmMnO3-STLIB 1000 208 244 Propylene glycol methyl [103]
SmCoO3-STLIB 1000 216 307 Propylene glycol methyl [103]

MnOx(MS)/CeO2-C 1000 196 253 2-ethoxyethyl acetate [104]
CoOx(GS)/CeO2-P 1000 194 253 2-ethoxyethyl acetate [104]
MnOx(SY)/CeO2-C 1000 179 222 2-ethoxyethyl acetate [104]

MnOx-M-350 1000 243 290 Toluene [105]
MnOx-M-5% Fe 1000 174 212 1-methoxu-2propyl-acetate [106]

MnOx-M-10% Ce 1000 192 224 1-methoxu-2propyl-acetate [106]
MnOx-M-15% Bi 1000 184 214 1-methoxu-2propyl-acetate [106]
MnOx(SY)(HT) 1000 181 218 1-methoxy-2-propanol [107]
CoOx(GS)(CP) 1000 180 213 1-methoxy-2-propanol [107]

Co3−xMxO4-500 1000 247 274 Toluene [125]
H-LiCo 370–430 215 250 Airborne benzene [126]

AgHPWLiCo 450–480 225 275 Airborne benzene [127]
a Initial concentration (ppm) of organic pollutants; b the temperatures corresponding to 90% (T90, ◦C) and 50%
(T50, ◦C) of organic pollutants.

4.3. Coexisting Anions

LIBs-based catalysts may also be influenced in practical applications by the large
number of anions and humic acid (HA) in the actual wastewater, such as CO3

2−, HCO3
−,

Cl−, NO3
−, H2PO4

−, and HA [128]. In general, the anions and HA in the practical
water body are quenchers for active radicals. The decrease in reactive radicals leads to a
decrease in the efficiency of organic pollutant removal. In addition, the inhibitory degree
of pollutant removal by anions and HA is positively correlated with their concentration.
Zhao et al. prepared NCM-650 catalyst for PMS activation [74] and found that pollutant
removal declined continuously (100% to 80%) when the anion and HA concentrations
in solution increased (0 mM to 20 mM). NO3

−, Cl−, HCO3
−, and HA all had inhibitory

effects on pollutant removal. This may be due to the part of reactive radicals (•OH and
SO4

•−) in solution being quenched (Equations (10)–(13)) [129–131]. In addition, the alkaline
environment generated by the HCO3

− hydrolysis leads to electrostatic repulsion between
NCM-650 and PMS, which inhibits the removal of contaminants [132]. A similar trend was
observed in a study by Dang et al. for the effects of NO3

−, Cl−, HCO3
−, and HA. The

reactive radicals in solution were depleted and a large number of less oxidizing reactive
species (Cl•, HCO3

•−, CO3
•−, and H2PO4

•−) were generated [59]. Apart from quenching
the active radicals, H2PO4

− may also chelate with the active sites on the catalyst surface,
diminishing active sites available for PMS activation [133].

Especially, the addition of high concentrations of Cl− is likely to promote contaminant
degradation in some cases. For example, the addition of Cl− (100 mM) promoted the
complete degradation of BPA compared to the absence of Cl− [69]. Cl− in solution is directly
oxidized by PMS to form reactive chlorine (e.g., Cl2 and HOCl) (Equations (14) and (15)),
which facilitates the contaminant degradation. In other words, BPA was degraded by both
reactive radicals and reactive chlorine [134,135]. Notably, Cl− facilitates or inhibits catalytic
reactions depending on diverse factors. The efficient degradation of BPA is mainly due
to the action of Cl2 and HOCl and the presence of the electron-donating hydroxyl group
on the benzene ring. The elevated Cl− concentration gives the opportunity for Cl2 and
HOCl to be generated by the chain reaction of excess Cl−. The excessive amounts of Cl2
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and HOCl can mineralize the electron-rich BPA and improve the efficiency of BPA removal
through hydrogen extraction and single-electron oxidation. The concentration of Cl−, rate
constants between the radicals (•OH, SO4

•−, and halogen radicals) and between radicals
and target organic pollutants, experimental operating conditions, and unique structures
of pollutants (containing electron-donating groups and electron-withdrawing groups) can
have different effects on the removal of contaminants in the presence of Cl− [136]. Therefore,
choosing suitable degradation methods and specifying types of pollutant structures should
be considered in catalytic decontamination processes when faced with the co-existence of
pollutants and anions in actual wastewater.

Cl− + SO•−4 
 SO2−
4 + Cl• (10)

HCO−3 + SO•−4 → SO2−
4 + HCO•−3 (11)

H2PO−4 + SO•−4 → H2PO•−4 + SO2−
4 (12)

H2PO−4 + •OH → H2PO•−4 + OH− (13)

HSO−5 + 2Cl− → SO2−
4 + HOCl (14)

HSO−5 + 2Cl− + H+ → Cl2 + SO2−
4 + H2O (15)

4.4. Catalyst Dosage

The catalyst dosage is one of the key factors in the catalytic decontamination process.
High catalyst concentration will provide more reactive sites and accelerate the catalytic
reaction process. However, when too much catalyst is used, the transition metals on the
catalyst surface quench the active radicals, leading to the reduction in pollutant removal
efficiency [137]. In addition, the catalyst itself may undergo agglomeration, affecting the
catalytic efficiency. For example, catalyst agglomeration in photocatalysis may reduce the
light transmission capacity [8]. Therefore, both economic efficiency and pollutant removal
efficiency should be considered while selecting the optimal catalyst dosage.

