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Abstract: The search for low-cost, high-performance, and robust stability bifunctional electrocatalysts
to substitute noble metals-based counterparts for overall water splitting to generate clean and
sustainable hydrogen energy is of great significance and challenges. Herein, a high-efficient bi-
functional nickel–iron phosphide on NiFe alloy foam (denoted as e-NFP/NFF) with 3D coral-like
nanostructure was controllably constructed by means of alkali etching and the introduction of non-
metallic atoms P. The unique superhydrophilic coral-like structure can not only effectively facilitate the
exposure of catalytic active sites and increase the electroactive surface area, but also accelerate charge
transport and bubble release. Furthermore, owing to the synergistic effect between the bicomponent
of nickel–iron phosphides as well as the strong electronic interactions of the multiple metal sites, the
as-fabricated catalyst behaves with excellent bifunctional performance for the hydrogen evolution
reaction (overpotentials of 132 and 286 mV at 10 and 300 mA·cm−2, respectively) and oxygen
evolution reaction (overpotentials of 181 and 303 mV at 10 and 300 mA·cm−2, respectively) in alkaline
electrolytes. Impressively, cells with integrated e-NFP/NFF electrodes as a cathode and anode require
only a low cell voltage (1.58 V) to drive a current density of 10 mA·cm−2 for overall water splitting,
along with remarkable stability in long-term electrochemical durability tests. This study provides a
tunable synthetic strategy for the development of efficient and durable non-noble metal bifunctional
catalysts based on the construction of an elaborate structure framework and rational design of the
electronic structure.

Keywords: overall water splitting; transition metal phosphide; alkaline etching; hydrogen evolution
reaction; oxygen evolution reaction

1. Introduction

In the context of the serious shortage of fossil energy reserves and increasingly severe
environmental pollution issues, there has been a consensus on seeking eco-friendly and
sustainable clean energy alternatives to substitute traditional fuels [1,2]. Renewable energy
sources, such as wind and solar energies, are limited in their development and utilization
due to uneven geographical distribution and intermittent supply. Therefore, the promotion
of clean and green energy should be properly integrated with the infrastructure of energy
storage technologies and the transportation of raw materials for production [3–5]. Owing
to its high energy density (142 MJ·kg−1) and zero carbon emissions, hydrogen energy has
been hailed as the perfect, ultimate clean energy carrier [6]. Compared with the traditional
industrial hydrogen production technique, electrochemical water splitting (EWS) is consid-
ered a simple, environment-friendly, and high-efficiency alternative solution to generating
high-purity hydrogen [7]. EWS consists of two half-cell reactions, namely, cathodic hy-
drogen evolution reaction (HER) and anodic oxygen evolution reaction (OER), both of
which suffer from sluggish kinetics and unfavorable thermodynamics [8,9]. Therefore,
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it is particularly indispensable to prepare reasonable catalysts to reduce the activation
barrier and accelerate the reaction process. So far, noble metal-based catalysts, such as
Pt and RuO2/IrO2, are still the benchmark catalysts in terms of catalytic activity toward
HER and OER, respectively. Nevertheless, their high cost and scarce reserves of precious
metal seriously hinder their large-scale applications [10–12]. Hence, the rational design
of HER and OER bifunctional alternatives with low cost, high performance, and excellent
stability is of significant importance for overall water splitting (OWS) to produce clean
hydrogen energy.

Over the past decades, tremendous efforts have been devoted to the development of
transition metal-based catalysts, owing to their merit of earth abundance and unique d-
orbital electronic configurations, such as transition metal oxides [13,14], hydroxide [15–17],
sulfides [18,19], phosphides [20,21], nitrides [18,22], and so forth. Thereinto, transition
metal layered double hydroxides (LDHs) possess large specific surface area, impressive me-
chanical behavior, and highly tunable electrochemical/electronic properties, making them
become a popular choice in terms of energy storage and conversion application. Generally,
LDHs are roughly expressed by the chemical formula of MII

1−xMIII
x(OH)2(An−)x/n·yH2O,

where the MII and MIII represent tunable divalent and trivalent metal cations located in the
positive host layers, and the An− represents the easily exchangeable charge compensating
anions in the interlayer gallery [15–17]. Their intriguing 2D-layered structure, extraordi-
nary flexible compositions, and facile preparation methods allow them to be exploited as
platforms for developing LDH-based hybrid nanoarchitectures, which is fairly favorable
for further modifications of their physicochemical properties. Recently, a large number of
works in the literature have reported the synthesis and application of LDHs [23,24]. For
example, Chen et al. adopted a simple co-precipitation method followed by acidic etching
treatment to fabricate 3D NiFe-LDH nanosheets assembly with active Fe sites to realize
highly efficient OER catalytic performance [25]. Su et al. reported the synthesis of NiFeAl
LDHs from electroplating sludge via a simple hydrothermal method for excellent superca-
pacitor performance [26]. However, due to their inferior electrical conductivity, insufficient
exposed active sites, and relatively poor inherent conductivity, LDHs are yet to be regarded
as high-efficiency bifunctional nanomaterials for OER and HER [16]. More importantly, the
unsatisfactory long-term durability under harsh electrochemical conditions makes LDHs
unable to meet the requirements of practical industrial applications [27,28]. Therefore,
it is urgently desired to develop highly efficient and stable bifunctional electrocatalysts
for OWS.

