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Abstract: The synthesis of 2-aminoquinazoline derivatives is achieved by using hydrochloric acid as
a mediator in the [4+2] annulation reaction between N-benzyl cyanamides and 2-amino aryl ketones.
In addition, 2-amino-4-iminoquinazolines are synthesized by the reaction of 2-aminobenzonitriles,
instead of 2-amino aryl ketones, with N-benzyl cyanamides. A wide range of substrates can be
used and high yields are obtained, demonstrating the practicality of this method for the synthesis of
2-aminoquinazoline derivatives.
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1. Introduction

Quinazoline is a heterocyclic aromatic scaffold that possesses significant biological
and pharmaceutical properties [1,2]. This structure is known for its anti-inflammatory [3,4],
antibacterial [5,6], antiviral [7], antimalarial [8,9], and anticancer activities [10–12]. Figure 1
highlights some quinazoline-based drugs that are in clinical use [13–15].
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Figure 1. Representative drug molecules containing quinazoline skeleton.

Various methods have been reported for the synthesis of quinazolines [16–21]. Classical
synthetic approaches to the quinazoline scaffold include Pd-catalyzed cyclization [22–24], Ru-
catalyzed C-H activation/annulation [25–28] and Cu-catalyzed oxidative functionalization
reactions; these routes start from amidines, aromatic amines, or nitrile compounds [29–32].
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Although there are many routes for the synthesis of quinazoline compounds, meth-
ods for the direct synthesis of 2-aminoquinazolines are still relatively rare. Because 2-
aminoquinazolines have important medicinal properties, the development of new strategies
to obtain 2-aminoquinazoline derivatives is desirable from simple substrates. For exam-
ple, Dyke and co-workers explored the multi-step preparation of pharmacologically active
quinazoline derivatives from 2-aminoacetophenone and trichloroacetyl chloride, albeit with
low yields (Scheme 1a) [33]. Subsequently, a two-step method for the synthesis of quinazo-
lines was reported by the Palakodety group. This reaction began with 2-aminobenzonitriles,
which underwent a reaction with aryl Grignard reagents to form ortho-Aminoketimines.
These intermediates were submitted to alkaline conditions to constructed N,4-disubstituted
quinazolines. (Scheme 1b) [34]. In addition, Neuville et al. developed a copper-promoted
one-pot three-component domino reaction of 2-aminoquinazolines involving cyanamides,
aryl boronic acids, and amines (Scheme 1c) [35]. Inspired by these works and our pre-
vious studies [36], herein, we report a hydrochloric acid-mediated [4+2] annulation for
the efficient synthesis of 2-aminoquinazoline derivatives from o-aminoaryl ketones and
N-benzyl cyanamide. Furthermore, 2-amino-4-iminoquinazoline derivatives are formed
by the reaction of 2-aminobenzonitriles instead of o-aminoaryl ketones with N-benzyl
cyanamides (Scheme 1d).
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Scheme 1. Strategies for access to 2-aminoquinazolines.

2. Results and Discussion

2-Aminoacetophenone (1a) and N-benzyl cyanamide (2a) were chosen as model sub-
strates to optimize the reaction conditions (Table 1). Fortunately, the desired product
N-benzyl-4-methylquinazolin-2-amine (3aa) was obtained in a 57% yield with MsOH as
an additive in HFIP at 90 ◦C for 1 h (Entry 1). Encouraged by this result, we sought to
optimize the reaction conditions to improve the reaction yield (Table 1). Several additives,
solvents, and temperatures were examined, and the results are summarized in Table 1. The
yield of 3aa was increased to 73% when the reaction was carried out in the presence of
hydrochloric acid (Entry 13). Various additives were screened (Entries 1–12), and concen-
trated hydrochloric acid was identified as the optimal mediator. When no additive was
introduced, the target product was not obtained (Entry 14); therefore, the additive played
an important role in this reaction. Next various solvents were investigated. Although other
solvents (EtOAc, iPrOH, MeOH, CH3CN, ethanol, H2O, Et2O and dioxane) were tested,
HFIP was found to be the best solvent for the reaction (Entries 15–22). Temperature screen-
ing confirmed that 70 ◦C was appropriate for this reaction (Entries 23–26). Next, the amount
of hydrochloric acid and the reaction time were examined. The reaction proceeded with
an 85% yield when only 2.0 equivalents of hydrochloric acid were used (Entries 27–29)),
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and the yield of 3aa decreased with increasing reaction time (Entry 30). The information of
spectral copies of 1HNMR, and 13CNMR can refer to Supplementary Material.

Table 1. Optimization of the reaction conditions a.
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With the optimal reaction conditions for the synthesis of 3aa at hand, we explored the
substrate scope of the N-benzyl cyanamide (2a), as shown in Scheme 2. It is noteworthy
that the electronic properties of the substituents on the aromatic ring system had little
effect on the efficiency of this reaction. N-benzyl cyanamides with electron-neutral (H),
electron-donating (2-Me, 3-Me, 3,4-dimethyl., 2-OMe, 3-OMe, 4-OMe, 3,4-(OCH2O)-),
and halogen-substituted (4-F, 3-Cl, 2-Br, 3-Br, 4-I) groups attached to the benzene ring
were smoothly transformed into their corresponding products in good to excellent yields
(60–92%; 3aa–3am). The substrate with an electron-withdrawing (4-CN) group on its
benzene ring was transformed into the corresponding product in good yield (60%; 3an).
Additionally, moderate to good yields were obtained for heteroaromatic (2-thienyl) group
substrates (68%; 3ao). To our satisfaction, a substrate containing a sterically hindered
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2-naphthyl group was converted into the desired product (3ap) in high yield (84%). The
structure of 3aa was identified by single-crystal X-ray diffraction (CCDC:2294005).
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Encouraged by these results described above, next, we examined the scope of 2-amino
aryl ketones (1) (Scheme 3). As expected, Substrate (1) substituted at either the 4- or 5-
position was effective under the reaction conditions. Substrate (1) with electron-donating
(1,3-benzodioxole) or electron-withdrawing (6-Br, 6-I, and 6-(3-MeOC6H4) groups attached
to the benzene ring were transformed into their corresponding products in good to high
yields (3ba–3fa; 50–84%). 2-Aminobenzaldehyde (1g), (2-aminophenyl)(phenyl)methanone
(1h) and (2-aminophenyl)(4-fluorophenyl)methanone (1i) substrates were well-tolerated by
the reaction, affording the desired products (3ga–3ia) in 62–77% yields.

