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Abstract: D-tagatose is a low-calorie alternative to sucrose natural monosaccharide that is nearly
as sweet. As a ketohexose, D-tagatose has disease-relieving and health-promoting properties. Due
to its scarcity in nature, D-tagatose is mainly produced through chemical and biological methods.
Compared to traditional chemical methods, biological methods use whole cells and isolated enzymes
as catalysts under mild reaction conditions with few by-products and no pollution. Nowadays,
biological methods have become a very important topic in related fields due to their high efficiency
and environmental friendliness. This paper introduces the functions and applications of D-tagatose
and systematically reviews its production, especially by L-arabinose isomerase (L-AI), using biological
methods. The molecular structures and catalytic mechanisms of L-AIs are also analyzed. In addition,
the properties of L-AIs from different microbial sources are summarized. Finally, we overview
strategies to improve the efficiency of D-tagatose production by engineering L-AIs and provide
prospects for the future bioproduction of D-tagatose.

Keywords: D-tagatose; production; enzyme; L-arabinose isomerase; biocatalysts

1. Introduction

In recent years, traditional high-absorption and high-calorie sugars have gradually
been replaced by low-calorie and low-absorption rare sugars. As a representative of such
rare sugars, D-tagatose is a naturally occurring monosaccharide with 92% of the sweetness
of sucrose but only one-third of the calories.

D-tagatose, with the molecular formula C6H12O6, is the ketose form of D-galactose
and the epimer of D-fructose at the C-4 position (Figure 1). D-tagatose is very rare in nature
and small amounts of D-tagatose are found to be naturally present in cheese, yogurt, hot
cocoa, sterilized powder milk, and other dairy-derived products [1].

The functions of D-tagatose have been extensively evaluated for disease amelioration
(obesity control, antidiabetes, and regulation of blood metabolites) and health promotion
(anti-aging, antioxidant, and prebiotic properties) (Figure 2) [2]. Diabetic patients have been
shown to experience gradual weight loss through long-term treatment with D-tagatose [3].
This is because D-tagatose does not lead to fat deposition. Research by Buemann et al. [4]
showed that osmotic effects caused by unabsorbed D-tagatose lead to intestinal distension.
This would potentially mediate an acute appetite suppressant effect and help to reduce
energy intake; D-tagatose holds potential in blood sugar control with a glycemic index (GI)
value of 3 [5]. When individuals consume D-tagatose before meals, approximately 20%
of it is absorbed by the body, converting blood glucose into glycogen and slowing down
the rate of decomposition of glycogen into glucose [6]. The reason for this may be due to
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its liver metabolism process, which is similar to that of D-fructose. D-tagatose is phospho-
rylated to tagatose-1-phosphate by fructokinase. Its slower rate of breakdown results in
the accumulation of tagatose-1-phosphate. Tagatose-1-phosphate stimulates glucokinase
and promotes the conversion of glucose to glucose-6-phosphate. Glucose-6-phosphate
stimulates liver glycogen synthase to accelerate glycogen formation. The remaining 80% is
not absorbed and may compete with or partially inhibit glucose transporters in the small
intestine, thereby inhibiting and preventing glucose absorption [7,8]. D-tagatose helps
improve blood health [9] by strengthening key blood factors, such as the red blood cell
count, prothrombin time, and activated partial thromboplastin time, as well as increasing
coagulation factors. Therefore, it is a candidate for the treatment of anemia and hemophilia.
D-tagatose also has the potential to prevent oral diseases [10]. Mayumi et al. [11] found
that it selectively inhibits the growth of oral pathogens by affecting their glycolysis and
downstream metabolism. Hasibul et al. [12] discovered that D-tagatose prevents the cario-
genic species Streptococcus mutans from growing and forming biofilms. Dietary restriction
through D-tagatose maintains lower blood sugar and insulin levels in the body, thereby
delaying age-related disease development and further extending the lifespan of those
who practice it [13,14]; Additionally, D-tagatose is an excellent prebiotic. Research has
shown [15] that unabsorbed D-tagatose will enter the large intestine, where it is selectively
fermented by microbial flora. This fermentation process promotes the proliferation of
beneficial flora while inhibiting the growth of harmful flora, thereby improving the gut
microbiota. At the same time, the fermentation of D-tagatose yields large amounts of
beneficial short-chain fatty acids such as butyric acid [16], which is a good source of energy
for colon epithelial cells.
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D-tagatose is an emerging low-calorie sweetener with potential to replace sucrose [17].
It can provide sweetness in a wide range of concentrations without adding an undesirable
taste. The addition of D-tagatose to low-sugar products can provide them with desirable
organoleptic properties, which means it can be beneficial to health without changing the
flavor of the product [18,19]. Since D-tagatose has been approved as “generally recognized
as safe” (GRAS), it can be used in confectionery, beverages, nutraceuticals, and dietary
products. D-tagatose can also be used as an additive in prescription medications and as a
sweetener in toothpaste, mouthwash, and cosmetics.