So far, to overcome the shortcomings of pristine LDHs, hybrid LDH-based nanoar-
chitectures have emerged as potential candidates for OWS. Various feasible modulation
strategies have been proposed to improve the catalytic performance of pristine LDHs
toward OER and HER in previous reports, including morphology modulation [28,29], in-
terface regulation [30], defect engineering [16,17], and heteroatom doping [31–33]. Among
them, the heteroatom doping has attracted more attention, as a wide variety of elements
can be chosen to incorporate into the crystal lattice of the host materials, which means
that the physicochemical properties of the pristine LDHs could be modulated in a large
range and may be likely to be optimized at some point. A proven judicious alternative is
that the introduction of non-metallic elements P can lead to the regulation of the electronic
structure, the increase in electrical conductivity, and the promotion of exposed active sites.
As a consequence, the heteroatom doping essentially gives rise to optimizing the adsorp-
tion energy of H and the binding energy between OER intermediates and electrocatalysts,
eventually resulting in the enhanced catalytic activity of HER and OER [34]. Constructing
self-supporting catalysts on some substrates with high electrical conductivity and dense
pores structure has been demonstrated to play a crucial part in avoiding the agglomeration
and accumulation of electrocatalysts, which is also beneficial for electrolyte permeation
and promoting the electron transfer and ion diffusion in the catalytic process [29,32,35].
For instance, Chen et al. prepared an amorphous nickel–iron oxyphosphide (NiFeOP) via
a facile phosphidation treatment on NiFe-LDH nanoflakes, which showed a high perfor-
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mance toward both HER and OER in alkaline media [33]. Qiu et al. synthesized active
iron-tuned nickel phosphide nanosheets on the carbon fiber matrix as an overall water
splitting catalyst via phosphating NiFe LDHs [36]. Sun and co-workers presented a series of
NiFe phosphides/sulfides/selenides on carbon cloth by heteroelement-doped NiFe-LDHs
for OER and explored the reasons for the differences in their catalytic activity [37].

Bearing these discussions in mind, we herein fabricated a binder-free 3D nano-
coral-like nickel–iron phosphide compound electrode on a NiFe alloy foam (marked as
e-NFP/NFF) as a bifunctional electrocatalyst for OWS using a three-step hydrothermal–
electrodeposition–phosphorization process. Firstly, the alkaline etching strategy is applied
to metallic NiFe alloy foam, which leads to the successful construction of a hierarchically
layered structure consisting of interlocking stacks of nanosheets. Secondly, NiFe-LDH
nanoplates prepared by electrodeposition trigger the morphological transformation from
interlaced nanosheets to stacked polyhedrons. Finally, the Ni/Fe-P bond is formed by the
introduction of the nonmetallic element P through the low-temperature phosphorization
route. Owing to the optimized electronic structure via element P doping, the increased
electrochemically active area by unique structure and the synergy between multiple com-
ponents, as expected, the superhydrophilic e-NFP/NFF achieves efficient and stable HER
and OER catalytic performance at high current density in alkaline media. In addition, the
e-NFP/NFF electrode only needs a cell voltage of 1.58 V to output 10 mA·cm−2 in the OWS
system as well as exhibiting excellent anticurrent fluctuation.

2. Results and Discussion

As illustrated in Figure 1, e-NFP/NFF catalysts were synthesized in a three-step
hydrothermal–electrodeposition–phosphorization process. First, e-NFF/NFF catalyst, a
layered material consisting of hierarchically interwoven nanosheets, was in situ grown on
the porous conductive NiFe alloy foam substrate (NFF) through a simple hydrothermal
alkali-etching method, where NFF not only serves as a substrate, but also as a provider
of metal ions. Then, when a constant voltage of −1 V was applied to the e-NFF/NFF
electrode for 200 s at 30 ◦C during the electrodeposition process, NiFe-LDH precursors
were synthesized on the surface of e-NFF/NFF (denoted as e-NF-LDH/NFF). Finally, to
introduce the transition metal P, a facile annealing treatment with sodium hypophosphite
as the P source under the flowing Ar atmosphere was conducted. The color change (from
yellow to slight yellowish-green and further to black) of the NFF substrate indicated the
transformation and formation of e-NFP/NFF electrocatalysts.
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Figure 1. Schematic representation for the synthetic process of e-NFP/NFF electrodes.