To our satisfaction, when 2-aminoacetophenone was accidentally replaced with 2-
aminobenzonitrile, 3-benzyl-4-imino-3,4-dihydroquinazolin-2-amine (5aa) was obtained.
We further investigated the substrate scope of N-benzyl cyanamides (Scheme 4). As shown
in the table, unsubstituted 2-aminobenzonitrile offered a 75% isolated yield of 5aa, Substrate
(2) with electron-donating (2-Me and 2-OMe) and electron-withdrawing (6-F and 6-Cl)
groups attached to the benzene ring was transformed smoothly into the corresponding
products in good to high yields (5ab–5ae; 55–80%). Notably, even when the substrate
contained a sterically hindered 2-naphthyl group, the desired product (5af) was obtained
in a 66% yield. For 2-aminobenzonitriles bearing an electron-donating 4-Me group and a
4-Cl group, the reaction performed well, affording the desired products (5ag–5ah) in 70
and 72% yields, respectively. In addition, the structure of compound 5ab was determined
by X-ray crystallographic analysis (CCDC:2294029) (Tables S1 and S2).
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On the basis of these results, a plausible mechanism was proposed for the formation
of 2-aminoquinazolines (Scheme 5). Initially, N-benzyl cyanamide (2a) was protonated
under acidic conditions (forming 2a′), which increases the electrophilic character of the
cyanamide carbon. This allowed the amino group of 1a the attack on the protonated
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cyanogen group, forming the amidine intermediate A, which underwent isomerization,
leading to intermediate B. Intermediate B underwent intramolecular cyclization through
nucleophilic addition of the amino group to the carbonyl group, transforming into C. Finally,
intermediate C was converted to the desired product, 2-aminoquinazoline 3aa, through an
aromatization reaction with the elimination of H2O. The mechanism for the preparation
of 5aa from 2a and 2-aminobenzonitrile (4a) differs from the above mechanism. First,
the amino group of 2-aminobenzonitrile 4a attacks the electrophilic carbon of 2a′ to form
amidine intermediate D. Then, intermediate D undergoes intramolecular cyclization into E
through nucleophilic addition, which transforms into 5aa by intramolecular isomerization.
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3. Conclusions

In summary, we developed a hydrochloric acid-mediated [4+2] annulation synthesis
of 2-aminoquinazoline derivatives from N-benzyl cyanamides and 2-amino aryl ketones.
In addition, 2-amino-4-iminoquinazolines were produced from the reaction of N-benzyl
cyanamides with 2-aminobenzonitriles. These reactions tolerate a wide range of substrates
and exhibit good functional group tolerance. Further studies on this method for the
synthesis of biologically active compounds are in progress in our laboratory.

4. Experimental Section

General Information. Unless otherwise noted, all commercially available compounds
were used as provided without further purification. TLC analysis was performed using
precoated glass plates. For column chromatography, a 200–300 mesh silica gel was used. 1H
NMR spectra were determined at 25 ◦C on a 500 or a 600 MHz spectrometer. 13C{1H} NMR
spectra were determined at 25 ◦C on a 125 or a 150 MHz spectrometer (Bruker AVANCE II
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500 and Bruker AVANCE III 600, Billerica, MA, USA). Chemical shifts are given in ppm
relative to the internal standard of tetramethyl silane (TMS). HRMS were obtained by using
UPLC G2-XS QTof MS equipped with an ESI source. Melting points were determined using
an XT-4 apparatus and not corrected. 1H NMR chemical shifts were referenced to CDCl3
(TMS, 7.26 ppm). 13C NMR chemical shifts were referenced to CDCl3 (TMS, 77.00 ppm).

General procedure for the synthesis of 3aa: The mixture of 2-Aminoacetophenone 1a
(135.2 mg, 1.0 mmol), N-benzyl cyanamide 2a (198.3 mg, 1.5 mmol) and hydrochloric acid
(72.9 mg, 2.0 mmol) was soluted in HFIP (5 mL). Then, the resulting mixture was stirred at
70 ◦C for 1 h. The residue was extracted with ethylacetate, the organic layer was washed
with brine and dried over Na2SO4. The solvent was removed under reduced pressure and
the residue was purified by silica gel column chromatography. Product 3aa was obtained
in an 85% yield (211.8 mg).

General procedure for the synthesis of 5aa: The mixture of 2-Aminobenzonitrile 4a
(118.1 mg, 1.0 mmol), N-benzyl cyanamide 2a (198.3 mg, 1.5 mmol) and hydrochloric acid
(72.9 mg, 2.0 mmol) was soluted in HFIP (5 mL). Then, the resulting mixture was stirred at
70 ◦C for 1 h. After the disappearance of the reactant (monitored by TLC), the residue was
extracted with ethylacetate 3 times (3 × 50 mL), the organic layer was washed with brine
and dried over anhydrous Na2SO4. The solvent was removed under reduced pressure and
the residue was purified by silica gel column chromatography. Product 5aa was obtained
in a 75% yield (188.5 mg).

