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Abstract: Graphitized carbon nitride (g-C3N4), as a metal-free, visible-light-responsive photocatalyst,
has a very broad application prospect in the fields of solar energy conversion and environmental
remediation. The g-C3N4 photocatalyst owns a series of conspicuous characteristics, such as very
suitable band structure, strong physicochemical stability, abundant reserves, low cost, etc. Research
on the g-C3N4 or g-C3N4-based photocatalysts for real applications has become a competitive hot
topic and a frontier area with thousands of publications over the past 17 years. In this paper, we
carefully reviewed the recent advances in the synthesis and structural design of g-C3N4 materials
for efficient photocatalysts. First, the crucial synthesis parameters of g-C3N4 were fully discussed,
including the categories of g-C3N4 precursors, reaction temperature, reaction atmosphere and reaction
duration. Second, the construction approaches of various nanostructures were surveyed in detail,
such as hard and soft template, supramolecular preorganization and template-free approaches. Third,
the characteristics of different exfoliation methods were compared and summarized. At the end,
the problems of g-C3N4 materials in photocatalysis and the prospect of further development were
disclosed and proposed to provide some key guidance for designing more efficient and applicable
g-C3N4 or g-C3N4-based photocatalysts.

Keywords: photocatalyst; g-C3N4; reaction parameters; structure design; exfoliation

1. Introduction

In order to alleviate the problem of global warming and energy shortage, the develop-
ment of renewable energy has become a major practical problem to be urgently solved by
researchers all over the world [1]. As the most important renewable energy on the Earth, so-
lar energy can be said to be inexhaustible. But so far, limited by various energy conversion
technologies, the development and utilization of solar energy in the field of photocatalysis
is far from enough. Recently, graphitic carbon nitride (g-C3N4) has attracted extremely
wide attentions in photocatalysis due to its special band structure, stable properties, low
price, and easy preparation [2–6]. The g-C3N4 is comprised of only carbon and nitro-
gen elements, which are very abundant on the Earth. Importantly, the g-C3N4 materials
can be easily fabricated by thermal polymerization of abundant nitrogen-rich precur-
sors such as melamine [7–16], dicyandiamide [17–22], cyanamide [23–25], urea [18,26,27],
thiourea [28–30], ammonium thiocyanate [31–33], etc. Because the band gap of g-C3N4 is
2.7 eV, it can absorb visible light shorter than 450 nm effectively, implying broad prospects
in solar energy conversion applications. Due to the aromatic C-N heterocycles, g-C3N4
is thermally stable up to 600 ◦C in air. Moreover, g-C3N4 is insoluble in acids, bases or
organic solvents, exhibiting good chemical stability.

However, some bottlenecks in the photocatalytic activity of g-C3N4 still exist, such
as fast photogenerated carrier recombination, limited active site, small specific surface
area, low light absorption capacity, unsatisfactory crystallinity and unignorable surface
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defects. How to promote the efficient migration and separation of photogenerated carriers,
expand the spectral response range and increase the specific surface area of g-C3N4 is the
core problem to achieve high energy conversion efficiency. In practice, the introduction
of impurities into the g-C3N4 matrix through copolymerization and doping has become
an effective strategy to change the electronic structure and band structure of g-C3N4. On
the other hand, numerous research works have demonstrated that the physicochemical
properties and photocatalytic efficiency of the polymer g-C3N4 can be significantly im-
proved by optimizing synthesis techniques such as supramolecular and copolymerization
techniques with identical structural and nano-structural designs, or by template-assisted
methods to improve porosity and surface area [34–39]. Amongst various modification
approaches, designing and constructing a more suitable band structure is the most im-
portant prerequisite to improve the charge separation efficiency, thereby enhancing the
photocatalytic performance.

