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Abstract: The use of metal-based heterogeneous catalysts for the degradation of N-containing organic
dyes has attracted much attention due to their excellent treatment efficiency and capability. Here, we
report the synthesis of heterometals (Ni and Pd)-incorporated Fe3O4 (Ni-Pd/Fe3O4) yolk-shelled
nanospheres for the catalytic reduction of N-containing organic dyes using a facile combination
of solvothermal treatment and high-temperature annealing steps. Benefiting from the magnetic
properties and the yolk-shelled structure of the Fe3O4 support, as well as the uniformly dispersed
active heterometals incorporated in the shell and yolk of spherical Fe3O4 nanoparticles, the as-
prepared Ni-Pd/Fe3O4 composite shows excellent recyclability and enhanced catalytic activity for
three N-containing organic dyes (e.g., 4-nitrophenol, Congo red, and methyl orange) compared
with its mono metal counterparts (e.g., Ni/Fe3O4 and Pd/Fe3O4). In the 4-nitrophenol reduction
reaction, the catalytic activity of Ni-Pd/Fe3O4 was superior to many Fe3O4-supported nanocatalysts
reported within the last five years. This work provides an effective strategy to boost the activity of
iron oxide-based catalytic materials via dual or even multiple heterometallic incorporation strategy
and sheds new light on environmental catalysis.

Keywords: Fe3O4 nanospheres; heterometal incorporation; magnetic catalyst; N-containing unsaturated
compound; reduction reaction

1. Introduction

There are increasing concerns regarding the accumulation of organic pollutants such as
N-containing dyes in the aquatic ecosystems [1]. These N-containing organic compounds
are usually structurally stable and mostly refractory in the natural environment, thus
threatening human health and the environment due to their intrinsic toxicity [2]. Therefore,
effective techniques for dye-polluted wastewater treatment are highly desired but still need
further investigation [3,4]. As commonly used dyes, N-containing organic compounds (e.g.,
nitroaromatics and azo compounds) usually have unsaturated chromophore groups, such
as nitro- (O←N=O) and azo (-N=N-) moieties, along with aromatic rings in their structures.
Considering that these unsaturated groups are reactive, it is possible to cleave the molecular
structures of these toxic dyes by chemical hydrogenation or reduction reactions in the pres-
ence of an efficient catalyst [5]. In this way, N-containing organic dyes can be decolorized
and converted into less harmful aminoaromatics [6], which are valuable intermediates
for the industrial production of a variety of agrochemicals, pharmaceuticals, dyes, and
pigments [7,8]. In recent years, the reduction of 4-nitrophenol, Congo red, and methyl
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orange by sodium borohydride (NaBH4) in aqueous solution has become an ubiquitous
model reaction used to test catalyst activity [2,9,10]. However, it is still a daunting task
to achieve high activity, selectivity, as well as recyclability for the catalyst during harsh
reaction processes.

In recent years, the use of metal-based heterogeneous catalysts for decolorizing and
converting N-containing organic dyes to aminoaromatic substances has attracted much
attention due to their excellent treatment efficiency and capability [11–15]. In order to
gain high catalytic efficiency and favorable utilization of active metal, the metal species
are usually loaded on support materials in the form of nanoparticles [16], clusters [17], or
even single atoms [18,19]. However, their small sizes lead to obvious drawbacks, such as
difficulty in separating and recycling the catalyst from the reaction systems efficiently by
conventional methods (e.g., filtration and centrifugation) [20]. To address this issue, scien-
tists are trying to combine active components with magnetic materials. They introduced
active metal species (e.g., nanoparticles, clusters, and single-atoms) to magnetic support
materials and synthesized magnetically recyclable catalysts [21–23]. Due to the magnetic
property of the catalysts, quick separation, and recycling of the catalysts from the reaction
system can easily be achieved by applying a permanent magnet externally [24,25]. It is
believed that magnetically recyclable catalysts are cost-effective and potentially applicable
for industrial applications.