4.1. N-Benzyl-4-methylquinazolin-2-amine (3aa)

Yield 85% (211.8 mg); Rf (Pet/EtOAc; 6:1) 0.25; white solid; m.p. 116–118 ◦C; 1H NMR
(500 MHz, CDCl3): δ (ppm) 7.85 (d, J = 8.3 Hz, 1H), 7.66–7.59 (m, 2H), 7.41 (d, J = 7.5 Hz,
2H), 7.33 (t, J = 7.5 Hz, 2H), 7.26 (t, J = 8.5 Hz, 1H), 7.22 (t, J = 8.0 Hz, 1H), 5.48 (s, 1H),
4.77 (d, J = 6 Hz, 2H), 2.76 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3): δ (ppm) 169.5, 158.8,
151.9, 139.4, 133.6, 128.5, 127.7, 127.2, 126.3, 125.3, 122.3, 119.8, 45.6, 21.6; HRMS (ESI): m/z
[M+H]+ calcd for C16H16N3: 250.1344; found: 250.1343.

4.2. 4-Methyl-N-(2-methylbenzyl)quinazolin-2-amine (3ab)

Yield 92% (242.1 mg); Rf (Pet/EtOAc; 8:1) 0.25; white solid; m.p. 145–146 ◦C; 1H NMR
(500 MHz, CDCl3): δ (ppm) 7.85 (d, J = 8.0 Hz, 1H), 7.66–7.60 (m, 2H), 7.37 (d, J = 6.5 Hz, 1H),
7.23–7.15 (m, 4H), 5.31 (s, 1H), 4.73 (d, J = 5.5 Hz, 2H), 2.76 (s, 3H), 2.41 (s, 3H); 13C{1H} NMR
(125 MHz, CDCl3): δ (ppm) 169.5, 158.7, 151.9, 137.0, 136.5, 133.6, 130.4, 128.4, 127.4, 126.3,
126.1, 125.3, 122.3, 119.8, 43.7, 21.6, 19.1; HRMS (ESI): m/z [M+H]+ calcd for C17H18N3:
264.1501; found: 264.1497.

4.3. 4-Methyl-N-(4-methylbenzyl)quinazolin-2-amine (3ac)

Yield 87% (228.9 mg); Rf (Pet/EtOAc; 8:1) 0.30; white solid; m.p. 119–120 ◦C; 1H NMR
(500 MHz, CDCl3): δ (ppm) 7.84 (d, J = 8.0 Hz, 1H), 7.65–7.59 (m, 2H), 7.29 (d, J = 8.0 Hz,
2H), 7.22 (t, J = 8.0 Hz, 1H), 7.13 (d, J = 7.5 Hz, 2H), 5.44 (s, 1H), 4.72 (d, J = 5.5 Hz, 2H),
2.75 (s, 3H), 2.33 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3): δ (ppm) 169.5, 158.8, 151.9, 136.8,
136.3, 133.6, 129.2, 127.7, 126.3, 125.3, 122.2, 119.8, 45.4, 21.6, 21.1; HRMS (ESI): m/z [M+H]+

calcd for C17H18N3: 264.1501; found: 264.1505.

4.4. N-(3,4-Dimethylbenzyl)-4-methylquinazolin-2-amine (3ad)

Yield 79% (179.5 mg); Rf (Pet/EtOAc; 8:1) 0.30; white solid; m.p. 109–110 ◦C; 1H NMR
(500 MHz, CDCl3): δ (ppm) 7.85 (d, J = 7.7 Hz, 1H), 7.66–7.60 (m, 2H), 7.22 (t, J = 8.0 Hz, 1H),
7.18 (s, 1H), 7.14 (d, J = 7.5 Hz, 1H), 7.09 (d, J = 7.7 Hz, 1H), 5.45 (s, 1H), 4.69 (d, J = 5.7 Hz,
2H), 2.76 (s, 3H), 2.24 (s, 6H); 13C{1H} NMR (125 MHz, CDCl3): δ (ppm) 169.5, 158.8, 151.9,
136.7, 136.7, 135.4, 133.6, 129.8, 129.1, 126.2, 125.3, 125.2, 122.2, 119.8, 45.4, 21.6, 19.7, 19.4;
HRMS (ESI): m/z [M+H]+ calcd for C18H20N3: 278.1657; found: 278.1659.
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4.5. N-(2-Methoxybenzyl)-4-methylquinazolin-2-amine (3ae)

Yield 80% (223.3 mg); Rf (Pet/EtOAc; 4:1) 0.35; white solid; m.p. 134–135 ◦C; 1H NMR
(500 MHz, CDCl3): δ (ppm) 7.82 (d, J = 8.0 Hz, 1H), 7.64–7.58 (m, 2H), 7.42 (d, J = 7.5 Hz,
1H), 7.26–7.16 (m, 2H), 6.91–6.87 (m, 2H),5.62 (s, 1H), 4.76 (d, J = 6.0 Hz, 2H), 3.87 (s, 3H),
2.74 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3): δ (ppm) 169.3, 158.9, 157.7, 152.0, 133.5, 129.6,
128.4, 127.4, 126.2, 125.2, 122.0, 120.4, 119.7, 110.1, 55.3, 41.1, 21.6; HRMS (ESI): m/z [M+H]+

calcd for C17H18N3O: 280.1450; found: 280.1454.