In this review, the synthesis parameters of g-C3N4 are discussed first, mainly including
the types of g-C3N4 precursors, reaction temperature, reaction atmosphere and reaction
duration. The influence of different synthesis parameters of g-C3N4 are compared and
summarized in detail here. Then, the construction approaches of various nanostructures
are reviewed, such as hard and soft template, supramolecular preorganization, template-
free approaches, etc. It again manifests that the specific surface area and photocatalytic
efficiency of g-C3N4 can be directly manipulated by means of different nanostructure
design approaches. Furthermore, the characteristics of different exfoliation methods are
summarized for stark comparisons. Liquid exfoliation of bulk g-C3N4 has gradually
become the most popular exfoliation method. The overall framework of synthesis and
properties of g-C3N4 for enhanced photocatalytic performance are illustrated in Figure 1.
Finally, the problems of g-C3N4 materials in photocatalysis and the prospect of further
development are proposed, which may be favorable to the design of more efficient and
practical g-C3N4 or g-C3N4-based photocatalyst.
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2. Influence of Synthesis Parameters
2.1. Precursors and Reaction Temperature

The first reported g-C3N4 as a heterogeneous catalysis was present in 2006 [40]. Sub-
sequently, various precursors such as urea [41], thiourea [42], cyanamide [43,44] and
dicyandiamide [45,46] have been employed to synthesize g-C3N4 by thermal treatment
methods. In 2009, Wang et al. firstly used cyanamide as the precursor of g-C3N4 for pro-
ducing hydrogen from water under visible-light irradiation in the presence of a sacrificial
donor [47]. This pioneering work represents an important first step towards photosynthesis
in general, where artificial conjugated polymer semiconductors can be used as energy trans-
ducers. In order to demonstrate the reaction intermediate compounds, characterization
techniques such as thermogravimetric analysis (TGA) and X-ray diffraction (XRD) are used
to characterize the reaction. Figure 2a displayed that the graphitic planes are constructed
from tri-s-triazine units connected by planar amino groups. Figure 2b is the XRD pattern
of the obtained g-C3N4 powder. From the ultraviolet-visible spectrum (Figure 2c), it can
be seen that the band gap of g-C3N4 is 2.7 eV. The synthesis of g-C3N4 was a combination
of polyaddition and polycondensation. At a reaction temperature of 203 and 234 ◦C, the
cyanamide molecules can be condensed to dicyandiamide and melamine, respectively.
The ammonia is then removed by condensation. When the temperature reaches 335 ◦C,
large amounts of melamine products are detected. When further heating to 390 ◦C, the
rearrangements of melamine will result in the formation of tri-s-triazine units. Finally, when
heating to 520 ◦C, the polymeric g-C3N4 are synthesized via the further condensation of the
unit. However, g-C3N4 will be unstable at above 600 ◦C. Furthermore, when the reaction
degree is higher than 700 ◦C, g-C3N4 will decompose. Figure 2d shows the structural phase
transition process from cyanamide to g-C3N4 at different temperatures. In addition to
in-situ characterization experiments to verify the reaction process, it can also be demon-
strated by relevant simulation calculations. The first-principles DFT calculations were
performed using a plane wave basis set with a 550 eV energy cutoff [40]. The calculation
results showed that the cohesion energy increased under the addition of multiple reaction
pathways, which confirmed that melamine was produced upon heating the cyanamide,
as shown in Figure 2e. In another work, Ang et al. demonstrated that when thiourea is
used as the precursor and TiO2 or SiO2 are used as the inorganic substrate, the melon
nanocomposites can be formed at a low temperature of 400 ◦C [48]. However, the degree of
polymerization of g-C3N4 in the nanocomposites is low, so its photocatalytic performance
is moderate. Following this, Zhang et al. reported a simple method of g-C3N4 synthesis
from thiourea without the aid of any substrates [49]. It was found that the obtained g-C3N4
exhibited a good condensation likely due to the presence of sulfur species in thiourea, thus
accelerating the degree of polymerization and condensation of thiourea at high tempera-
tures. Having insights into the results of different reports, it can be found that different
precursors have distinct characteristics and advantages. In order to obtain well-condensed
g-C3N4 with high quality, the most crucial point is to select the best reaction temperature
corresponding to the selected precursor.

In order to prove that g-C3N4 has been successfully prepared, a variety of analytical
measurements can be used, such as X-ray photoelectron spectroscopy (XPS), XRD and
Fourier transform infrared (FTIR) spectroscopy. The basic experimental procedures for
the synthesis, characteristics of different precursors and characterization of g-C3N4 are
described above. What effects other synthesis parameters have on g-C3N4 will be compared
and discussed in detail in the following sections.
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Figure 2. Crystal structure and optical properties of g-C3N4. (a) Schematic diagram of a perfect
g-C3N4 sheet constructed from melem units. (b) Experimental XRD pattern of polymeric carbon
nitride, revealing a graphitic structure with an interplanar stacking distance of the aromatic unit
(0.326 nm). (c) Diffuse reflectance spectrum of the polymeric carbon nitride. Inset: Photograph of the
photocatalyst. (d) XRD patterns of g-C3N4 treated at different temperatures. (e) Calculated energy
diagram for the development of g-C3N4 using cyanamide precursor [47].