As a representative magnetic material, iron oxide (e.g., Fe3O4) is considered one of the
promising candidates as a catalyst-supporting material due to its abundance and excellent
stability [26]. Since the high specific surface area (SSA) of the support material is crucial
to the exposure of active metal sites and mass transportation, this significantly influences
the catalytic performance [27,28]. Incorporating active metal into the Fe3O4-based material
with specific micro-/nano architectures should be an option for fabricating efficient and
magnetically recyclable catalysts [29]. As a result, hierarchically structured magnetic
Fe3O4 nanomaterials are ideal candidates as supports for catalysts [30]. However, it is still
challenging to stably anchor high-density active metal sites on Fe3O4 materials due to the
limited strength of the interaction between the iron oxide and heterometal species [31,32].
Therefore, Fe3O4 materials are usually functionalized via surface modification, such as
coating with polymer [33]. For instance, Duan et al. fabricated an effective recyclable
nanocatalyst based on double-shelled hollow nanospheres-supported Pd nanoparticles, in
which magnetic Fe3O4 was functionalized with polydopamine [34]. Our previous work
demonstrated that the incorporation of active metal into Fe3O4 was an effective and facile
strategy to synthesize magnetic catalysts [35]. Moreover, findings indicated that dual or
multiple metal-based catalysts exhibited superior catalytic performance to their mono
metal-based counterparts [13,15,36–39]. Based on the above-mentioned discussions and
catalyst design rationales, the incorporation of heteroatom metals into hierarchical Fe3O4
should be an efficient magnetically recyclable catalyst for the catalytic decolorization of
N-containing organic dyes.

In this work, we report the synthesis of Ni and Pd-incorporated Fe3O4 (Ni-Pd/Fe3O4)
yolk-shelled nanospheres via a combination of solvothermal treatment and high-temperature
annealing. Benefiting from magnetic properties, the yolk-shelled structure, and uniformly
dispersed active heterometals incorporated in the shell and yolk of spherical Fe3O4, the
Ni-Pd/Fe3O4 composite showed excellent recyclability and enhanced catalytic activity for
three N-containing organic dyes [e.g., 4-nitrophenol (4-NP), Congo red (CR), and methyl
orange (MO)] compared with its mono metal counterparts (e.g., Ni/Fe3O4 and Pd/Fe3O4).
Furthermore, the catalytic activity of Ni-Pd/Fe3O4 surpassed many Fe3O4-supported
nanocatalysts reported within the last five years.

2. Results and Discussions
2.1. Preparation and Characterization of the Ni-Pd/Fe3O4 Catalyst

Ni and Pd-incorporated Fe3O4 (Ni-Pd/Fe3O4) spherical yolk-shelled nanocatalyst
was synthesized via a modified combination method [40]. Fe(NO3)3·9H2O and K2PdCl4 or
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NiCl2·6H2O were used as metal precursors and dissolved in a mixture of deionized water,
isopropanol, and glycerol (Figure 1). On the basis of our experimental observations in the
present study and previous works [40,41], the formation of the yolk-shelled structure of
Ni-Pd/Fe3O4 nanospheres could be explained by a self-templating mechanism. First, Fe, Ni
and Pd ions coordinate with isopropanol to form Ni/Pd-incorporated Fe-isopropanol solid
nanospheres in the solvothermal process. The resulting Ni/Pd-incorporated Fe-isopropanol
solid nanospheres then gradually transform into a relatively thermodynamically stable
Ni/Pd incorporated Fe-glycerate composite. During the solvothermal transformation
process, Ni/Pd-incorporated Fe-glycerate grow on the surface of Ni/Pd incorporated
Fe-isopropyl alcohol nanospheres at the expense of the gradual consumption of Ni/Pd-
incorporated Fe-isopropanol. After the completion of this reaction, the Ni/Pd-incorporated
Fe-isopropanol solid nanospheres partially convert into yolk-shelled nanospheres consist-
ing of a Ni/Pd-incorporated Fe-glycerate shell and a Fe-isopropyl alcohol solid core. Finally,
the obtained Ni/Pd-incorporated Fe-glycerate composite was annealed and transformed
into a Ni-Pd/Fe3O4 yolk-shelled nanospherical catalyst.
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Figure 1. Schematic illustration of the preparation process of Ni-Pd/Fe3O4 catalyst.