4.5. Possible Problems in Practical Decontamination

The rapid development of LIBs-based catalysts is expected to effectively relieve the
pressure on e-waste recycling and environmental protection processes. Facing the complex
water treatment environment in practical application processes, catalysts with high stability,
good catalytic ability, low cost, and easy preparation are required. In terms of LIBs-based
catalysts, some possible issues should be further investigated in the future.

First, some innate structural advantages of spent LIBs have been proven to facilitate
the catalytic decontamination process. However, based on the application of LIBs-based
catalysts, we found that not all structures of spent LIBs are favorable for improving catalytic
performance. Therefore, the relationship between the degree of scrap and structural
advantages of spent LIBs should be more clearly defined, or assessed by some indicators
for spent LIBs. This helps to fully utilize the catalytic value of LIBs-based catalysts in
actual catalytic decontamination. Secondly, the idea of preparing catalysts at the current
stage may be influenced by the traditional recovery methods of LIBs. The new catalyst
was synthesized only by extracting transition metals from SLBEMs before the structural
advantages of materials were clearly recognized. The method of extracting transition metals
is basically the same as conventional recovery ideas. High costs, complex operations, and
hazards of secondary contamination may still be created while the value of SLBEMs is
not maximized. This is contradictory to the goal of greener and higher-value recycling
of spent LIBs. Thirdly, the stability of LIBs-based catalysts at different pH needs to be
further improved. The transition metals on LIBs-based catalyst surfaces play a key role in
the catalytic decontamination process, while pH may cause catalyst surface passivation,
protonation, de-protonation, and changes in surface charge (positive or negative), which
further affect the catalytic decontamination performance.
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5. Conclusions and Outlooks

In recent years, the recycling of spent LIBs has gained widespread attention due to
their large end-of-life quantities and possible hazards. In particular, cathode materials
with large amounts of valuable metal and anode materials with abundant carbon sources
may process an inherent advantage in catalytic decontamination. Several studies have
focused on the utilization of SLBEMs as efficient catalysts for photocatalysis, transition
metal catalysis, and thermocatalysis. Further efforts are needed for the utilization and
metal recycling of SLBEMs.

First, the safety and greenness of recycling spent LIBs electrode material before uti-
lization should be considered. Pretreatment is critical to obtain high-performance catalyst
precursors and its negative effects may cause changes in catalyst structure and surface metal
valence (metal oxidation or surface passivation), which may directly affect subsequent
catalyst synthesis or efficient catalytic performance. Moreover, leaching, acid treatment,
and alkali etching treatments should be reduced or replaced by other methods, which
would effectively avoid environmental pollution. High-temperature calcination could
be a promising method for metal separation. In addition, the recovery of lithium can be
considered as an additional profit in the preparation of catalysts. On the one hand, its
development facilitates the maximization of economic efficiency. On the other hand, more
active sites and vacancies may be exposed on catalyst surface during lithium removal,
thus improving catalytic performance. Therefore, the lithium extraction process could
be considered to develop in terms of both enhanced catalytic performance and economic
efficiency. LIBs-based catalysts can be reused but not permanently maintain high perfor-
mance in catalytic decontamination, and consideration for its final fate is necessary in
future development. Compared to catalyst regeneration technologies, recovery of valuable
metals may be more important to maximize the economic benefits of recycling spent LIBs
while reducing environmental pollution.

Secondly, the synthesis of LIBs-based catalysts is more often carried out by hydromet-
allurgy than by pyrometallurgy. Hydrometallurgy may result in positive effects (e.g., Ov,
metal defects, and more active sites) on transition metal oxides in catalytic applications,
especially in catalytic decontamination. Other transition-metal-based compounds with
excellent properties (e.g., sulfide, nitride, and phosphide) are to be developed further. For
example, the electrostatic interaction between negatively charged S2−/S2

2− and positively
charged MB on the NaFeS2 surface greatly contributes to the adsorption and removal effi-
ciency of MB. In addition, LIBs-based catalysts or composite catalysts still face significant
challenges in catalytic decontamination due to the complexity of the actual application
environment (co-existing anions, other organic pollutants, and pH). Therefore, while the
catalytic decontamination capability of LIBs-based catalysts is increasing, the practical
application capability should also be emphasized and enhanced.

Finally, apart from the extra addition of other substances, the components of the
waste LIBs themselves (e.g., graphite, copper foil, and aluminium foil) need to be utilized
effectively and combined with each other in appropriate ways. For example, adopting
aluminum foil as a reducing agent greatly enhances the catalytic performance of LCO
for PMS through mechanochemical activation, producing Ov and metal vacancies that
facilitate catalytic decontamination. The anode contains abundant graphite, which is the
main material for the production of graphene. Graphene, which is characterized by good
electrical properties, large specific surface area, and stability, can be used as a conductive
additive or catalyst substrate. These strategies of LIBs-based catalyst preparation will
provide considerable effectiveness toward efficient environmental protection and catalytic
material synthesis. The combination of diversified utilization of clean energy (e.g., light,
hydrogen, and wind) and reduced energy consumption (e.g., low-temperature thermal
catalysis, carbon capture, and carbon utilization) in the catalytic decontamination process
can be considered as a future development direction, which can better achieve the strategic
goal of “treating waste to waste“ in the process of e-waste resource recovery.
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