D-tagatose was discovered in the gum of Sterculia setigera as early as 1949 [20]. How-
ever, its scarcity makes it difficult to extract D-tagatose directly from nature on a large
scale. In order to make D-tagatose production more economical and efficient, chemical and
biological methods are usually used (Figure 3).
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The typically used chemical method, also known as non-enzymatic isomerization [21],
uses metal hydroxides as catalysts. This method consists of three steps: firstly, an insoluble
D-tagatose complex is generated when D-galactose interacts with metal hydroxides, which
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are stable under alkaline conditions; in the second stage, the insoluble D-tagatose complex
is neutralized with an acid to produce an insoluble salt; finally, filtering is used to sepa-
rate D-tagatose from the insoluble salt. During the isomerization, the metal hydroxides
perform two functions: isomerizing D-galactose to D-tagatose and degrading D-galactose
into dicarbonyl compounds and acidic substances. This method has a high yield (>70%)
but includes the following disadvantages: severe D-galactose degradation leads to a re-
duction in the yield of D-tagatose, while the decrease in the quality of the syrup makes
the production of crystalline D-tagatose difficult; the removal of the degradation products
requires complex extraction steps; and a large number of metal hydroxides and acids are
consumed in the reaction, which ultimately has many negative impacts on the cost and the
environment. There are also other methods such as supercritical fluid (<24%) [22], triethy-
lamine (<34%), arginine (<16.8%) [23], hydrotalcite (<27%) [24], Sn-β zeolite (<26%), etc.
However, all of these non-enzymatic pathways have low D-tagatose yields [25]. Moreover,
these methods require reactions under extreme conditions, which can lead to increased
energy consumption and damage to substrates and products.

Biological methods use whole cells and isolated enzymes as catalysts. The advantages
of such methods include mild reaction conditions, environmental friendliness, few by-
products, and easy purification. Thus, the production of D-tagatose by biological methods
has advantages over chemical methods in many aspects. In biological methods, the lzumor-
ing strategy is often used to produce various rare sugars. This strategy uses different types
of enzymes including epimerase, oxidoreductase, and aldose–ketose isomerases to achieve
interconversion between monosaccharides and sugar alcohols [26]. D-tagatose can also
be produced by these three types of enzymes, including tagatose 4-epimerase, galactitol
dehydrogenase, and L-arabinose isomerase.

Tagatose 4-epimerase can epimerize D-fructose into D-tagatose. However, there are few
reports of enzymes with D-fructose epimeric activity at the C-4 position in nature. Therefore,
obtaining such enzymes by screening new ones or modifying old ones is the main work in
this production pathway. Shin et al. [27] developed a new tagatose 4-epimerase through
rational design and directed the evolution of the tagaturonate 3-epimerase from Thermotoga
petrophila. The modified enzyme exhibited 184-fold-higher epimeric activity towards D-
fructose compared to the original enzyme. Under optimal conditions of 80 ◦C, pH 8.5,
and 1.5 mM Ni2+, the enzyme was able to produce 213 g/L of D-tagatose from 700 g/L of
D-fructose within 2 h, with a conversion rate of 30%. Jeon et al. [28] expressed tagatose
4-epimerase from Thermotoga neapolitana in Corynebacterium glutamicum and improved the
enzyme expression level by optimizing plasmid copy numbers. Under conditions of 60 ◦C
and a specific amount of metal ions, the conversion rate reached 21.7%.