The microstructure and morphology of the as-synthesized samples were characterized
by field-emission scanning electron microscopy (FE-SEM) at different magnification levels.
As shown in Figure 2a,b, a layered network consisting of ultrathin intertwined nanosheets
with the lateral size ranging approximately from 200 to 550 nm was observed, wrapped
on the NFF substrate surface during the alkali-etched process, which manifested the
successful construction of hierarchical porous structures by the one-step self-regulating
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alkali-etching method. In addition, we also tracked the morphology evolution with the
change of the etching concentration (0, 5, 10 mM KOH). Notably, as shown in Figure S1,
the prepared samples presented stacks of nanoplates with larger diameters and thicker
thicknesses, as well as being adhered to by many nanospheres in the absence of alkali
during the first hydrothermal treatment. With a higher concentration of alkali (10 mM
KOH), irregular polyhedron structures were formed. The above results demonstrate the
tunability of the morphological structures could be obtained by the kinetically controlled
alkaline-etching process.
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As shown in Figure 2c,d, the e-NF-LDH/NFF produced by the electrodeposition
process based on the alkali etching strategy is different from the pristine NiFe-LDH sample
composed of uniformly grown nanosheets with well-defined borders and lateral sizes of
100–300 nm (Figure S2). Close observation suggested that the self-regulated alkaline etching
process endowed the e-NF-LDH/NFF with the feature of rough surface, which was covered
by large amounts of irregular polyhedrons with the size of 100–200 nm and scattered sparse
microspheres of 1–3 µm in diameter. After further low-temperature phosphating treatment,
the electrode surface was reconstructed, and the original dense polyhedrons collapsed,
leading to the formation of a three-dimensional (3D) coral-like structure assembled by
numerous nanoparticles (Figure 2e,f), which can increase the electrochemically active area
and be favorable for the full penetration of electrolyte and the release of bubbles, which is
beneficial for the OWS reactions.

The morphology and detailed structure of the e-NFP/NFF catalyst were further inves-
tigated by using transmission electron microscopy (TEM), high-resolution transmission
electron microscope (HRTEM), selected area electron diffraction (SAED), and energy dis-
persive spectroscopy (EDS) elemental mappings, as shown in Figure 3. The TEM images
(Figure 3a) confirm the rough and porous feature of the coral-like structure formed by the
accumulation of nanoparticles, which is well consistent with the FE-SEM observations.
From the SAED pattern (inset in Figure 3a), a set of ordered discrete spots can be observed,
which point to the exclusive pure phase of the phosphides. Furthermore, the HR-TEM
image similarly corroborates the coexistence of crystalline Ni8P3 and FeP4. Five different
regions were selected for observation, as illustrated in Figure 3b. The well-resolved lattice
fringes with interplanar spacings of 0.260, 0.283, and 0.184 nm are indexed to the (119),
(202), and (1, 2, 11) lattice planes of Ni8P3 (Figure 3(c2–c4)), respectively, which is in good
agreement with the SAED, while the distinct lattice spacings of 0.189 and 0.252 nm are
assigned to the (240) and (−132) planes of FeP4, respectively, (Figure 3(c1,c5)). The high-
angle annular dark-field scanning TEM (HAADF-STEM) image and the corresponding
elemental mappings in Figure 3d clearly show that the elements Ni, Fe, and P were uni-
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formly distributed in the whole structure, further validating the successful introduction of
the non-metallic element P.
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The phases and crystal structures of as-prepared samples were further determined
by X-ray diffraction (XRD). The diffraction patterns of NFF and e-NFP/NFF are shown
in Figure 4, where the strong characteristic peaks located at 44.3◦, 51.8◦, and 76.4◦ were
derived from the substrate of NFF, corresponding to its (111), (200), and (220) crystal planes,
respectively, (PDF#38-0419). The quite weak diffraction peaks at 39.3◦, 47.6◦, 49.6◦, and
78.4◦ were indexed to the (0,2,10), (300), (1,2,11) and (2,2,21) crystal planes of hexagonal
Ni8P3, respectively, (PDF#78-1668), while the weak peaks located at 42.3◦, 48.2◦, 51.1◦, and
56.9◦ were assigned to the (052), (240), (−213), and (−261) crystal planes of orthorhombic
FeP4, respectively, (PDF#34-0995). [38–41]. There were no diffraction peaks corresponding
to other impurity phases, except for the above-mentioned diffraction peaks. Table S1 also
summarizes the locations of peaks and the corresponding attributions for e-NFP/NFF.
In addition, Figure S3 shows the XRD patterns comparison of the prepared samples at
each step. Apparently, the absence of diffraction peaks assigned to the products after
alkali etching and no typical peaks of electrodeposited NiFe LDH nanosheets could be
attributed to the worse crystallinity and smaller size of the products [42,43]. To better
verify the formation of NF-LDH on the e-NFF/NFF during electrodeposition, the Raman
spectra of e-NFF/NFF, a-NF-LDH/NFF, and e-NF-LDH/NFF were conducted (Figure S4).
Evidently, there are obvious characteristic peaks over the range of 200~800 cm−1. The
Raman spectrum of e-NF-LDH/NFF presented all the signals of e-NFF/NFF and a-NF-
LDH/NFF [43–45]. Combined with the change of SEM images of e-NFF/NFF (Figure S2),
these observations verified that NiFe-LDH was successfully loaded on the e-NFF/NFF.
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spectroscopy (XPS). Wide-scan XPS spectra in Figure 5a showed typical signals of Ni, Fe, P,
C, and O elements, which was in good accordance with the EDS results. The presence of an
O 1s signal may be caused by the inevitable surface oxidation due to exposure to air. In the
high-resolution Ni 2p spectrum (Figure 5b), the a-NF-LDH/NFF exhibited doublet peaks
at 855.8 and 873.5 eV that could be ascribed to the Ni2+, while the doublet peaks at 857.2
and 875.1 eV were attributed to the Ni3+. In addition, two shakeup satellite peaks (denoted
as “Sat.”) were observed at 862 and 879.8 eV [46,47]. After the application of the alkali
etching strategy and the introduction of the non-metallic element P, the high-resolution
Ni 2p spectrum of e-NFP/NFF presented two new extra peaks at 852.7 and 870 eV, which
originated from the formation of Ni-P bonds [48]. Meanwhile, compared to the peaks in
a-NF-LDH/NFF, it can be distinctly observed that the binding energies of Ni 2p1/2 and
Ni 2p3/2 in e-NFP/NFF exhibited a slight negative shift of 0.5 and 0.3 eV, suggesting that
electron transfer had occurred. Generally, the peaks shift toward lower binding energies
manifested the acquirement of a higher electron density, which further confirmed that the
electronic structure and coordination bonds of NiFe-LDH could be rationally regulated by
the introduction of the alkali-etching strategy and the non-metallic element P. The Fe 2p
core level spectrum (Figure 5c) can be divided into two pair doublets at 711.4/721.6 eV
and 714.4/725.8 eV in a-NF-LDH/NFF, which belong to Fe2+ (Fe 2p3/2/Fe 2p1/2) and Fe3+