2.2. C/N Ratio

Generally, g-C3N4 exhibits a high physicochemical stability and ideal band structure,
due to the high condensation degree and the presence of the heptazine ring structure. When
the appropriate precursor and condensation method are selected, the C/N ratio in layered
g-C3N4 is about 0.75. Many studies have confirmed that when the precursors and synthesis
parameters of g-C3N4 are changed, the physicochemical properties of g-C3N4 will be signif-
icantly affected, such as band gap width, specific surface area, C/N ratio, etc., which will
directly affect the photocatalytic efficiency and other applications’ performance [50–54].
Yan et al. synthesized g-C3N4 by directly heating the low-cost melamine, and they change
the C/N ratio by controlling different heating temperatures [55]. The research showed that
when the heating temperatures increased from 500 to 580 ◦C, the ratio of C/N increased
from 0.721 to 0.742. Meanwhile, the band gaps of g-C3N4 decreased from 2.8 to 2.75 eV. Ap-
parently, increasing the heat temperature will decrease the photooxidation ability of g-C3N4.
The C/N ratio, i.e., the degree of condensation, is inconsistent with the structural integrality.
Therefore, in order to obtain a better photocatalytic efficiency, reasonable optimization
measures must be taken to make the C/N ratio closer to the ideal ratio (0.75) [56]. Therefore,
the presence of trace amino groups is actually conducive to improving the surface activity
of g-C3N4, thus exhibiting better interaction with the reactant molecules [8,57,58]. However,
due to incomplete concentration, the C/N ratio is lower than the ideal value (0.75), resulting
in a large number of defects, inhibiting the rate of carrier transport and separation, and
seriously reducing the photocatalytic efficiency. Therefore, in order to obtain a relatively
high photocatalytic efficiency, the optimal C/N ratio is 0.75, which can usually reflect that
g-C3N4 has a good concentration and stability.
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2.3. Pretreatment of Precursors

It has been shown that modification and pretreatment of nitrogen-rich precursors
before thermal annealing can effectively improve the physicochemical properties of g-C3N4.
One of the effective pretreatment methods is by acid treatment. Yan et al. reported the
synthesis of g-C3N4 by directly heating the sulfuric-acid-treated melamine precursor [59].
It is worth noting that the carbon nitride synthesized from sulfuric acid treated melamine
(15.6 m2/g) shows relatively higher BET surface area than that of samples synthesized from
untreated melamine (8.6 m2/g). The reason can be attributed to the effect of pretreatment of
melamine with H2SO4 on its condensation process, during which sublimation of melamine
is inhibited significantly. In addition to the pretreatment of melamine with H2SO4, HCl
and HNO3 also exhibited good pretreatment effects on melamine [60–63].

In addition to acid precursors, pretreatment methods of sulfur-mediated synthesis
can also be used to regulate the structure and physicochemical properties of g-C3N4 [64].
The fundamental reason is that the presence of the sulfur group in the sulfur-containing
thiourea provides an additional chemical pathway to regulate the degree of condensation
and polymerization of g-C3N4 because it is easy to leave the -SH groups. Zhang et al.
advanced this strategy by employing cheap and easily available elemental sulfur as the
external sulfur species instead of sulfur-containing precursors for the sulfur-mediated
synthesis of g-C3N4 photocatalysts [65]. In comparison with unmodified g-C3N4, the
vibrations of g-C3N4-Sx are less intensive when increasing the amount of elemental sulfur
(S8), especially for the broad band at 2900–3300 cm−1. Thus, S8-mediated synthesis helps
to advance the polymerization of melamine precursors, leaving fewer amino-containing
groups as surface defects. In this report, the structure, electronic and optical properties
of g-C3N4 have been effectively modified, and its physicochemical properties have also
been significantly improved. Under visible light irradiation at 420 nm, the photocatalytic
activity of water reduction and oxidation was enhanced.