In contrast to isomerization reactions, redox reactions require cofactors. D-tagatose
is produced by oxidizing the C-2 position of D-galactitol using galactitol dehydroge-
nase (GDH). By coupling the cofactors NADH/NAD+ or NADPH/NADP+, this method
avoids unnecessary thermodynamic reaction equilibrium issues caused by aldose–ketose
isomerases and epimerase. The advantages of this pathway are low reaction temper-
atures and high conversion rates as well as independence from metal ions [29]. For
instance, Jagtap et al. [30] characterized galactitol dehydrogenase from Rhizobium legu-
menosarum with an optimal pH and temperatures of 9.5 and 35 ◦C, respectively. Generally,
D-galactitol is produced by chemical hydrogenation or one of several yeast organisms
from D-galactose [31], such as the oleaginous yeast Rhodosporidium toruloides IFO0880 [32].
However, due to the high cost of D-galactitol, this method is not currently suitable for large-
scale production. In addition, D-galactose can be converted into D-galactitol using xylose
reductase. On this basis, many researchers have developed the two-enzyme redox pathway
to convert D-galactose into D-tagatose. Zhang et al. [33] constructed a pathway in Bacillus
subtilis by introducing a heterologous xylose reductase and the identified RoGDH, and then
increased the yield of D-tagatose through promoter engineering and cofactor regeneration.
After 120 h, the final D-tagatose concentration reached 39.57 g/L and the conversion rate
was 55%. Liu et al. [34] used an engineered yeast strain with oxidation-reduction enzyme
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reactions. They deleted the gal1 gene encoding galactokinase and introduced heterologous
xylose reductase and galactitol dehydrogenase (GDH) to produce D-tagatose from lactose.
The engineered yeast can use lactose to produce D-glucose and D-galactose within its cells.
D-glucose was used for cell growth and maintenance, while D-galactose was converted
into D-tagatose. The final D-tagatose concentration reached 90%. However, this method
produced D-tagatose with a relatively low concentration (37.7 g/L), and the fermentation
cycle was long (300 h). Therefore, the two-enzyme redox pathway needs further research
and improvement for economic feasibility.

In addition to the Izumoring strategy, other non-Izumoring enzymatic technologies can
be used for the production of D-tagatose, such as the phosphorylation–dephosphorylation
cascade. This method can efficiently convert D-fructose into D-tagatose through a series
of enzymatic reactions. Lee et al. [35] successfully converted D-fructose into D-tagatose
through a three-step enzyme cascade reaction. This process required hexokinase, ATP,
D-fructose 1,6-bisphosphate aldolase, and phytase. Ultimately, it produced 0.8 M D-tagatose
from 1 M D-fructose in 16 h with a conversion rate as high as 80%. To further reduce costs,
Han et al. [36] successfully realized the production of D-tagatose using cheap starch as a
substrate. This pathway of multienzyme-catalyzed reaction contains α-glucan phosphory-
lase, phosphoglucomutase, phosphoglucose isomerase, tagatose 6-phosphate 4-epimerase,
and tagatose 6-phosphate phosphatase. In addition, the authors constructed an artificial
shell of the organosilicon network using an immobilization method and, finally, developed
a highly efficient and stable semi-artificial cell factory, with the final conversion rate of
D-tagatose exceeding 40.7%.

2. The Production of D-Tagatose by L-AIs

L-arabinose isomerase is a key enzyme in the microbial pentose phosphate pathway
and is considered an important biocatalyst in the production of rare sugars. This enzyme
isomerizes L-arabinose into L-ribulose. Due to the structural similarity between L-arabinose
and D-galactose, L-AIs can also isomerize D-galactose into D-tagatose [37]. A comparison
of different methods is shown in Table 1. Among these methods, the large-scale production
of D-tagatose by L-AIs utilizing D-galactose as a substrate is considered to be the most
economical and feasible solution. Advantages of this method include a low cost, mild
reaction conditions, high yields, and many enzyme sources.

Table 1. Comparison of different chemical and biological methods.

Methods Advantages Disadvantages Significance

Chemical methods Low cost
High temperature and

pressure; environmental
pollution; Low yield

D-galactose to
D-tagatose

Biological
methods

Tagatose 4-epimerase Low cost;
Mild reaction conditions

Low yield;
Rare sources

D-fructose to
D-tagatose

Galactitol
dehydrogenase

High yield;
Mild reaction conditions

High cost;
Need for cofactor

Rare sources

D-galactitol to
D-tagatose

L-arabinose isomerase

Low cost;
Mild reaction conditions;

High yield;
Many sources

Need for metal ions D-galactose to
D-tagatose

phosphorylation-
dephosphorylation

cascade

High yield;
Mild reaction conditions

Need for multiple enzymes
and steps;

Need for ATP

D-fructose or starch
to D-tagatose
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2.1. Molecular Structure and Catalytic Mechanism of L-AIs