The phase composition of the synthesized Ni-Pd/Fe3O4 catalyst was confirmed by
X-ray diffraction (XRD). As illustrated in Figure 2a, the characteristic peaks at 18.3◦, 30.1◦,
35.5◦ 43.1◦, 57.1◦, and 62.6◦ match well with the (011), (112), (103), (004), (321), and (224) re-
flections of Fe3O4 (JCPDS No. 01-075-1609), respectively. We note the absence of metallic Ni
and Pd peaks in the XRD patterns of the Ni-Pd/Fe3O4 sample, which should be attributed
to the small size and low loading of Ni and Pd incorporated in the Fe3O4 support. In
addition, the morphology of the synthesized Ni-Pd/Fe3O4 nanocatalysts was characterized
by scanning electron microscopy (SEM). As can be seen from the SEM images, Ni-Pd/Fe3O4
presents a spherical nanostructure with a diameter of 500–800 nm (Figure 2b,c). Transmis-
sion electron microscopy (TEM) and aberration-corrected high-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM) images further confirmed
the spherical yolk-shelled structure. A yolk-like core was encapsulated in the thin shell
for each Ni-Pd/Fe3O4 nanosphere (Figure 3a). The shell thickness of the Ni-Pd/Fe3O4
particles is about 60 nm, consisting of stacked tiny nanoparticles (Figure 3b,c), leading to the
formation of a porous structure. In comparison, the pristine Fe3O4 nanospheres prepared
without the Ni and Pd precursor show a hollow nanospherical structure (Figure S1). The
STEM images and the energy dispersive X-ray (EDX) elemental mapping show that the Ni
and Pd elements are uniformly distributed across the Fe3O4 nanospheres (Figure 3d–h).
However, the crystallization degree of the Fe3O4 support is not high enough to discrimi-
nate Ni or Pd Fe species from the lattice of the Fe3O4 substrate (Figure S2). The SSA and
porosity characteristics of the Ni-Pd/Fe3O4 hollow spherical nanocatalyst were analyzed
by N2 adsorption–desorption measurements and determined via Brunauer–Emmett–Teller
(BET) and Barrett–Joyner–Halenda (BJH) methods. The H2-type N2 adsorption–desorption
isotherm exhibited a distinct hysteresis loop in the desorption branch. The SSA for the
Ni-Pd/Fe3O4 was 140.4 m2 g−1, and the size of the pores (e.g., micropore and mesopore)
mainly fall in the range from 1.5 to 10 nm (Figure 4a,b).
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X-ray photoelectron spectroscopy (XPS) analysis was conducted to determine the
elemental composition and chemical state of the Ni-Pd/Fe3O4 nanocatalyst. As illustrated
in Figure 5a, the survey spectra showed Fe, O, C, Ni, and Pd in the sample. The high-
resolution spectra of Fe 2p exhibited two prominent peaks, which are assigned to Fe
2p3/2 (at around 712.5 eV and 710.6 eV) and Fe 2p1/2 (at 727.8 eV and 724.3 eV) of Fe3O4
(Figure 5b) [35]. The fitted doublet peak of the Pd 3d spectra centered at 335.6 eV and
341.0 eV assigned to the Pd(I) oxidation state (Figure 5c) [35,42]. The fitted Ni 2p spectra
are shown in Figure 5d. The peaks at 855.7 eV and 862.3 eV are assigned to Ni 2p3/2 and Ni
2p1/2, respectively [43,44]. The loading of Ni and Pd in Ni-Pd/Fe3O4 were 1.34 wt.% and
0.90 wt.% respectively, as determined by inductively coupled plasma mass spectrometry
(ICP-MS) measurement.
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2.2. Catalytic Performance of the Ni-Pd/Fe3O4 Catalyst

The catalytic performance of Ni-Pd/Fe3O4 catalyst towards the reduction of N-
containing organic dyes (e.g., 4-NP, CR, and MO) was explored (Figure S3). Firstly, the
catalytic efficiency of 4-NP reduction with NaBH4 was investigated and quantitatively
evaluated by turnover frequency (TOF), which was defined as the amount of 4-NP (mmol)
converted into 4-AP per unit time catalyzed by per unit amount of active metal (mmol) [15].

TOF4−NP =
4−NP converted into 4−AP (mmol)

active Pd metal in the catalyst (mmol) × time (min)