2.4. Reaction Atmosphere

In addition to the types of precursors, reaction temperature and duration, the physico-
chemical properties and structure of g-C3N4 are also strongly influenced by the reaction
atmosphere, because the reaction atmosphere can induce a variety of defects and carbon
and nitrogen vacancies. In fact, defects are essential for catalytic reactions because they
can act as active sites for reactant molecules and change the band structure by introducing
additional energy levels in the forbidden band, thus extending the spectral absorption
range [66–69]. By controlling the polycondensation temperature of a dicyandiamide precur-
sor in the preparation of g-C3N4, Niu et al. introduced nitrogen vacancies in the framework
of g-C3N4 [70]. The excess electrons caused by nitrogen loss in g-C3N4 lead to a large
number of C3+ states associated with nitrogen vacancies in the band gap, thus reducing
the intrinsic band gap from 2.74 eV to 2.66 eV. Steady and time-resolved fluorescence emis-
sion spectra show that, due to the existence of abundant nitrogen vacancies, the intrinsic
radiative recombination of electrons and holes in g-C3N4 is greatly restrained, and the
population of short-lived and long-lived charge carriers is decreased and increased, respec-
tively. In another study, Niu et al. produced a novel visible light photocatalyst R-melon
by heating the melon in a hydrogen atmosphere [71]. Compared to the pristine melon
with a bandgap of 2.78 eV, the resultant R-melon with a bandgap of 2.03 eV has a widened
visible light absorption range and suppressed radiative recombination of photo-excited
charge carriers due to homogeneous self-modification with nitrogen vacancies. Table 1
shows the summary of the specific surface areas and band gaps of g-C3N4 photocatalysts
developed from various precursors and different reaction parameters. The results demon-
strated that the band structure, electronic properties and specific surface area of g-C3N4
can be changed by adjusting the reaction parameters and precursors, so as to improve its
photocatalytic performance.
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Table 1. Precursors and Reaction Parameters Employed in the g-C3N4 Synthesis.

Precursors Synthesis
Parameters

Surface Area
(m2 g−1)

Band Gap
Energy (eV) Ref.

Cyanamide 550 ◦C, 4 h, air 10 2.7 [47]
Dicyandiamide 550 ◦C, 3 h, air 12.3 2.66 [56]
Dicyandiamide 600 ◦C, 4 h, air 12.8 2.75 [72]
Dicyandiamide 550 ◦C, 4 h, H2 20.91 2.0 [73]

Melamine 500 ◦C, 2 h, air 7.1 2.83 [74]
Melamine 520 ◦C, 2 h, N2 17.4 2.74 [75]

H2SO4-treated melamine 600 ◦C, 4 h, Ar 15.6 2.69 [59]
HCl-treated melamine 550 ◦C, 4 h, air 26.2 2.73 [61]

Thiourea 550 ◦C, 3 h, air 11.3 2.6 [56]
Urea 450 ◦C, 2 h, air 135.6 2.76 [76]

3. Morphology and Structure Design of g-C3N4

3.1. Hard and Soft Template Approach

Apart from regulating the synthesis parameters, introducing nano-templates and
nano-casting with different morphology and ordered porosity on the basis of bulk g-C3N4
is another promising method to change the morphology and structural characteristics
of g-C3N4 structure and the interlayer interaction. As a matter of fact, researchers have
effectively designed controllable nanostructures for g-C3N4 through hard template or soft
template methods, such as porous g-C3N4, one-dimensional nanostructures, hollow g-C3N4
nanospheres, etc [11,77–85]. It has been proven that the porosity, structure, morphology, sur-
face area and size can be easily controlled by adjusting the appropriate template. Moreover,
the larger surface area and more active sites are generally more favorable for photocatalytic
applications of g-C3N4.