The crystal structures of L-AIs from E. coli (PDB code: 2AJT) [38], Lactobacillus fermen-
tum CGMCC2921 (PDB code: 4LQL) [39], Geobacillus kaustophilus (PDB code: 4R1O), and
Thermotoga maritima MSB8 (PDB code: 7CWV) have been determined. Taking the L-AI from
E. coli (ECAI) as an example [40], it is a hexamer with a total molecular weight of 336 kDa.
Three asymmetric units of L-AI subunits form a trimer, as shown in Figure 4a. Two such
trimers stack together to form the complete hexamer. Each subunit contains three structural
domains: the N-terminal domain, the central domain, and the C-terminal domain. Within
the complete hexamer of ECAI, there are six active sites located at the monomer–monomer
interfaces (Figure 4a) and situated in the conjugate regions of adjacent subunits.
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The catalysis of D-galactose to D-tagatose by L-AIs follows the mechanism of enediol
intermediate formation [41]. Taking ECAI as an example (Figure 4b), the residues E306 and
E333 act as essential catalytic residues, while H350 and H450 stabilize the active site together
with manganese ions. During isomerization (Figure 4), the Oε2 of Glu306 nucleophilically
attacks the hydrogen atom of C-2 of D-galactose to deprotonate it and form a carbon–carbon
double bond. The carbon–oxygen double bond is broken to form an oxygen anion, which
combines with a proton to form an enediol intermediate; the Oε2 of Glu333 nucleophilically
attacks the hydroxyl hydrogen of C-2 of D-galactose to generate a carbon–oxygen double
bond at the C-2 position. This results in the cleavage of the carbon–carbon double bond
between C-1 and C-2, producing a carbon anion that combines with a proton, ultimately
yielding D-tagatose. This mechanism involves two proton transfers in D-galactose, one
from O-2 to O-1 and the other from C-2 to C-1.
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2.2. Properties of L-AIs

In order to efficiently produce D-tagatose, it is crucial to delve into the properties of
L-AIs from various sources. The enzyme comes from a wide range of microbial sources,
including Lactobacillus plantarum NC8 [42], Anoxybacillus flavithermus [43], Bacillus coagu-
lans NL01 [44], Pediococcus pentosaceus PC-5 [45], Clostridium hylemonae [46], Lactobacillus
sakei 23K [47], Lactobacillus fermentum CGMCC2921 [48], Bifidobacterium adolescentis [49],
Thermo toga maritima [50], Thermotoga neapolitana [51], Lactococcus lactis [52], Bacillus ther-
moglucosidasius [53], Arthrobacter species 22c [54], Shewanella species ANA-3 [55], Bacillus
licheniformis [56], Bacillus subtilis 168 [57], etc. The properties of these enzymes are shown
in Table 2. Currently, amino acid sequences for approximately a hundred microbial sources
of L-AIs are known, and these sequences share from about 40% to 60% or even higher
homologies [58].

Table 2. Properties of L-AIs from various microbial sources.

Microbial Source Temparature
Optima (◦C) pH Optima Metal Ion

Requirement
D-Tagatose
Yield (%)

kcat/KM
(mM−1 min−1)
(D-galactose)

Reference

Lactobacillus plantarum NC8 60 7.5 Mn2+, Co2+ 30 1.6 [42]
Anoxybacillus flavithermus 95 10.5 none 60 5.16 [43]
Bacillus coagulans NL01 60 7.5 Mn2+, Co2+ 32 1.0 [44]

Pediococcus pentosaceus PC-5 50 6.0 Mn2+, Co2+ 50 2.9 [45]
Clostridium hylemonae 50 7.5 Mg2+ 46 3.69 [46]
Lactobacillus sakei 23K 35 5 Mn2+, Mg2+ 36 10.3 [47]

Lactobacillus fermentum
CGMCC2921 65 6.5 Mn2+, Co2+ 55 9.02 [48]

Bifidobacterium adolescentis 55 6.5 Mn2+, Fe2+, Zn2+

Ca2+ 56.7 9.3 [49]

Thermotoga maritima 90 7.5 Mn2+, Co2+ 56 8.5 [50]
Thermotoga neapolitana 85 7.0 Mn2+, Co2+ 68 3.24 [51]

Lactococcus lactis 50 8.0 Mg2+, Mn2+,Co2+ 42.4 NA [52]
Bacillus thermoglucosidasius 40 7.0 Mn2+ 45.6 2.8 [53]

Arthrobacter species 22c 52 8.0 Mg2+, Mn2+, Ca2+ 30 0.14 [54]
Shewanella species ANA-3 15–35 5.5–6.5 Mn2+ 34 NA [55]

Bacillus licheniformis 50 7.5 Mn2+, Co2+ NA slight activity [56]
Bacillus subtilis 168 32 7.5 Mn2+ NA NA [57]

NA—Not Available.