(Fe 2p3/2/Fe 2p1/2), respectively [49–51], and the shakeup satellite peak was observed at
731.8 eV. The two pairs of identical doublets in e-NFP/NFF were located at 711.6/723.5 eV
and 714.5/726.8 eV, higher than those of a-NF-LDH/NFF. What is more, compared with
pure NiFe-LDH catalyst, the binding energies of Ni 2p and Fe 2p in the e-NFP/NFF/NFF
catalyst showed a slight negative shift and a tiny positive one, respectively, indicating
the strong electronic interaction and the synergistic effect between the bicomponent of
nickel–iron phosphides [52–54]. Two other sharp peaks situated at 706.7 and 719.3 eV in
e-NFP/NFF were attributed to the formation of Fe-P bonds [49,55], which also strongly
confirmed the successful growth of e-NFP/NFF. For the P 2p area of the e-NFP/NFF as
shown in Figure 5d, the spectrum was fitted into three peaks at 129.7, 130.1, and 133.4 eV,
belonging to P 2p3/2, P 2p1/2, and P-O, respectively [40,56]. The P-O bond may arise
from the inevitable surface oxidation when exposed to air, which corresponds to the peak
located at 530.5 eV in the O 1s XPS spectrum in Figure S5. The remaining two peaks
at 531.3 and 532.2 eV were attributed to surface hydroxyls and surface-absorbed water,
respectively [57,58].
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It is well known that catalyst materials possess extremely promising super-hydrophilic
surfaces that facilitate the close contact between internal active sites and the external
electrolyte [43,59]. To explore the hydrophilicity and wettability of the catalyst surface,
the static water droplet contact angles (CA) test was performed after static loading times
of 0 and 1 s, respectively, as presented in Figure S6. The bare NFF exhibited a strong
hydrophobicity toward static water droplets with a contact angle of 118◦, compared with the
a-NF-LDH/NFF and e-NFP/NFF (ca. 0◦). Since it is difficult to evaluate the contact angle
of a-NF-LDH/NFF and e-NFP/NFF, the whole process of droplets contacting the electrode
surfaces was also recorded in the supporting information in Videos S1–S3, respectively.
Impressively, the water droplets were permeated immediately and absorbed rapidly within
the droplets once in contact with the surface of a-NF-LDH/NFF and e-NFP/NFF. In this
light, it is speculated that this characteristic may be attributed to the rough surface and
unique 3D coral-like structure of the synthesized catalysts [60], which improved the water
contact area, surface hydrophilicity, and solvent wettability, thus promoting the mass
transfer process and enhancing the electrocatalytic performance [61].