The hard template method is almost identical to the traditional casting process and
is one of the most common techniques for developing nanostructured g-C3N4 materials.
In this way, the various structures and geometries of g-C3N4 can be designed using hard
templates as needed, and their length scales are usually around nanometers and microns.
The most typical structure-oriented agent is a silica template with a controllable nanos-
tructure. The early study on the mesoporous g-C3N4 synthesized using cyanamide as
a precursor and silica nanoparticles with a size of 12 nm as a template was reported by
Goettmann et al. [40]. The results show that the silica nanoparticles can be uniformly
dispersed in the cyanamide monomer, which is due to the appropriate surface interaction
between the silica surface and the amine and aromatic nitrogen groups. After heating treat-
ment and cyanamide condensation, the g-C3N4/silica hybrid is formed, and well-dispersed
silica nanoparticles are preserved in the g-C3N4 matrix. Ammonium hydrogen fluoride
(NH4HF2) solution can be used to remove the silicon template. The average diameter is
12 nm, and the surface area in the range of 86 to 439 m2 g−1 can be regulated by adjusting
the mass ratios of silica/cyanamide from 0 to 1.6. In another work carried out by Yuki
Fukasawa et al., uniform-sized silica nanospheres (SNSs) assembled into close-packed
structures were used as a primary template for ordered porous g-C3N4, which was sub-
sequently used as a hard template to generate regularly arranged Ta3N5 nanoparticles
of well-controlled size [86]. The cyanamide is infiltrated and polymerized in the narrow
void of SNSs to form porous g-C3N4, and then the SNSs is removed by HF treatment, as
shown in Figure 3a. Therefore, the resulting g-C3N4 has an anti-opal structure, and the
size of the spherical hole indicates the size of the SNSs used, as shown in the SEM images
of Figure 3b–e. In this study, the pore size of g-C3N4 was between 50 and 80 nm. In spite
of the silica hard template, Chen et al. reported the synthesis of porous g-C3N4 by using
multi-walled carbon nanotube (CNT) as a novel hard template [87]. Unlike other hard
templates, CNT can be easily removed and recovered by ultrasonic methods, resulting in a
relatively simple preparation of porous g-C3N4.
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It can be seen that during the synthesis of g-C3N4 through hard templates, extremely
dangerous, toxic and expensive fluorine-containing etchers (such as HF and NH4HF2) are
used to remove the sacrificial templates. This greatly limits the practical application of
the method in large-scale industrial processes. Therefore, apart from the hard template
synthesis method of g-C3N4, the relatively “environmentally friendly” soft template process
can not only change the morphology and structure of g-C3N4 through the selection of
multiple soft templates, but also simplify the synthesis route of g-C3N4 [88,89]. Different
from the hard template method, in the soft template method, the nano-structure g-C3N4 is
synthesized by soft structure guiding agents such as ionic liquid, amphiphilic block polymer
and surfactant, so as to rationally design g-C3N4 with a highly porous nanostructure [90].
For instance, bimodal mesoporous g-C3N4 is synthesized using Triton X-100 as a soft-
template and melamine and glutaraldehyde as precursors through polymerization and
carbonization [91]. The results show that the mesopore sizes in the g-C3N4 are centered at
3.8 nm and 10–40 nm. The former was attributed to the removal of the Triton X-100, while
the latter was ascribed to the aggregates of plate-like g-C3N4. In another study reported
by Wang et al., a variety of soft-templates (e.g., Triton X-100, P123, F127, Brij30, Brij58, and
Brij76) as well as some ionic surfactants are tested as structure-directing agents for the
synthesis of mesoporous g-C3N4 [90]. Most as-prepared g-C3N4 materials possess a high
surface area. Moreover, this work points out two problems. The first was that only a few
selected soft templates (Triton X-100 and ionic liquids) led to the presence of mesoporous
g-C3N4 structures with high surface areas. Due to the premature decomposition of the
template material, the pores of g-C3N4 are easily resealed. The second problem is that the
obtained g-C3N4 contains a large amount of carbon elements from the template polymer,
which significantly changes the morphology and structure of g-C3N4, thereby reducing its
photocatalytic activity.

Overall, it is not difficult to find that the synthesis of g-C3N4 with various nanostruc-
tures assisted by hard and soft templates is a facile and efficient approach. Nowadays,
researchers are still developing a variety of new templates to achieve more interesting
g-C3N4 nanostructures with high photocatalytic efficiency.