L-AIs from different microbial sources have different optimal temperature ranges.
L-AIs sourced from mesophilic microorganisms exhibit optimal temperatures between
30 and 50 ◦C; those from thermophilic microorganisms have optimal temperatures rang-
ing from 50 to 80 ◦C; and L-AIs from hyperthermophilic microorganisms have optimal
temperatures exceeding 80 ◦C. Although L-AIs from hyperthermophiles have higher op-
timal temperatures and excellent thermal stability, their need for Co2+ to stabilize their
structure at ultrahigh temperatures limits their application in the food industry [59,60].
Therefore, in actual industrial applications, L-AIs from thermophilic microorganisms are
usually preferred.

L-AIs from different microbial sources exhibit variations in their optimal pH. Most
reported L-AIs display their maximum activity under neutral or alkaline conditions. How-
ever, L-AIs with an optimal pH in the weakly acidic range offer advantages in industrial
applications, including faster reaction rates and reduced by-product formation.

Metal ions play a crucial role in the activity and stability of L-AIs. Although not all
L-AIs necessarily rely on the divalent metal ions to maintain their activity [61], for most
L-AIs, divalent metal ions, especially Mn2+ and Co2+, are essential for exerting their activity
and maintaining thermal stability. Since Co2+ is not permitted in the food industry, the
addition of Mn2+ is more appropriate. Choi et al. [62] explored the structure of the L-AI
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from Geobacillus kaustophilus and found that the addition of Mn2+ transforms the L-AI
structure from low oligomers to complete hexamers, indicating the significant role of metal
ions in the oligomerization process. The authors also determined the melting temperatures
of the hexamers by differential scanning calorimetry (DSC) and showed that the complete
hexameric form is thermodynamically more stable.

Although most of the reported L-AIs were specific for L-arabinose and D-galactose, the
specificity for L-arabinose was significantly higher than that for D-galactose. However, there
are some exceptions. For example, the L-AIs from Bacillus subtilis 168 and Pseudoalteromonas
haloplanktis [63] showed unique substrate specificity exclusively for L-arabinose. In addition,
there are some enzymes classified as D-galactose isomerase because their optimal substrate
is D-galactose instead of L-arabinose, such as the L-AI from Bifidobacterium adolescentis.

In addition to L-AIs, various sugar phosphate isomerases are also general aldose-
ketose isomerases that can catalyze the biotransformation of non-phosphorylated monosac-
charides. Patel et al. [64] characterized the phosphoglucose isomerase from Pseudomonas
aeruginosa PAO1. This enzyme can also isomerize D-galactose to D-tagatose. The D-tagatose
yield was 56% and the optimal activity was observed at 60 ◦C and pH 7.

A high temperature and slightly acidic conditions are considered ideal conditions for
the efficient isomerization of D-galactose into D-tagatose. This is because the D-galactose
isomerization process requires a high Gibbs free energy (4.96 kJ/mol) [65]. Therefore, the
proper thermal conditions are necessary to overcome this energy barrier, which usually
requires high temperature conditions [37]. High temperature conditions provide several
advantages in this process. Firstly, within a specific range, higher temperatures lead to
faster reaction rates, favoring the production of D-tagatose and improving the conversion;
increasing the substrate solubility; reducing the viscosity of the reaction mixture, which
improves the mass transfer efficiency and makes the reaction more efficient; and causing
the risk of microbial contamination to be relatively low. However, it should be noted that
extremely high temperature conditions above 80 ◦C may cause browning of the product
and the generation of unnecessary by-products [66]. Therefore, the temperature range
between 60 ◦C and 80 ◦C is usually chosen for industrial production. D-tagatose exhibits
stability under acidic conditions and can remain relatively stable within the pH range of
3–7 [67], while side reactions will increase under alkaline conditions [68]. In addition, a
high temperature and high D-galactose concentration may result in a decrease in the pH
due to the Maillard reaction [69].

In conclusion, the L-AI from Lactobacillus sakei 23K showed optimal conditions at
a low temperature and under acidic conditions, making it particularly suitable for the
conversion of D-galactose to D-tagatose during the storage of milk and yogurt [70]. Xu et al.
screened the L-AI from Lactobacillus fermentum CGMCC2921 and found its optimum tem-
perature of 65 ◦C and the optimal pH of 6.5, which was within the range of suitability for
industrial applications.

2.3. Production of D-Tagatose Using Lactose as Raw Material

D-galactose can usually be easily obtained from raw materials containing lactose.
Therefore, it is necessary to combine lactose hydrolysis with the enzymatic isomerization
of D-galactose to D-tagatose. This process can be accomplished under optimal conditions
for hydrolysis and isomerization or through a one-pot method where hydrolysis and
isomerization are carried out simultaneously [71]. The stepwise method allows hydrolysis
and isomerization to be optimized separately under their respective optimal conditions,
but high concentrations of D-glucose and D-galactose can lead to feedback inhibition of
lactose hydrolysis, ultimately resulting in low conversion rates and yields. In such cases,
the one-pot method is more advantageous as it simplifies the operations and minimizes the
accumulation of D-galactose, thus improving the final yield of D-tagatose.