4.6. N-(3-Methoxybenzyl)-4-methylquinazolin-2-amine (3af)

Yield 77% (214.9 mg); Rf (Pet/EtOAc; 4:1) 0.30; white solid; m.p. 125–126 ◦C; 1H NMR
(500 MHz, CDCl3): δ (ppm) 7.85 (d, J = 9.0 Hz, 1H), 7.66–7.59 (m, 2H), 7.24–7.20 (m, 2H),
7.00–6.97 (m, 2H), 6.80 (d, J = 8.0 Hz, 1H), 5.47 (s, 1H), 4.75 (d, J = 6.0 Hz, 2H), 3.79 (s, 3H),
2.76 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3): δ (ppm) 169.5, 159.8, 158.8, 151.9, 141.0, 133.6,
129.5, 126.3, 125.3, 122.3, 120.0, 119.9, 113.2, 112.7, 55.3, 45.6, 21.6; HRMS (ESI): m/z [M+H]+

calcd for C17H18N3O: 280.1450; found: 280.1450.

4.7. N-(4-Methoxybenzyl)-4-methylquinazolin-2-amine (3ag)

Yield 90% (251.2 mg); Rf (Pet/EtOAc; 4:1) 0.25; white solid; m.p. 97–98 ◦C; 1H NMR
(500 MHz, CDCl3): δ (ppm) 7.84 (d, J = 8.0 Hz, 1H), 7.66–7.59 (m, 2H), 7.32 (d, J = 8.5 Hz,
2H), 7.26–7.19 (m, 1H), 6.88–6.84 (m, 2H), 5.46 (s, 1H), 4.68 (d, J = 5.5 Hz, 2H), 3.78 (s, 3H),
2.75 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3): δ (ppm) 169.4, 158.8, 158.7, 151.9, 133.6, 131.4,
129.0, 126.2, 125.3, 122.2, 119.8, 113.9, 55.3, 45.1, 21.5; HRMS (ESI): m/z [M+H]+ calcd for
C17H18N3O: 280.1450; found: 280.1452.

4.8. N-(Benzo[d][1,3]dioxol-5-ylmethyl)-4-methylquinazolin-2-amine (3ah)

Yield 60% (175.9 mg); Rf (Pet/EtOAc; 4:1) 0.30; white solid; m.p. 110–111 ◦C; 1H NMR
(500 MHz, CDCl3): δ (ppm) 7.85 (d, J = 6.5 Hz, 1H), 7.66–7.59 (m, 2H), 7.22 (t, J = 6.5 Hz,
1H), 6.91 (s, 1H), 6.86 (d, J = 6.5 Hz, 1H), 6.76 (d, J = 7.0 Hz, 1H), 5.92 (s, 2H), 5.47 (s, 1H),
4.66 (d, J = 5.0 Hz, 2H),2.76 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3): δ (ppm) 169. 6, 158.6,
151.7, 147.7, 146.7, 133.6, 133.2, 126.2, 125.3, 122.3, 120.9, 119.8, 108.4, 108.2, 100.9, 45.3, 21.6;
HRMS (ESI): m/z [M+H]+ calcd for C17H16N3O2: 294.1243; found: 294.1235.

4.9. N-(4-Fluorobenzyl)-4-methylquinazolin-2-amine (3ai)

Yield 90% (240.4 mg); Rf (Pet/EtOAc; 5:1) 0.30; white solid; m.p. 109–110 ◦C; 1H
NMR (500 MHz, CDCl3): δ (ppm) 7.86 (d, J = 9.0 Hz, 1H), 7.65 (t, J = 7.5 Hz, 1H), 7.60
(d, J = 8.0 Hz, 1H), 7.39–7.36 (m, 2H), 7.23 (t, J = 8.0 Hz, 1H), 7.00 (t, J = 9.0 Hz, 2H), 5.46 (s,
1H), 4.73 (d, J = 6.0 Hz, 2H), 2.76 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3): δ (ppm) 169.6,
163.0, 161.1, 158.6, 151.8, 135.2, 129.4, 126.3, 125.3, 122.4, 119.9, 115.4, 44.8, 21.6; HRMS (ESI):
m/z [M+H]+ calcd for C16H15N3F: 268.1250; found: 268.1254.

4.10. N-(3-Chlorobenzyl)-4-methylquinazolin-2-amine (3aj)

Yield 86% (243.5 mg); Rf (Pet/EtOAc; 5:1) 0.30; white solid; m.p. 115–116 ◦C; 1H
NMR (500 MHz, CDCl3): δ (ppm) 7.85 (d, J = 8.5 Hz, 1H), 7.66–7.58 (m, 2H), 7.40 (s, 1H),
7.28–7.20 (m, 4H), 5.60 (s, 1H), 4.75 (d, J = 6.0 Hz, 2H), 2.76 (s, 3H); 13C{1H} NMR (125 MHz,
CDCl3): δ (ppm) 169.6, 158.6, 151.7, 141.7, 134.3, 133.7, 129.7, 127.7, 127.2, 126.3, 125.7,
125.3, 122.4, 119.9, 44.9, 21.6; HRMS (ESI): m/z [M+H]+ calcd for C16H15N3Cl: 284.0955;
found: 284.0952.