3.2. Supramolecular Preorganization Approach

In contrast to the previously discussed hard and soft template synthesis approaches,
molecular self-assembly is a self-templating approach (namely supramolecular preorga-
nization approach) in which molecules spontaneously form a stable g-C3N4 structure
from non-covalent bonds under equilibrium conditions in the absence of an external tem-
plate [80,92–94]. Recently, supramolecular preassembly of triazine molecules has become an
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interesting method to regulate the structural, textural, optical, and electronic features of g-
C3N4, thus affecting its photocatalytic activity [95–98]. For example, nanostructured g-C3N4
materials can be developed by supramolecular preorganization of melamine precursors to
triazine derivatives to form hydrogen bond molecular assemblies, i.e., melamine–cyanuric
acid, melamine–trithiocyanuric acid mixtures or their derivatives [99–101]. Jun et al. first
synthesized g-C3N4 by molecular cooperative assembly between triazine molecules [102].
Flower-like, layered spherical aggregates of melamine cyanuric acid complex (MCA) are
formed by precipitation from equimolecular mixtures in dimethyl sulfoxide (DMSO). The
oxygen-containing intermolecular structure connected by hydrogen bonding and stacked
in graphitic fashion facilitates the condensation process and enables structural perfection.
The obtained material synthesized by this supramolecular preorganization approach has
stronger spectral absorption (an increased band gap of 0.16 eV), and the photogenerated
carrier lifetime is extended nearly twice as long as that of bulk g-C3N4.

It can be seen that the combination of two or more monomers in different solvents can
form supramolecular complexes. These supramolecular complexes are usually linked by
hydrogen bonds. Therefore, it is expected that the addition of new monomers to hydrogen-
bonded supramolecular complexes as “terminators” will be an attractive technique to
further adjust the morphology, photophysical properties, and electronic band structure
of g-C3N4.

3.3. Template-Free Approach

Compared with the hard and soft template synthesis approaches, the template-free
approach has unique advantages, such as no need for various high-cost and dangerous
templates containing fluorine, and no residue of any template components. Indeed, many
studies have proven that g-C3N4 nanostructure designs with a variety of morphologies
and desired sizes, such as nanorods, quantum dots, microspheres, nanofibers, etc., can also
be achieved using a template-free approach. Bai et al. reported that the transformation
of g-C3N4 from nanoplates to nanorods was realized by a simple reflux method [103].
Various aspect ratios were achieved by changing the reflux duration and solvent ratio
without the assistance of any templates. As per the TEM images shown in Figure 4a–d,
most irregular nanoplates are observed in the untreated g-C3N4 sample, while the refluxed
g-C3N4 sample mainly contains nanorods. The length of g-C3N4 nanorods is 0.5–3 µm. The
growth mechanism and process can be summarized as follows (Figure 4e): under ultrasonic
action, CH3OH can strip g-C3N4 bulks into nanosheets. The reflux process can remove
surface defects and transform them into nanorods. After reflux treatment, the g-C3N4
nanosheets showed the metastable state. With the increase of time, the layered structure
of g-C3N4 will curl and finally grow into nanorods. Finally, the shorter g-C3N4 nanorods
are redissolved into the solution, while the longer nanorods will continue to grow during
reflux treatment. The increase in visible light degradation activity of methylene blue can be
induced for the increase of active lattice face and elimination of surface defects.

Additionally, Wang et al. described a facile and generally feasible method to synthesize
nanotube-type g-C3N4 by directly heating melamine packed in an appropriate compact
degree without templates [104]. A certain amount of melamine was placed into a semi-
closed alumina crucible followed by consecutively shaking the crucible using a vibrator at
a fast rate to achieve a moderately compact packing degree. This process is very crucial
for the synthesis of nanotube-type g-C3N4. TEM images show that the wall thickness of
the nanotubes in the bulk phase is about 15 ± 2 nm, while the inner diameter is about
18 ± 2 nm. In this report, the formation process and mechanism of nanotubes have been
studied in detail. During the pyrolysis process, melamine releases NH3 gas, which passes
through the stacked melamine layers to form rolled g-C3N4 nanosheets. Due to the need to
reduce the surface free energy, the nanosheets eventually bend into the form of nanotubes.
It is worth pointing out that when the melamine layer is loosely stacked, g-C3N4 cannot
form a nanotube structure, which indicates that obtaining the appropriate packing degree
of g-C3N4 is crucial for the formation of the nanotube structure.
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4. Exfoliation of Bulk g-C3N4