Furthermore, fully utilizing the residual D-glucose and D-galactose in the process
is also an important consideration. These residues are typically wasted, and the similar
physicochemical properties of D-galactose and D-tagatose introduce complex purification
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steps in downstream processes. These residual substances can serve multiple purposes.
They can be used as energy sources to sustain cell viability or further converted into other
products such as D-fructose and ethanol. Rhimi et al. [72] successfully co-expressed the
L-AI from Bacillus stearothermophilus US100 and D-glucose isomerase from Streptomyces SK
in E. coli to isomerize the remaining D-glucose into D-fructose. Zheng et al. [73] expressed
the L-AI from Bacillus coagulans NL01 in E. coli and combined it with self-expressed β-
galactosidase for the crude enzyme conversion of lactose at 50 ◦C, and then the residual D-
glucose and D-galactose were further fermented to bioethanol using Saccharomyces cerevisiae
NL22. This approach enhanced the ethanol production competitiveness and simplified the
purification process of D-tagatose. Zhang et al. [74] utilized cheese whey for D-tagatose-
production through whole-cell biotransformation in E. coli. Then, they fermented the
residual D-glucose and D-galactose into D-arabitol and D-galactitol using Metschnikowia
pulcherrima E1 yeast to maximize the conversion of lactose in the cheese whey into three
high-value rare sugars (Figure 5).
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3. Strategies for Improving the Production of D-Tagatose by L-AIs

There are several strategies to improve the production of D-tagatose, including protein
engineering [75], immobilization, and the application of chemicals. (Figure 6).

3.1. Protein Engineering

To improve the catalytic activity and substrate specificity towards D-galactose, mod-
ifications are typically performed on L-AIs. Usually, the natural substrate of L-AIs is
L-arabinose, whose catalytic efficiency is much higher than that of D-galactose, and some
even have no isomerizing activity towards D-galactose. This discrepancy may be attributed
to the larger size of D-galactose compared to L-arabinose, as D-galactose has six carbon
atoms instead of five. Therefore, it is necessary to modify the binding pocket of L-AIs
to improve their substrate specificity for D-galactose. Jayaraman et al. [76] increased the
isomerase activity of D-galactose by replacing the bulky Phe residue with a smaller hy-
drophilic residue in the L-AI from the Shewanella species ANA-3. Laksmi et al. [77] modified
the binding pocket of the L-AI from Geobacillus stearothermophilus by selecting residues that
would not significantly affect its affinity for mutation and, finally, obtained the high-affinity
mutant H18T. Its catalytic efficiency was 1.45 times that of the wild type, significantly
increasing its ability to bind to D-galactose. Kim et al. [78] conducted molecular docking
of the L-AI from Geobacillus thermodenitrificans and D-galactose. They identified three key
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residues near D-galactose O-6: Met186, Phe280, and Ile371. Through site-directed mu-
tagenesis of these residues, they obtained the F280N variant enzyme, which exhibited
approximately 2.3-times-higher D-galactose isomerization activity. In addition to rational
modifications, Kim et al. [79] used error-prone PCR technology to irrationally transform
the L-AI from Geobacillus stearothermophilus and successfully screened out the mutant en-
zyme M322V/S393T/V408A. It exhibited 1.9 times the D-galactose isomerization activity
compared to that of the wild type enzyme under optimal conditions.