4.11. N-(2-Bromobenzyl)-4-methylquinazolin-2-amine (3ak)

Yield 74% (242.0 mg); Rf (Pet/EtOAc; 8:1) 0.25; white solid; m.p. 141–142 ◦C; 1H
NMR (500 MHz, CDCl3): δ (ppm) 7.84 (d, J = 8.0 Hz, 1H), 7.65–7.53 (m, 4H), 7.26–7.20
(m, 2H), 7.12 (t, J = 7.5 Hz, 1H), 5.67 (s, 1H), 4.84 (d, J = 6.5 Hz, 2H), 2.75 (s, 3H); 13C{1H}
NMR (125 MHz, CDCl3): δ (ppm) 169.6, 158.6, 151.8, 138.5, 133.6, 132.7, 130.0, 128.69, 127.4,
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126.3, 125.2, 123.8, 122.4, 119.9, 45.6, 21.6; HRMS (ESI): m/z [M+H]+ calcd for C16H15N3Br:
328.0449; found: 328.0450.

4.12. N-(3-Bromobenzyl)-4-methylquinazolin-2-amine (3al)

Yield 79% (258.4 mg); Rf (Pet/EtOAc; 8:1) 0.30; white solid; m.p. 114–115 ◦C; 1H NMR
(500 MHz, CDCl3): δ (ppm) 7.85 (d, J = 9.0 Hz, 1H), 7.67–7.54 (m, 3H), 7.37 (d, J = 8.0 Hz,
1H), 7.32 (d, J = 7.5 Hz, 1H), 7.22 (t, J = 8.5 Hz, 1H), 7.17 (t, J = 7.5 Hz, 1H),5.60 (s, 1H), 4.75
(d, J = 6.5 Hz, 2H), 2.76 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3): δ (ppm) 169.7, 158.6, 151.7,
142.0, 133.7, 130.6, 130.2, 130.0, 126.3, 126.2, 125.3, 122.6, 122.5, 119.9, 44.8, 21.6; HRMS (ESI):
m/z [M+H]+ calcd for C16H15N3Br: 328.0449; found: 328.0439.

4.13. N-(4-Iodobenzyl)-4-methylquinazolin-2-amine (3am)

Yield 72% (270.0 mg); Rf (Pet/EtOAc; 8:1) 0.30; white solid; m.p. 177–178 ◦C; 1H
NMR (500 MHz, CDCl3): δ (ppm) 7.85 (d, J = 9.0 Hz, 1H), 7.68–7.55 (m, 4H), 7.25–7.20
(m, 1H), 7.15 (d, J = 8.5 Hz, 2H), 5.52 (s, 1H), 4.71 (d, J = 6.0 Hz, 2H), 2.76 (s, 3H); 13C{1H}
NMR (125 MHz, CDCl3): δ (ppm) 169.6, 158.6, 151.7, 139.3, 137.5, 133.7, 129.6, 126.3, 125.3,
122.5, 119.9, 92.4, 44.9, 21.6; HRMS (ESI): m/z [M+H]+ calcd for C16H15N3I: 376.0311;
found: 376.0314.

4.14. 4-(((4-Methylquinazolin-2-yl)amino)methyl)benzonitrile (3an)

Yield 60% (164.5 mg); Rf (Pet/EtOAc; 6:1) 0.30; white solid; m.p. 178–179 ◦C; 1H NMR
(600 MHz, CDCl3): δ (ppm) 7.88 (d, J = 7.8 Hz, 1H), 7.67 (t, J = 8.4 Hz, 1H), 7.62–7.56 (m,
3H), 7.51 (d, J = 8.4 Hz, 2H), 7.25 (t, J = 6.0 Hz, 1H), 5.60 (s, 1H), 4.84 (d, J = 6.6 Hz, 2H), 2.78
(s, 3H); 13C{1H} NMR (150 MHz, CDCl3): δ (ppm) 166.6, 161.6, 152.8, 145.3, 133.9, 132.3,
128.0, 125.4, 122.8, 118.9, 110.8, 100.4, 100.0, 45.0, 21.7; HRMS (ESI): m/z [M+H]+ calcd for
C17H15N4: 275.1297; found: 275.1293.

4.15. 4-Methyl-N-(thiophen-2-ylmethyl)quinazolin-2-amine (3ao)

Yield 68% (173.5 mg); Rf (Pet/EtOAc; 8:1) 0.35; white solid; m.p. 131–132 ◦C; 1H NMR
(500 MHz, CDCl3): δ (ppm) 7.86 (d, J = 9.0 Hz, 1H), 7.69–7.61 (m, 2H), 7.23 (t, J = 7.5 Hz,
1H), 7.19 (d, J = 5.0 Hz, 1H), 7.05 (d, J = 4.0 Hz, 1H),6.95–6.94 (m, 1H), 5.50 (s, 1H), 4.93
(d, J = 6.0 Hz, 2H), 2.77 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3): δ (ppm) 169.6, 158.3,
151.7, 142.3, 133.7, 126.6, 126.3, 125.5, 125.3, 124.7, 122.5, 119.9, 40.5, 21.6; HRMS (ESI): m/z
[M+H]+ calcd for C14H14N3S: 256.0908; found: 256.0906.

4.16. 4-Methyl-N-(naphthalen-2-ylmethyl)quinazolin-2-amine (3ap)

Yield 84% (251.3 mg); Rf (Pet/EtOAc; 4:1) 0.30; white solid; m.p. 150–151 ◦C; 1H NMR
(500 MHz, CDCl3): δ (ppm) 7.87–7.78 (m, 5H), 7.67–7.60 (m, 2H), 7.53 (d, J = 8.5 Hz, 1H),
7.47–7.42 (m, 2H), 7.22 (t, J = 8.0 Hz, 1H), 5.59 (s, 1H), 4.94 (d, J = 6.0 Hz, 2H), 2.77 (s, 3H);
13C{1H} NMR (125 MHz, CDCl3): δ (ppm) 169.6, 158.8, 151.9, 136.9, 133.6, 133.5, 132.7, 128.3,
127.73, 127.65, 126.3, 126.1, 126.0, 126.0, 125.7, 125.3, 122.4, 119.9, 45.7, 21.6; HRMS (ESI):
m/z [M+H]+ calcd for C20H18N3: 300.1501; found: 300.1500.