Currently, alkaline water splitting is considered to be a sustainable technology for
the large-scale production of hydrogen. It is worth mentioning that the design of earth-
abundant, low-cost, and efficient bifunctional electrocatalysts operating in alkaline media
is highly desirable. The electrocatalytic activities of the as-designed novel e-NFP/NFF
electrode for HER and OER were evaluated in 1 M KOH solution with iR-correction using
a standard three-electrode system, where mercury oxide electrode (Hg/HgO) and a carbon
rod were utilized as the reference electrode and counter electrode, respectively. For com-
parison, commercial Pt/C, bare NFF, a-NF-LDH/NFF, e-NF-LDH/NFF, and a-NFP/NFF
were also examined as control samples under similar conditions. Figure 6a shows the linear
sweep voltammetry (LSV) curves for HER with various electrocatalysts. As expected, both
Pt/C/NFF and e-NFP/NFF possessed excellent HER activity, requiring overpotentials
of only 178 and 235 mV to drive 100 mA·cm−2, respectively, which were much smaller
than those of other samples, including NFF (414 mV), a-NF-LDH/NFF (387 mV), e-NF-
LDH/NFF (322 mV), and a-NFP/NFF (288 mV). Interestingly, it can be distinctly observed
that the application of alkaline etching strategy to NFF before constructing NiFe-LDH
(e-NF-LDH/NFF, green line in Figure 6a) facilitated the HER activities by the more positive
shift of the overpotentials than those of pristine a-NF-LDH/NFF (blue line in Figure 6a).
Combined with the above SEM comparison, it was speculated that alkaline etching was
likely to modulate the morphological structure of nanomaterials by taking advantage of
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their amphoteric characteristics, enriching the porosity, and increasing the electrochem-
ically active area, finally greatly improving the HER catalytic activity. In addition, to
fully investigate the effect of the alkali-etching strategy on the catalytic activity, the effects
of alkali-etching concentration (Figures S7 and S8), time (Figure S9), and temperature
(Figure S10) on the OWS activity were also investigated and optimized, respectively. The
result revealed that the e-NFF/NFF samples with an alkali-etching concentration of 5 mM,
etching time of 6 h, and temperature of 200 ◦C, displayed the optimal activity. Similarly,
compared to e-NF-LDH/NFF (green line in Figure 6a), the final sample e-NFP/NFF (violet
line in Figure 6a) exhibited a lower onset potential and a more rapid rise of current densities
with the applied potential, indicating that the introduction of the nonmetallic element P also
significantly enhanced HER activity, making e-NFP/NFF a promising catalyst for H2 pro-
duction through water splitting. Accordingly, we also adjusted the electrodeposition time
and the dosage of NaH2PO2, as depicted in Figures S11–S13, in which the samples showed
the best OWS performance at the addition of 0.5 g NaH2PO2 and deposition duration of
200 s. To allow a clearer visual comparison of the HER catalytic performance, Figure 6b
exhibited the overpotentials of various samples at current densities of 50 and 100 mA·cm−2,
respectively. The excellent HER performance of e-NFP/NFF was even superior to most of
the previously reported similar electrocatalysts (see Table S2 for detailed comparison).
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To better estimate the reaction dynamics of HER, the Tafel plot derived from the
polarization curve was used as an important indicator, displayed in Figure 6c. Tafel slope
of e-NFP/NFF is 102.6 mV·dec−1, which is significantly lower than that of a-NFP/NFF
(130.5 mV·dec−1), e-NF-LDH/NFF (136.6 mV·dec−1), a-NF-LDH/NFF (150.7 mV·dec−1),
and bare NFF (157.8 mV·dec−1), confirming its more favorable HER dynamics and better
inherent HER catalytic activity. Moreover, the value of the Tafel slope suggested the
HER over e-NFP/NFF proceeded by a combined Volmer–Heyrovsky mechanism and the
electrochemical desorption might be the rate-limiting step. In addition, electrochemical
impedance spectroscopy (EIS) measurements were performed to explore the charge transfer
efficiency of the as-prepared samples. According to the fitted EIS spectra (Figure 6d), the
e-NFP/NFF electrode exhibited the smallest charge transfer resistance (Rct), indicating
a better electrical conductivity of the material, which was also in line with the analysis
achieved from the Tafel plots.

Additionally, the electrochemically active surface areas (ECSAs) of those electrocat-
alysts could be assessed through the double-layer capacitance (Cdl) value, which were
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calculated by cyclic voltammograms (CV) curves in the non-faraday region with different
sweep rates (Figures 6e and S14). The e-NFP/NFF presented the largest slope value of
29.8 mF·cm−2 and ECSAs value of 745 cm−2 among the tested samples, indicating that the
fabricated e-NFP/NFF with a 3D coral-like structure possessed a larger electrochemical
surface area and more exposed sites for catalytic hydrogen evolution, thus improving HER
activity. Turnover frequency (TOF) is also conducted to evaluate the intrinsic catalytic
activity of electrocatalysts. As presented in Figure S15, the TOF value of e-NFP/NFF for
HER is the highest at the same potential, significantly higher than that of a-NFP/NFF,
a-NF-LDH/NFF, and e-NF-LDH/NFF, further evidencing the outstanding intrinsic activity
of e-NFP/NFF.