In order to probe the reaction kinetics, successive UV–vis detection of the reaction
solution was conducted to monitor the reduction process. After adding the Ni-Pd/Fe3O4
catalyst into the mixture, the UV–vis absorbance peak of 4-NP-NaBH4 at ca. 400 nm
decreased quickly and the absorption peak of 4-AP at ca. 300 nm increased with time
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(Figure 6a), indicating the successful conversion of 4-NP into 4-AP [45]. Accordingly, a
gradual decolorization of the bright yellow aqueous 4-NP/NaBH4 solution was observed
during the catalytic process (4 min) (inset of Figure 6a). When the reaction is completed,
Ni-Pd/Fe3O4 catalyst can be quickly magnetically separated from the aqueous reaction
medium, allowing facile recycling of the catalyst (Figure S4). The Ni-Pd/Fe3O4 exhibited
remarkable activity towards 4-NP reduction with a TOF as high as 295 min−1, which was
superior to its mono metal counterpart, such as Pd/Fe3O4 (TOF: 204 min−1, Pd content:
0.87 wt.%) (Figures 7a and S5). We noted that Ni/Fe3O4 (Ni content: 1.16 wt.%) showed
negligible catalytic activity for 4-NP reduction within 4 min (Figure S6), indicating a
synergistic activity enhancement effect of the second heterometal (Ni). The O-containing
Fe3O4 support could act as a ligand to stabilize the Ni and Pd species and facilitate their
distribution. In addition, Ni could change the electronic structure of Pd and thus modulate
the catalytic performance of the Ni-Pd/Fe3O4 catalyst [46,47]. It is worth noting that the
catalytic activity of the Ni-Pd/Fe3O4 catalyst surpassed many of the Fe3O4-supported
nanocatalysts reported within recent five years (Figure 7a and Table S1) [35,48–66]. In
addition, the magnetic recyclability and durability were studied by repeating the catalytic
reduction of 4-NP in the presence of a recycled Ni-Pd/Fe3O4 catalyst. Figure 6b shows the
relationship between ln(A) (A denotes the absorbance at ca. 400 nm) and reaction time, the
linear correlation indicated that the reduction process followed pseudo-first-order reaction
kinetics. The apparent rate constant (Kapp) was determined to be 1.51 × 10−2 s−1 from the
slope of the linear correlation [67]. We calculated the ratio of rate constant K over the total
weight of the catalyst, k = Kapp/m. The activity factor, k, of the Ni-Pd/Fe3O4 catalyst was
15.1 s−1 g−1. As shown in Figure 7b, the conversion was nearly 100% on the eighth run and
was maintained to 84.3% on the eleventh run, which indicated that Ni-Pd/Fe3O4 catalyst
had excellent reusability and stability in the 4-NP reduction process. The morphology and
phase composition of the recycled Ni-Pd/Fe3O4 were further characterized by SEM and
XRD. We noted that a part of Ni-Pd/Fe3O4 yolk-shelled nanospheres broke after recycling
from the reaction mixture (Figure S7). It may be hydrogen gas that was produced from
NaBH4 hydrolysis ejected from the void of the Ni-Pd/Fe3O4 hollow sphere and destroyed
the yolk-shelled structure. XRD analysis of the recycled Pd-Fe3O4 catalyst showed the same
diffraction peaks as the freshly prepared one, indicating that no obvious redox reaction
occurred between Ni-Pd/Fe3O4 and NaBH4 (Figure S8) and thus the magnetic property
was maintained.

Ni-Pd/Fe3O4 catalyst also exhibited catalytic activity for the reduction of CR and MO,
which are anionic azo dyes containing N=N bonds in their molecular structures. As shown
in Figure 6c,e, 5 mL of aqueous CR or MO solution (5.0 mM) could be reduced entirely and
decolorized when catalyzed by Ni-Pd/Fe3O4 catalyst using NaBH4 as a reducing agent
(57.0 mg) within 5 min or 40 min, respectively. We observed a time-dependent decrease
in the UV–vis absorbance peak of CR (λmax = 494 nm) and MO (λmax = 464 nm) within 5
min and 40 min, respectively [68]. The complete disappearance of the peak confirmed the
cleavage of N=N bonds and the formation of aminoaromatics. The corresponding Kapp
values for CR and MO reduction reactions were determined as 7.85 s−1 g−1 and 0.76 s−1

g−1 (Figure 6d,f). The excellent catalytic performance (e.g., activity and recyclability) of
Ni-Pd/Fe3O4 should arise from the uniformly incorporated dual heterometallic species on
Fe3O4 support, the high SSA of Fe3O4 yolk-shelled nanosphere with a permeable porous
shell, and its magnetically recyclable property.
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3. Materials and Methods
3.1. Materials Preparation

Preparation of Ni-Pd/Fe3O4 Yolk-Shelled Nanosphere
Ni-Pd/Fe3O4 yolk-shelled nanospheres were synthesized according to the modified

solvothermal-annealing method reported previously [35,40]. Firstly, isopropanol (52.5 mL)
and glycerol (7.5 mL) were successively added to a Teflon container (80 mL) and stirred
to obtain a mixed solvent. Secondly, K2PdCl4 (1.7 mg) and NiCl2·6H2O (6.8 mg) were
added to the mixture and stirred for 5 min to obtain a homogeneous mixture. Subse-
quently, Fe(NO3)3·9H2O (202.0 mg) was added and stirred for another 5 min until all
metal precursors were completely dissolved. After that, deionized water (1.0 mL) was
injected into the above solution followed by additional stirring for 10 min. Subsequently,
the Teflon container was sealed and transferred to a Teflon-lined stainless steel autoclave.
After heating in an oven at 190 ◦C for 13 h, the Teflon container was naturally cooled to
room temperature. A yellowish precipitate was obtained by centrifugation separation and
subsequently washed with DI H2O and ethanol three times. Drying at 60 ◦C for 6 h resulted
in the intermediate Pd/Fe-glycerate sample. Finally, the Pd/Fe-glycerate was annealed at
350 ◦C for 3 h in a nitrogen atmosphere at a heating rate of 5 ◦C/min. The Fe3O4 hollow
nanospheres were synthesized similarly without adding any metal precursor. The mono
metal samples (Ni/Fe3O4 and Pd/Fe3O4) were synthesized similarly by adding only one
active metal precursor (e.g., NiCl2·6H2O or K2PdCl4).