4.17. N-Benzyl-8-methyl-[1,3]dioxolo [4,5-g]quinazolin-6-amine (3ba)

Yield 84% (246.2 mg); Rf (Pet/EtOAc; 10:1) 0.33; white solid; m.p. 157–158 ◦C; 1H
NMR (500 MHz, CDCl3): δ (ppm) 7.39 (d, J = 7.5 Hz, 2H), 7.34–7.28 (m, 2H), 7.27–7.23 (m,
1H), 7.11 (s, 1H), 6.94 (s, 1H), 6.03 (s, 2H), 5.30 (s, 1H), 4.72 (d, J = 6.0 Hz, 2H), 2.64 (s, 3H);
13C{1H} NMR (125 MHz, CDCl3): δ (ppm) 166.6, 158.7, 153.5, 151.2, 144.6, 139.7, 128.5, 127.6,
127.1, 115.2, 103.4, 101.5, 101.0, 45.6, 21.8; HRMS (ESI): m/z [M+H]+ calcd for C17H16N3O2:
294.1243; found: 294.1240.

4.18. N-Benzyl-6-bromo-4-methylquinazolin-2-amine (3ca)

Yield 81% (264.9 mg); Rf (Pet/EtOAc; 10:1) 0.30; white solid; m.p. 166–167 ◦C; 1H
NMR (600 MHz, CDCl3): δ (ppm) 7.98 (s, 1H), 7.69 (d, J = 9.0 Hz, 1H), 7.47 (d, J = 9.0 Hz,
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2H), 7.39 (d, J = 7.2 Hz, 2H), 7.34 (t, J = 7.2 Hz, 1H), 5.57 (s, 1H), 4.75 (d, J = 6.0 Hz, 2H),
2.72 (s, 3H); 13C{1H} NMR (150 MHz, CDCl3): δ (ppm) 167.8, 158.7, 139.9, 139.0, 136.8,
128.6, 127.7, 127.6, 127.3, 120.9, 114.9, 109.2, 45.5, 21.6; HRMS (ESI): m/z [M+H]+ calcd for
C16H15N3Br: 328.0449; found: 328.0446.

4.19. N-Benzyl-6-iodo-4-methylquinazolin-2-amine (3da)

Yield 78% (292.5 mg); Rf (Pet/EtOAc; 8:1) 0.30; white solid; m.p. 175–176 ◦C; 1H
NMR (500 MHz, CDCl3): δ (ppm) 8.18 (d, J = 2.0 Hz, 1H), 7.84 (d, J = 9.0 Hz, 1H), 7.39
(d, J = 7.5 Hz, 2H), 7.33 (t, J = 7.5 Hz, 3H), 7.29–7.25 (m, 1H), 5.53 (s, 1H), 4.74 (d, J = 5.5 Hz,
2H), 2.71 (s, 3H); 13C{1H} NMR (125 MHz, CDCl3): δ (ppm) 168.5, 158.8, 151.0, 142.0, 139.1,
134.1, 128.6, 128.2, 127.7, 127.3, 121.8, 85.3, 45.5, 21.6; HRMS (ESI): m/z [M+H]+ calcd for
C16H15N3I: 376.0311; found: 376.0315.

4.20. N-Benzyl-4-methyl-6-phenylquinazolin-2-amine (3ea)

Yield 64% (208.3 mg); Rf (Pet/EtOAc; 8:1) 0.30; white solid; m.p. 148–149 ◦C; 1H NMR
(600 MHz, CDCl3): δ (ppm) 8.03 (s, 1H), 7.95 (d, J = 8.4 Hz, 1H), 7.70 (d, J = 9.0 Hz, 1H), 7.65
(d, J = 7.8 Hz, 2H), 7.49 (t, J = 7.2 Hz, 2H), 7.43–7.34 (m, 5H), 7.28 (t, J = 7.8 Hz, 1H), 5.61 (s,
1H), 4.81 (d, J = 6.0 Hz, 2H), 2.84 (s, 3H); 13C{1H} NMR (150 MHz, CDCl3): δ (ppm) 169.8,
158.6, 151.0, 140.5, 139.2, 135.3, 133.2, 128.9, 128.5, 127.7, 127.3, 127.2, 127.0, 126.5, 123.2,
119.9, 45.5, 21.7; HRMS (ESI): m/z [M+H]+ calcd for C16H15N3I: 326.1657; found: 326.1662.

4.21. N-Benzyl-6-(3-methoxyphenyl)-4-methylquinazolin-2-amine (3fa)

Yield 50% (177.7 mg); Rf (Pet/EtOAc; 8:1) 0.30; white solid; m.p. 146–147 ◦C; 1H NMR
(600 MHz, CDCl3): δ (ppm) 8.02 (s, 1H), 7.92 (d, J = 9.0 Hz, 1H), 7.68 (d, J = 9.0 Hz, 1H),
7.43–7.34 (m, 3H), 7.34 (t, J = 7.2 Hz, 2H), 7.28 (d, J = 7.2 Hz, 1H), 7.24 (d, J = 7.8 Hz, 1H),
7.18 (s, 1H), 6.93 (d, J = 8.4 Hz, 1H), 5.58 (s, 1H), 4.80 (d, J = 7.2 Hz, 2H), 3.90 (s, 3H), 2.82 (s,
3H); 13C{1H} NMR (150 MHz, CDCl3): δ (ppm) 160.1, 148.9, 142.0, 139.1, 133.4, 130.3, 130.0,
128.6, 127.7, 127.3, 123.3, 119.6, 113.1, 112.5, 103.4, 102.9, 95.0, 55.4, 45.6, 21.8; HRMS (ESI):
m/z [M+H]+ calcd for C23H22N3O: 356.1763; found: 356.1764.