Besides the HER performance, long-term stability is another necessary indicator to
evaluate whether the electrocatalyst can be used for large-scale industrial water electrolysis.
As shown in Figure S17, after 1000 cycles for HER, the current density of e-NFP/NFF
exhibited a negligible decay, compared with the fresh one. Meanwhile, the durability of the
e-NFP/NFF electrode and Pt/C/NFF were investigated by chronoamperometry testing
curve under the constant current densities of 10 and 100 mA·cm−2 for more than 20 h, as
depicted in Figures 6f and S18. In response, for e-NFP/NFF, only some tiny fluctuations
were observed due to the absorption/accumulation and desorption of H2 bubbles on the
electrode surface. At a low current density, the Pt/C/NFF electrode exhibited excellent
catalytic stability, similar to that of the non-noble e-NFP/NFF. Interestingly, when the
current density increased up to 100 mA·cm−2, Pt/C/NFF exhibited a drastic decline in
catalytic activity. It also could be seen that the e-NFP/NFF electrode survived for a long
period under a large current density of 300 mA·cm−2, suggesting that the established e-
NFP/NFF electrode exhibited outstanding HER activity and exceptional durability, possibly
stemming from its unique coral-like structure as well as the synergistic effect among
multiple components. Furthermore, after long-term HER electrolysis, the morphology
and chemical composition were also characterized for the post-HER cathode. The SEM
images (Figure S19a) and XRD patterns (Figure S19b) remained unchanged basically as
before, indicating their ideal operational stability in alkaline media. The corresponding
XPS spectra (Figure S20) after the stability test also had no obvious variation. Therefore,
the above results argue that e-NFP/NFF did deserve a superior HER electrocatalyst in a
basic medium.

To evaluate the potential of e-NFP/NFF electrocatalyst for OWS, we further tested
the catalytic performance of the above catalysts for OER under the same experimental
conditions. The corresponding iR-corrected LSV curves are shown in Figure 7a, and the
overpotentials at output current densities of 50 and 100 mA·cm−2 are further summarized
in Figure 7b. As a comparison, the polarization curves of benchmark RuO2 catalyst under
the same mass loading were also explored. As expected, the e-NFP/NFF catalysts exhibited
excellent OER performance with the lowest overpotentials of 257 and 272 mV at current
densities of 50 and 100 mA·cm−2, respectively, which were better than those of a-NF-
LDH/NFF (286 and 304 mV for 50 and 100 mA·cm−2). Even at the commercially required
high current density of 300 mA·cm−2, e-NFP/NFF still showed low overpotential. The
Tafel plots obtained from the corresponding polarization curves were utilized to reflect
the rate of oxygen evolution as well as evaluating the reaction dynamics of OER. As
depicted in Figure 7c, the e-NFP/NFF presented the smallest Tafel slope of 49.6 mV·dec−1

among all the samples, suggesting the rapid OER kinetics of the e-NFP/NFF. Both the
lowest overpotential and the smallest Tafel slope confirmed that the catalyst possessed
excellent OER catalytic activity in alkaline solutions. The comparison of the OER catalytic
performance of e-NFP/NFF catalyst with other relevant non-precious metal electrocatalysts
reported in the literature is also presented in Table S3, which further points out that the
OER property of the e-NFP/NFF catalyst were satisfactory. The Nyquist plot based on an
EEC (Figure 7d) demonstrates that the semicircle diameter of e-NFP/NFF was the smallest
among the five catalysts, indicating it possessed the lowest Rct and fastest charge transfer.
The impedance values of the catalysts are consistent with the trends of the LSVs and Tafel
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slopes described above. It could be concluded that the potential barrier of the e-NFP/NFF
was reduced by enhancing the conductivity of the catalysts, which led to the improvement
of the OER efficiency. Furthermore, the TOF value of e-NFP/NFF for OER are also the
largest, compared with other counterparts (Figure S21).
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In addition, to evaluate the stability of the e-NFP/NFF electrode for the OER, 1000 CV
cycles and the long-term i-t curve were recorded. As displayed in Figure 7e, after cycling
1000 cycles, the overpotential of e-NFP/NFF to acquire 100 mA·m−2 only increased by
6 mV. Moreover, chronoamperometric tests were performed at fixed current densities of 10,
100, and 300 mA·cm−2 for 20 h, respectively, as presented in Figure 7f. Apparently, no sharp
increase or decrease was observed under the current densities of 10 and 100 mA·cm−2.
When the current density was increased to 300 mA·cm−2, e-NFP/NFF showed only a
slight attenuation after 20 h of OER operation. That is, the e-NFP/NFF catalyst exhibited
satisfactory stability at both low and high current densities for OER. For comparison, the
long-term stability of RuO2/NFF for OER at current density of 10 and 100 mA·cm2 over
20 h was also added as shown in Figure S22. The SEM (Figure S23a), XRD (Figure S23b),
and XPS (Figure S24) spectra were also performed after long-term OER testing. The SEM
images indicated that the morphology was well retained. There was a slight change in XPS,
where the disappearance of nickel phosphorus bond and the weakening of iron phosphorus
bond occurred. This may be caused by the surface oxidation of initial phosphides after
long-term exposure to a strongly alkaline environment at high current density [41,62].