Although the specific surface area of the monolayer g-C3N4 is theoretically large, the
specific surface area of the block is very low indeed, usually less than 10 m2 g−1, due to
the stacking of g-C3N4 layers [105]. Therefore, delaminating g-C3N4 into several layers
is a promising way to improve photocatalytic performance and produce more interesting
surface, optical and electronic properties [106–109]. There are many methods of exfoliating
g-C3N4, such as ultrasonication-assisted liquid exfoliation, the liquid ammonia-assisted
lithiation and the post-thermal oxidation etching route [17,108–115]. Similar to most two-
dimensional materials, there is a weak van der Waals force between the layers of g-C3N4.
Thus, the van der Waals force can be effectively overcome and the separation between layers
can be achieved by means of energy assistance such as ultrasound in an appropriate solvent.

Liquid exfoliation is simple and convenient, and has gradually become the most com-
monly used exfoliation method by most researchers. Yang et al. demonstrated the synthesis
of free-standing g-C3N4 nanosheets by liquid phase exfoliation [110]. The method uses
g-C3N4 powder as a starting material and various organic solvents (such as isopropanol
(IPA), N-methyl-pyrrolidone (NMP), acetone, and ethanol) as dispersing media. As shown
in Figure 5a,b, many nanosheets with laminar morphology like silk veil can be observed,
which is in stark contrast from that of bulk g-C3N4. The photographs in Figure 5e clearly
demonstrated that NMP is a promising dispersing solvent among various dispersing sol-
vents. It can stably disperse individual nanosheets; however, the disadvantage is that the
boiling point of NMP is relatively high, which is difficult to remove. The agglomeration
phenomenon of g-C3N4 layer can be observed in NMP. In comparison, low-boiling-point
IPA is the best medium for preparing g-C3N4. The obtained g-C3N4 in IPA exhibited a
surface area of up to 384 m2 g−1 and a thickness of about 2 nm, as shown in Figure 5c,d.
Moreover, the stability of IPA is superior, and there is no precipitation phenomenon after
4 months of storage (Figure 5f).
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nanosheets. (e) Photographs of the g-C3N4 nanosheet dispersions in IPA, NMP, water, ethanol and
acetone, respectively, after 2 days storage under ambient conditions, and (f) in IPA solvent after
4 months storage [110].

5. Doping of g-C3N4

It is well-known that g-C3N4 is a metal-free n-type semiconductor. Due to the high
ionization energy and high electronegativity of metal-free semiconductors, it is easy for
them to form covalent bonds with other compounds by obtaining electrons during the
reaction. In order to maintain this unique advantage of metal-free semiconductors, re-
searchers have implemented a series of non-metal doping g-C3N4, including oxygen,
phosphorus, sulfur, carbon, halogen, nitrogen and boron [116–121]. For instance, O-doping
is a facile method to improve the photocatalytic ability of g-C3N4. Zeng et al. synthesized
one-dimensional porous architectural g-C3N4 nanorods by direct calcination of hydrous
melamine nanofibers precipitated from an aqueous solution of melamine [122]. The porous
structure increases the specific surface area, enhances the light absorption capacity and
improves the catalytic reaction rate. At the same time, doping oxygen atoms into the
g-C3N4 matrix breaks the symmetry of the pristine structure, making more efficient separa-
tion of electron/hole pairs. In general, non-metallic doping usually changes the surface
morphology and structure of g-C3N4, thereby affecting the light absorption efficiency and
regulating the catalytic efficiency.

Different from non-metal doping, metal-doped g-C3N4 has the advantages of reduc-
ing band gap to enhance visible light absorption and to improve catalytic performance.
Commonly used doped metals include alkali metals (Li, Na, K) and transition metals
(Fe, Cu, and W) [123–127]. For example, Xiong et al. reported that the doping of alkali
metals (K, Na) in the g-C3N4 framework significantly increases the transfer and separation
rates of photogenerated carriers and induces more efficient redox catalytic reactions [128].
DFT calculation results showed that K or Na doping can reduce the band gap energy of
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g-C3N4. Generally, the introduction of metal ions can form new energy levels, increase
the specific surface area, and sometimes resist the recombination of charge carriers pro-
duced by photons. The catalytic efficiency of noble metal doping is usually higher, but the
photodegradation efficiency of some ordinary transition-metal-doped g-C3N4 for some
pollutants can be comparable to that of noble-metal-doped g-C3N4 when the appropriate
doping amount and mode are selected.