4.22. N-Benzylquinazolin-2-amine (3ga)

Yield 73% (171.8 mg); Rf (Pet/EtOAc; 4:1) 0.30; white solid; m.p. 122–123 ◦C; 1H NMR
(500 MHz, CDCl3): δ (ppm) 8.71 (s, 1H), 7.67–7.58 (m, 3H), 7.42 (d, J = 7.0 Hz, 2H), 7.33
(t, J = 7.5 Hz, 2H), 7.29–7.19 (m, 2H), 6.21 (s, 1H), 4.77 (d, J = 5.5 Hz, 2H); 13C{1H} NMR
(125 MHz, CDCl3): δ (ppm) 161.9, 159.5, 152.1, 139.2, 134.2, 128.6, 127.8, 127.5, 127.2, 125.6,
122.5, 120.6, 45.7; HRMS (ESI): m/z [M+H]+ calcd for C15H14N3: 236.1188; found: 236.1189.

4.23. N-Benzyl-4-phenylquinazolin-2-amine (3ha)

Yield 66% (205.5 mg); Rf (Pet/EtOAc; 4:1) 0.25; white solid; m.p. 153–154 ◦C; 1H NMR
(600 MHz, CDCl3): δ (ppm) 7.82 (d, J = 7.8 Hz, 1H), 7.70–7.65 (m, 4H), 7.53 (s, 3H), 7.43
(d, J = 6.0 Hz, 2H), 7.33 (t, J = 7.8 Hz, 2H), 7.27 (t, J = 7.2 Hz, 1H), 7.17 (t, J = 7.8 Hz, 1H),
5.70 (s, 1H), 4.81 (d, J = 6.0 Hz, 2H); 13C{1H} NMR (150 MHz, CDCl3): δ (ppm) 170.1, 158.8,
153.2, 139.3, 137.4, 133.8, 129.7, 129.5, 128.5, 128.4, 127.7, 127.5, 127.2, 126.1, 122.5, 118.6, 45.7;
HRMS (ESI): m/z [M+H]+ calcd for C21H18N3: 312.1501; found: 312.1499.

4.24. N-Benzyl-4-(4-fluorophenyl)quinazolin-2-amine (3ia)

Yield 62% (204.2 mg); Rf (Pet/EtOAc; 4: 1) 0.35; white solid; m.p. 168–170 ◦C; 1H NMR
(600 MHz, CDCl3): δ (ppm) 7.79 (d, J = 8.4 Hz, 1H), 7.72–7.66 (m, 4H), 7.43 (d, J = 7.2 Hz,
2H), 7.34 (t, J = 7.2 Hz, 2H), 7.27 (t, J = 7.2 Hz, 2H), 7.24–7.18 (m, 3H), 5.66 (s, 1H), 4.81
(d, J = 5.4 Hz, 2H); 13C{1H} NMR (150 MHz, CDCl3): δ (ppm) 168.9, 164.6, 162.9, 158.7,
153.3, 133.9, 131.6, 128.6, 127.7, 127.2, 127.2, 122.6, 118.5, 115.6, 115.5, 45.6, 29.7; HRMS (ESI):
m/z [M+H]+ calcd for C21H17N3F: 330.1407; found: 330.1406.
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4.25. 3-Benzyl-4-imino-3,4-dihydroquinazolin-2-amine (5aa)

Yield 75% (188.5 mg); Rf (EtOAc/CH3OH; 8:1) 0.28; white solid; m.p. 186–187 ◦C; 1H
NMR (600 MHz, CDCl3): δ (ppm) 7.72 (d, J = 7.8 Hz, 1H), 7.49 (t, J = 7.8 Hz, 1H), 7.38 (s,
1H), 7.36 (d, J = 7.2 Hz, 2H), 7.33–7.29 (m, 3H), 7.21 (d, J = 7.2 Hz, 1H), 7.17 (t, J = 7.8 Hz,
1H), 5.49 (s, 2H), 4.79 (s, 2H); 13C{1H} NMR (150 MHz, CDCl3): δ (ppm) 158.7, 151.6, 145.8,
135.4, 132.8, 129.3, 127.9, 126.2, 124.8, 124.2, 122.9, 116.3, 46.9; HRMS (ESI): m/z [M+H]+

calcd for C15H14N3O: 252.1137; found: 252.1139.

4.26. 4-Imino-3-(2-methylbenzyl)-3,4-dihydroquinazolin-2-amine (5ab)

Yield 80% (212.1 mg); Rf (EtOAc/CH3OH; 10:1) 0.32; white solid; m.p. 221–222 ◦C; 1H
NMR (600 MHz, CDCl3): δ (ppm) 7.72 (d, J = 7.8 Hz, 1H), 7.52 (t, J = 7.8 Hz, 1H), 7.27 (s,
1H), 7.23 (t, J = 7.2 Hz, 2H), 7.22–7.18 (m, 2H), 7.16 (d, J = 9.0 Hz, 1H), 7.03 (d, J = 7.8 Hz,
1H), 5.41 (s, 2H), 4.58 (s, 2H), 2.42 (s, 3H); 13C{1H} NMR (150 MHz, CDCl3): δ (ppm) 158.2,
151.5, 144.8, 135.3, 133.0, 132.2, 130.9, 127.7, 126.9, 124.6, 124.2, 124.1, 123.2, 116.2, 45.1, 19.1;
HRMS (ESI): m/z [M+H]+ calcd for C16H17N4: 265.1453; found: 265.1458.