3.2. Catalytic Measurements of Ni-Pd/Fe3O4 Catalyst
3.2.1. Reduction of 4-NP, CR, and MO

For the 4-NP reduction reaction, 4-NP was first dissolved in 5 mL of water to form an
aqueous 4-NP solution (20 mmol/L). NaBH4 (378 mg) was then added into the aqueous
4-NP solution to obtain 4-NP-NaBH4 mixture solution. After that, Ni-Pd/Fe3O4 catalyst
(1.0 mg) was added into the mixture under vigorous stirring at ambient conditions (ca.
25 ◦C). The bright yellow 4-NP-NaBH4 mixture faded gradually and finally became color-
less, indicating complete conversion of 4-NP into 4-AP. The reaction process and conversion
of 4-NP were continuously monitored by UV-vis measurements of the reaction mixture
(Note: the reaction mixture should be filtrated to remove the catalyst and diluted to a
moderate concentration before analysis). For comparison, the catalytic performance of
Ni/Fe3O4 or Pd/Fe3O4 (1.0 mg) for 4-NP (3 mL, 20.0 mmol/L) reduction were conducted
under similar reaction conditions. For CR and MO reduction reactions, Ni-Pd/Fe3O4
catalyst (2.0 mg) and 0.2 mL ethanol were subsequently added into 3 mL of CR or MO
(5.0 mmol/L) and NaBH4 (57.0 mg) aqueous solution under vigorous stirring at ambient
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condition (ca. 25 ◦C). The conversion of CR and MO was continuously monitored by
subjecting the filtrated reaction mixture to UV-vis measurements.

3.2.2. Recyclability or Durability Test

The durability of the Ni-Pd/Fe3O4 catalyst was examined by measuring the conversion
with a constant reaction time. In a typical reaction run, Ni-Pd/Fe3O4 (5.0 mg) was added
into the aqueous solution (5.0 mL) of 4-NP (20.0 mmol/L) and NaBH4 (2.0 mol/L) with
vigorous stirring under ambient conditions. The exact reaction time was considered as the
constant reaction time for each catalytic run. The catalytic reduction process of the 4-NP
was monitored by UV–vis spectroscopy analysis and color fading of the reaction mixture.
The catalyst could be easily separated from the reaction mixture by a magnet. The recycled
Ni-Pd/Fe3O4 was washed with water and ethanol and then used for the next run.

4. Conclusions

In summary, we report a highly efficient magnetically recyclable catalyst with het-
erometals (Ni and Pd) uniformly incorporated in Fe3O4 yolk-shelled nanospheres via
solvothermal treatment and subsequent high-temperature annealing approaches. The high
SSA, as well as the abundant mesopores on the spherical Fe3O4 shell, facilitated the expo-
sure and accessibility of active sites and promoted mass transportation of reactants, and
thus boosted the catalytic activity. The Ni-Pd/Fe3O4 catalyst showed excellent recyclability
and high catalytic efficiency for the reduction of three N-containing organic dyes (e.g., 4-NP,
CR, and MO) compared with its mono metal counterparts (e.g., Ni/Fe3O4 and Pd/Fe3O4).
Furthermore, the kinetics of the catalytic reduction reaction were explored in detail. For the
4-NP reduction reaction, the catalytic efficiency of Ni-Pd/Fe3O4 surpassed that of many
Fe3O4-supported nanocatalysts reported within the last five years. The present work pro-
vides a potential platform for designing and fabricating magnetically recyclable catalysts
for various heterogeneous reactions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal13010190/s1, Figure S1: SEM and TEM images; Figure S2:
TEM image; Figure S3: reaction equations, Figure S4: photographs, Figure S5 and Figure S6: UV–vis
spectra, Figure S7: SEM image; Figure S8: XRD pattern; Table S1: catalytic activity comparison of the
prepared and previously reported catalysts.
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