6. Applications of g-C3N4

Due to its moderate energy gap, excellent electronic properties, rich functional groups
and surface defects, g-C3N4 can be widely used in environmental treatment and pollutant
degradation, including water splitting, hydrogen generation, CO2 conversion and organic
pollutants degradation [129–132].

As reported, the pristine g-C3N4 has limitations such as small specific surface area
and fast charge recombination rate, which leads to a low water splitting ability of g-C3N4.
To solve this problem, Chen et al. improved the water splitting capacity via adjusting the
dimension of g-C3N4 [133]. As shown in Figure 6a,b, they demonstrated that the evolution
rates of H2 and O2 of three-dimensional porous g-C3N4 in visible light are significantly
higher than those of the pristine g-C3N4, reaching 101.4 and 49.1 µmol g−1 h−1, respectively.
Fu et al. reported oxygen-doped g-C3N4 [134]. As exhibited in Figure 6c-d, the O-doped
g-C3N4 has a narrower band gap and greater CO2 affinity, which significantly improves
the photogenerated carrier separation efficiency and CO2 conversion ability. In addition, a
lot of efforts have been made to enhance its photocatalytic activity to improve its pollutant
degradation ability. As shown in Figure 6e-f, Dou et al. reported that mesoporous g-C3N4
has a strong ability to remove antibiotics under visible light [135], which is mainly due to
the porous structure that improved the utilization of light.
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7. Conclusions and Prospects

In summary, due to the merits of low cost, high stability and visible light response,
g-C3N4 is one of the most promising photocatalytic materials to replace TiO2. This re-
view mainly introduces the synthesis of g-C3N4, the improvement of the g-C3N4 crystal
structure, the light absorption enhancement, structure design optimization, as well as the
improvement of electronic properties and optimization of energy band, so as to promote
the photocatalytic application of g-C3N4. As summarized above, the appropriate reac-
tion temperature and duration of the condensation process are beneficial to improve the
crystallinity of g-C3N4. Various desirable nanostructures of g-C3N4 can be constructed
via hard and soft template approaches, supramolecular preorganization approach, and
template-free approach. Liquid exfoliation of bulk g-C3N4 has becoming the most facile
and promising method to improve the surface area of g-C3N4.

Therefore, in order to synthesize the ideal g-C3N4 with high photocatalytic efficiency,
it is necessary to pay attention to the following crucial elements: (i) Controlling the corre-
sponding reaction temperature and reaction time according to the selected precursor mate-
rial; (ii) Controlling the C/N ratio close to 0.75 and the band gap to 2.7 eV; (iii) Extending
the specific surface area by selecting suitable nanostructure design approaches.

It can be assumed that in the future, g-C3N4, a booming photocatalytic hot spot
material, will face unlimited opportunities and challenges. Although g-C3N4 can be easily
synthesized by thermal polymerization of nitrogen-rich precursors, its photocatalytic
efficiency is not high due to its small specific surface area, limited surface reaction sites, and
insufficient utilization of broad-spectrum sunlight. Here, some pivotal issues are elaborated
in the following:

(i) So far, the use of visible and near-infrared light is far from sufficient. On the one
hand, it depends on the synthesis and structural design of the g-C3N4 material; on
the other hand, a third or more component with a suitable band structure can also
be cleverly added to design the interface electronic structure and expand the optical
absorption region.

(ii) Due to the limited surface area of g-C3N4 and the inevitable defects on the surface,
the smooth transfer of photogenerated carriers is hindered. Therefore, the synthesis
approached needs to be further developed. In order to optimize photocatalytic
performance, some environmentally friendly, simple and efficient synthesis routes are
urgently required.

(iii) The integration of photocatalytic applications in many fields into one photocatalytic
system is a widely used catalytic process. This requires the hybridization of multifunc-
tional materials with reasonable energy structure. How to optimize the energy band
structure and surface topography of g-C3N4 reasonably to improve the compatibility
of energy conversion and environmental protection is very promising.

(iv) More theoretical studies about g-C3N4 need to be combined with practical catalytic
applications. It is certain that in-depth fundamental theory based on physical chem-
istry research, in collaboration with laboratory findings, will positively promote the
advances in materials science and technology.
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