Isomerization reactions are reversible reactions affected by thermodynamics, meaning
that the enzyme catalyzes both the substrate and the product. The proportion of the
products no longer changes after reaching chemical equilibrium. This chemical equilibrium
is related to the temperature. The isomerization reaction from D-galactose to D-tagatose is a
heat-absorbing reaction, which means that increasing the temperature favors the conversion
to D-tagatose. Most L-AIs are multimers, including dimers, tetramers, and hexamers.
Previous research has indicated that hyperthermophilic L-AIs tend to form tetramers,
while thermophilic L-AIs form hexamers [37]. Zhao et al. [80] obtained an engineered
thermostable sucrose synthase (mutant M4) from Nitrosospira multiformi by using computer-
assisted engineering. It exhibited significant improvements in thermal stability during UDP-
glucose synthesis. This enhancement was attributed to the newly formed assembly interface
of hydrophobic interactions in the tetramer mutant, which can result in a more compact
subunit arrangement. Han et al. [81] categorized the L-AI family into two subfamilies
based on the presence or absence of an α-helix at the C-terminus. They observed that the
three α-helices of L-AIs in a trimer interact through a hydrogen bond network, which may
make the entire enzyme more stable. Then, they introduced nine different α-helices at the
C-terminus of the L-AI from Lactobacillus fermentum CGMCC2921. Among them, mutant
no. 4 significantly improved its thermal stability during the catalytic process.
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The industrial production of D-tagatose requires pH values between 5.0 and 6.0.
However, most of the reported L-AIs exhibited their maximum activity under neutral or
alkaline conditions. Therefore, lowering the optimum pH and increasing their stability in
acidic conditions become particularly important. Xu et al. [82] replaced the aspartic acid
residue with alkaline residues in the L-AI from Lactobacillus fermentum CGMCC2921, which
significantly altered the optimum pH. Among these mutants, the D268K/D269K/D299K
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variant exhibited optimal activity at pH 5.0 and demonstrated a broader optimum pH
range from 4.5 to 6.0. Rhimi et al. [83] constructed the Bacillus stearothermophilus US100
mutant Q268K through sequence alignment with the L-AI from A. acidocaldarius. Its optimal
pH was reduced from 7.5–8.0 to 6.0–6.5. This mutant enzyme exhibited improved stability
under acidic conditions compared to the wild type enzyme.

3.2. Immobilization

Immobilized L-AIs provide a stable and economical method for the industrial pro-
duction of D-tagatose because the reaction requires high temperature conditions and the
long-term recovery and reuse of the enzyme. Immobilization can enhance the biochemical
properties of L-As, including their optimum temperature and stability, thereby improving
their performance in industrial applications. Liang et al. [84] overexpressed the L-AI from
Thermoanaerobacter mathranii and immobilized it in calcium alginate beads. The optimal
conditions for the immobilized enzyme were changed from pH 8.0 and 60 ◦C for the free
enzyme to pH 7.5 and 75 ◦C. Bortone et al. [85] immobilized the L-AI from Thermotoga
maritima on beads of copper-chelate epoxy supports (Eu-Cu). This method stabilized
the multi-subunit structure and improved its stability by reacting (His)6-tagged enzyme
with epoxy groups to form covalent linkages and copper ions capable of physically ad-
sorbing protein. The immobilized derivatives were post-treated with mercaptoethanol to
remove residual copper ions that could affect their activity, thus further enhancing their
biocatalytic activity.

Surface display systems immobilize enzymes on the surface of microbial cells to
improve their catalytic activity and stability. Bacillus subtilis is an ideal strain for food-grade
surface display systems because of its well-established genetic information, structural
features, and advanced genetic modification techniques. Liu et al. [86] displayed the L-AI
from Lactobacillus CGMCC2921 on the spore surface of Bacillus subtilis 168 with the anchor
protein CotX to produce the fusion protein CotX-AI. This fusion protein was used for the
production of D-tagatose, and the optimal temperature for the anchored L-AI reached 70 ◦C.
Guo et al. [87] displayed the L-AI from Lactobacillus brevis on the spore surface of Bacillus
subtilis DB403 using the anchor protein CotG and a peptide linker (Gly-Gly-Gly-Gly-Ser).
The anchored L-AI showed excellent thermal stability with an optimal temperature of
67 ◦C, maintaining over 90% relative activity at temperatures between 60 ◦C and 70 ◦C,
and over 60% relative activity at 80 ◦C.

3.3. Application of Chemicals

Jebors et al. [88] studied the interactions between supramolecular systems and various
proteins. They discovered that adding 1 mM Noria and 1 mM NoriaPG (novel derivatives
of Noria) did not significantly alter the enzymatic activity of the L-AI from Lactobacillus
sakei, but did greatly increase its stability in low-pH and high-temperature conditions.

Traditional protein engineering methods have difficulty in directly altering the conver-
sion equilibrium between substrates and products, as they are primarily controlled by the
reaction temperature. Therefore, to achieve higher conversion rates, other strategies need to
be adopted [89]. One approach to shift the reaction equilibrium is adding boric acid to the
reaction mixture. Boric acid has a much higher affinity for ketose than aldose. Due to the
ketose-rich nature of D-tagatose, it can form complexes with boric acid and then dissociate
from the reaction system. This disrupts the reaction equilibrium, driving the reaction
towards production and significantly increasing the final product yield. Lim et al. [90] used
a mutated enzyme of the L-AI from Geobacillus thermodenitrificans and added boric acid
under optimal conditions to react with 300 g/L D-galactose for 20 h, resulting in 230 g/L
D-tagatose. The yield and conversion rate were 1.5 times higher and 24% higher than
without boric acid.
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3.4. Membrane Selection Difference