In light of the outstanding HER and OER performances, a two-electrode electrolyzer
configuration for OWS was constructed by employing e-NFP/NFF as both the anode
and cathode in 1 M KOH aqueous solution (labeled as e-NFP/NFF||e-NFP/NFF). As
exhibited in Figure 8a, the fabricated water electrolysis device can achieve a current den-
sity of 10 mA·cm−2 with a low voltage of 1.58 V, which was close to that of the bench-
mark Pt/C||RuO2 electrode (1.53 V). Furthermore, the OWS activity of e-NFP/NFF||e-
NFP/NFF was also comparable to most of the recently reported results summarized in
Table S4. Significantly, the e-NFP/NFF||e-NFP/NFF couple displayed excellent long-term
durability, with negligible degradation of the current density after OWS testing for 20 h
(Figure 8b). This undoubtedly confirmed that e-NFP/NFF is a promising bifunctional
electrocatalyst with great potential for application in OWS.
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3. Experimental Section
3.1. Materials

Acetone, ethanol, hydrochloric acid (HCl), potassium hydroxide (KOH), Ni(NO3)2·6H2O,
FeSO4·6H2O and sodium hypophosphite (NaH2PO2·H2O) were purchased from Aladdin
Chemical Reagent Co., Ltd. (Shanghai, China). NiFe alloy foam (100 mm × 100 mm × 1 mm)
was bought from Kunshan Long Sheng bao Electronic Materials Co., Ltd. (Kunshan, China).
Nafion (5 wt%), RuO2, and Pt/C (20 wt%) were obtained from Shanghai Macklin Biochemi-
cal Co., Ltd. All chemicals were of analytical grade and used without further purification
in the experiments. And the deionized (DI) water was used through a Millipore system.

3.2. Synthesis of the e-NFF Catalyst on NiFe Alloy Foam

First, a piece of NiFe alloy foam (1 cm × 2 cm) was washed with acetone and hy-
drochloric acid (3M) under ultrasonic conditions for 10 min, respectively, and then rinsed
several times with DI water and ethanol to remove the surface oil and oxide layer. After-
ward, the foam was immersed in 5 mM KOH solution, transferred into a 50 mL Teflon-lined
steel shell autoclave, and heated to 200 ◦C for 6 h. Upon completion of the reaction, the
resulting sample (denoted as e-NFF/NFF) was washed several times with DI water and
ethanol and then dried in the oven at 60 ◦C. Furthermore, to explore the optimal alkaline
etching conditions, the e-NFF/NFF was prepared by controlling the concentration of alka-
line etching (0, 2.5, 5, 7.5, and 10 mM), the time of hydrothermal etching (3, 6, and 9 h), and
the temperature of hydrothermal etching (150, 180, and 200 ◦C), respectively.

3.3. Synthesis of the e-NF-LDH and a-NF-LDH Catalyst on NiFe Alloy Foam

The e-NF-LDH/NFF electrode was prepared via the electrodeposition method using a
typical three-electrode system on the surface of the e-NFF/NFF, where saturated calomel
electrode, Pt foil, and as-prepared e-NFF/NFF were served as the reference electrode,
counter electrode, and working electrode, respectively. The electrodeposition was per-
formed at a constant voltage of −1 V for 200 s at 30 ◦C. The electrolyte was a mixed solution
of 0.15 M Ni(NO3)2·6H2O and 0.15 M FeSO4·6H2O. Finally, the resulting e-NF-LDH/NFF
material was washed three times with ethanol and DI water and dried at 60 ◦C. For com-
parison, the a-NF-LDH catalyst was also synthesized using the same procedure, except
that bare NiFe alloy foam without in situ alkali etching was used as the working electrode
instead of as-prepared e-NFF/NFF. Meanwhile, the electrodeposition times (140, 200, and
260 s) were controlled to obtain the optimal catalytic performance of the e-NF-LDH/NFF
and a-NF-LDH/NFF catalysts.

3.4. Synthesis of the e-NFP and a-NFP Catalyst on NiFe Alloy Foam

The e-NFP and a-NFP on NFF foam were synthesized by a simple low-temperature
phosphorylation method. In a typical procedure, 0.5 g of NaH2PO2·H2O and the as-
prepared e-NF-LDH/NFF were placed in the upstream and the downstream region of
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the tubular furnace, respectively. Subsequently, the e-NFP/NFF sample was achieved by
calcination at 300 ◦C for 2 h with a heating rate of 2 ◦C·min−1 under an Ar atmosphere and
naturally cooling to room temperature. Based on precise measurements, the mass loading
of e-NFP/NFF is 6.5 mg·cm−2. In order to explore the optimal phosphating conditions,
various electrodes were prepared by adjusting the amounts of NaH2PO2 (0.1, 0.5, 1 g).
Additionally, the a-NFP/NFF samples were also produced in the a-NF-LDH/NFF catalyst
using the same phosphorylation process.