Another strategy to alter the reaction equilibrium is to utilize the selectivity of the
cell membrane. The cell membrane separates substrates and products from enzymes
coupled with membrane selectivity, which results in different concentrations of substrates
and products inside and outside the cell, thus changing the reaction equilibrium. Kim
et al. [91] showed that the cellular uptake of D-galactose was twice as fast as the uptake
rate of D-tagatose, whereas the release of D-tagatose was 4.4 times faster than the rate of
D-galactose release. This difference shifted the reaction equilibrium towards the production
of D-tagatose, thereby increasing the yield of D-tagatose. Finally, the strategy resulted in a
68% D-tagatose yield at 37 ◦C compared to the 36% D-tagatose yield of purified L-AI.

3.5. Multiple Strategy Combinations

Usually, modifications to L-AIs are directed at only one aspect, including enhancing
enzyme stability, substrate specificity for D-galactose, catalytic activity, and altering the
equilibrium. Simultaneously improving the stability, thermodynamics, and kinetics is
the direction required to enhance the industrial potential of L-AIs. For example, the
use of permeabilized cells in whole-cell catalysis can offer multiple benefits. Firstly, it
can provide a stable environment so that intracellular enzymes can perform catalytic
functions under more favorable conditions, thereby improving their catalytic efficiency
and stability. Secondly, permeabilized cells allow small and large molecular substrates to
freely enter and exit the cells, enhancing the mass-transfer efficiency. Shin et al. [92] used
Corynebacterium glutamicum to express the L-AI from Geobacillus thermodenitrificans. The
activity of permeabilized Corynebacterium glutamicum cells treated with Triton X-100 was
2.1 times higher than that of untreated cells. Bober et al. [93] encapsulated the L-AI from
Lactobacillus sakei into chemically permeabilized Lactobacillus plantarum, which not only
improved the stability of the enzyme but also changed the properties of the cell membrane.
This approach allowed D-galactose to preferentially enter the cell, thereby changing the
reaction equilibrium. Finally, treatment with the chemical permeant SDS was also used to
maintain cell membrane selectivity and improve the mass transfer efficiency. The reaction
ultimately proceeded at high rates, high conversion rates, and high temperatures.

4. Prospects

In the future, the production of D-tagatose must develop in a sustainable direction.
Waste utilization will play a crucial role in reducing high costs and achieving zero waste.
D-galactose is an abundant carbohydrate monomer in nature and is widely found in large
algae, plants, and dairy waste. Among these, D-galactose from dairy waste is particularly
suitable as a raw material for the enzymatic production of purified value-added food
ingredients [94]. Dairy industry by-products such as whey have been developed as a low-
cost and attractive raw material, containing up to 75% lactose [95]. In addition to lactose,
Kim et al. [96] utilized onion juice residue (OJR) as a substrate to produce D-tagatose. Sha
et al. [97] produced D-galactitol by chemically hydrogenating waste xylose mother liquor
and further produced D-tagatose by biologically oxidizing D-galactitol. These strategies
made full use of carbon sources, reduced costs, and minimized waste generation, driving
the production of D-tagatose in a more sustainable and efficient direction.

Despite the widespread application of L-AIs in the production of D-tagatose, there are
still some problems and challenges involved. These include a low conversion efficiency, the
requirement for metal ions, insufficient thermal stability, and a relatively low affinity for
D-galactose. Furthermore, the tetramer structures of thermophilic and hyperthermophilic
L-AIs remain unresolved. Addressing these structures is necessary to better understand
the interactions between D-galactose and L-AIs as well as the relationship between L-Ais’
structures and functions. In addition, protein engineering and genomic tools should be used
more extensively to alter the functional properties of L-AIs, thereby improving D-tagatose
production efficiency.
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To ensure safety, researchers have started to explore ways to express L-AIs in food-
grade hosts. Typically, L-AI expression is conducted in non-GRAS microorganisms such
as E. coli. However, recombinant E. coli cells may cause safety issues due to the presence
of endotoxins. Therefore, researchers are attempting to express L-AIs in GRAS microor-
ganisms. Examples of these include Lactobacillus plantarum [98], Bacillus subtilis [99], and
Corynebacterium glutamicum. In addition, antibiotics are not allowed in the food industry.
Zhang et al. [100] successfully produced D-tagatose in recombinant Bacillus subtilis whole
cells by constructing a heterologous gene expression system that did not require additional
antibiotics. These methods are expected to be more widely used in the food industry in the
future to meet safety and quality requirements.
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