3.5. Synthesis of Pt/C/NFF and RuO2/NFF

For comparison, a benchmark Pt/C electrocatalyst on a NFF was fabricated by the
following steps: firstly, Pt/C (13.0 mg) and Nafion solution (0.02 mL of 5 wt%) were
dispersed in ethanol (0.48 mL). Secondly, the solution underwent sonication for 30 min to
form a homogeneous suspension, and then 50 µL of the catalyst ink was dropped on NFF
with a geometrical surface area of 0.2 cm2. Finally, the Pt/C/NFF catalyst was obtained.
The loading amount was ~6.5 mg·cm−2.

Briefly, 20 mg of RuO2 and 10 µL of 5 wt% Nafion solution were dispersed in 990 µL
of anhydrous ethanol followed by ultrasonication for 20 min to form a catalyst ink. Then
65 µL of catalyst ink was loaded on NFF with a geometrical surface area of 0.2 cm2 and
naturally dried. Finally, the RuO2/NFF catalyst was achieved. The mass loading was
~6.5 mg·cm−2.

3.6. Material Characterization

The observations of surface morphology on the samples were investigated by field-
emission scanning electron microscopy (FE-SEM, ZEISS Sigma 300,Taiyuan, China), high-
resolution transmission electron microscopy (HR-TEM, JEM-2100, 200 kV, Shanghai, China),
and corresponding selected area electron diffraction (SAED, SU8010, Shanghai, China). The
crystal structure characterizations were conducted by X-ray diffractometer (XRD, Bruker
D8-Advance, Taiyuan, China) equipped with a Cu Kα radiation source (λ = 1.5418 Å).
Raman characterizations were recorded by a Renishaw-inVia Raman spectrometer with
532 nm laser excitation. The near-surface chemical compositions and the electronic valence
states of samples were characterized by X-ray photoelectron spectroscopy (XPS, Thermo
Scientific K-Alpha, Changsha, China). The static contact angle is measured by the JY-82B
Kruss DSA system at room temperature.

3.7. Electrochemical Measurements

All electrochemical data tests were performed with the CHI 760E electrochemical
workstation (CH Instruments, Taiyuan, China) with a three-electrode system in an O2
saturated 1.0 M KOH, in which an as-synthesized sample was used as working electrode,
a mercury oxide electrode (Hg/HgO) as the reference one, and a carbon rod (4 mm in
diameter) as the counter one, respectively. Cyclic voltammetry (CV) measurements for HER
(−1.5 to −1 V (vs. Hg/HgO)) and OER (0 to 1 V (vs. Hg/HgO)) were scanning at a scanning
rate of 200 mV s−1, respectively. The corresponding polarization curves were acquired by
using Linear Sweep Voltammetry (LSV) with a scan rate of 5 and 3 mV s−1, respectively.
Electrochemical impedance spectroscopy (EIS) was carried out in the frequency range of
100 KHz ~1 Hz with an amplitude potential of 5 mV. The stability tests were conducted
using the chronopotentiometric method at a certain potential. In addition, the polarization
curve of the OWS was measured from 1.0 to 2.0 V at a sweep rate of 5 mV s−1 via a two-
electrode configuration in 1 M KOH, and the chronopotentiometric curve was recorded at
a constant potential of 1.58 V. The electrochemical data were not collected until the signals
of working electrodes stabilized after scanning several times. All measured potentials were
calibrated to the reversible hydrogen electrode (RHE) according to the following equation:
E (RHE) = E (vs. Hg/HgO) + 0.059 × pH+ 0.098. All the above measurements were
manually iR compensated and corrected using current and solution resistance. Furthermore,
all experiments were repeated at least three times to ensure reliability and reproducibility.
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4. Conclusions

In conclusion, with the assistance of an alkaline etching strategy and the introduction of
non-metallic element P to pristine NiFe-LDH, we successfully designed a superhydrophilic
3D coral-like bi-functional e-NFP/NFF electrocatalyst on NiFe alloy foam with increased
electrochemical surface area and reduced mass transfer resistance for efficient overall water
splitting. By taking advantage of the strong electronic interactions between the polymetallic
centers and mutual synergistic effect among the nickel–iron phosphides bicomponent, the
as-prepared e-NFP/NFF electrocatalyst exhibited excellent HER and OER performance as
well as robust stability both at the low (10 and 100 mA·cm−2) and high current densities
(300 mA·cm−2). Furthermore, as a bifunctional electrocatalyst for OWS, only a low voltage
of 1.58 V was required to drive a current density of 10 mA·cm−2, along with remarkable
stability. This work not only provides valuable insights into the construction of elaborate
frameworks and the rational design of electronic structures, but also offers new perspectives
for the development of highly active bifunctional electrocatalysts.
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