4.27. 4-Imino-3-(2-methoxybenzyl)-3,4-dihydroquinazolin-2-amine (5ac)

Yield 70% (197.0 mg); Rf (EtOAc/CH3OH; 10:1) 0.35; white solid; m.p. 202–203 ◦C;
1H NMR (600 MHz, CDCl3): δ (ppm) 7.71 (d, J = 7.8 Hz, 1H), 7.49 (d, J = 7.2 Hz, 1H), 7.46
(t, J = 7.8 Hz, 1H), 7.29 (s, 1H), 7.28 (s, 1H), 7.19 (d, J = 7.8 Hz, 1H), 7.13 (t, J = 7.8 Hz, 1H),
6.94–6.92 (m, 2H), 5.46 (s, 2H), 5.25 (s, 2H), 3.93 (s, 3H); 13C{1H} NMR (150 MHz, CDCl3): δ
(ppm) 158.8, 156.3, 151.4, 145.8, 132.7, 129.1, 128.7, 124.5, 124.2, 123.6, 122.5, 121.5, 116.1,
110.5, 55.6, 40.4; HRMS (ESI): m/z [M+H]+ calcd for C16H17N4O: 281.1402; found: 281.1397.

4.28. 3-(4-Fluorobenzyl)-4-imino-3,4-dihydroquinazolin-2-amine (5ad)

Yield 60% (161.6 mg); Rf (EtOAc/CH3OH; 14:1) 0.30; white solid; m.p. 195–196 ◦C;
1H NMR (600 MHz, CDCl3): δ (ppm) 7.72 (d, J = 7.8 Hz, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.32
(t, J = 5.4 Hz, 2H), 7.25 (s, 1H), 7.24 (s, 1H), 7.19 (t, J = 8.4 Hz, 1H), 7.06 (t, J = 8.4 Hz, 2H),
5.45 (s, 2H), 4.64 (s, 2H); 13C{1H} NMR (150 MHz, CDCl3): δ (ppm) 163.2, 161.6, 158.7, 151.4,
145.7, 132.9, 131.2, 128.0, 127.9, 124.8, 123.0, 116.3, 46.3; HRMS (ESI): m/z [M+H]+ calcd for
C15H14N4F: 269.1202; found: 269.1203.

4.29. 3-(4-Chlorobenzyl)-4-imino-3,4-dihydroquinazolin-2-amine (5ae)

Yield 55% (157.2 mg); Rf (EtOAc/CH3OH; 10:1) 0.25; white solid; m.p. 186–187 ◦C;
1H NMR (600 MHz, CDCl3): δ (ppm) 7.71 (d, J = 7.8 Hz, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.34
(d, J = 8.4 Hz, 2H), 7.28 (s, 1H), 7.27 (d, J = 9.6 Hz, 2H), 7.24 (d, J = 8.4 Hz, 1H), 7.19
(t, J = 7.8 Hz, 1H), 5.45 (s, 2H), 4.61 (s, 2H); 13C{1H} NMR (150 MHz, CDCl3): δ (ppm) 158.6,
151.4, 145.7, 134.0, 133.8, 132.9, 129.4, 127.6, 124.8, 124.2, 123.0, 116.2, 46.4; HRMS (ESI): m/z
[M+H]+ calcd for C15H14N4Cl: 285.0907; found: 285.0901.

4.30. 4-Imino-3-(naphthalen-2-ylmethyl)-3,4-dihydroquinazolin-2-amine (5af)

Yield 66% (198.9 mg); Rf (EtOAc/CH3OH; 10:1) 0.28; white solid; m.p. 218–219 ◦C;
1H NMR (600 MHz, CDCl3): δ (ppm) 8.06 (d, J = 7.8 Hz, 1H), 7.92 (d, J = 8.4 Hz, 1H),
7.81 (d, J = 8.4 Hz, 1H), 7.61 (t, J = 6.6 Hz, 1H), 7.57 (t, J = 7.2 Hz, 1H), 7.53 (t, J = 8.4 Hz,
1H), 7.41 (t, J = 7.2 Hz, 1H), 7.28 (s, 1H), 7.25 (d, J = 5.4 Hz, 2H), 7.24 (d, J = 7.2 Hz, 1H),
7.20 (t, J = 7.8 Hz, 1H), 5.94 (s, 2H), 4.62 (s, 2H); 13C{1H} NMR (150 MHz, CDCl3): δ (ppm)
161.7, 158.1, 151.6, 149.0, 144.8, 134.0, 133.1, 130.5, 129.3, 129.1, 128.5, 126.7, 126.2, 125.7,
124.3, 123.3, 122.3, 121.9, 44.9; HRMS (ESI): m/z [M+H]+ calcd for C19H17N4: 301.1453;
found: 301.1453.

4.31. 3-Benzyl-4-imino-7-methyl-3,4-dihydroquinazolin-2-amine (5ag)

Yield 60% (168.8 mg); Rf (EtOAc/CH3OH; 12:1) 0.30; white solid; m.p. 189–190 ◦C;
1H NMR (600 MHz, CDCl3): δ (ppm) 7.60 (d, J = 7.8 Hz, 1H), 7.36 (t, J = 7.8 Hz, 2H), 7.32
(d, J = 7.2 Hz, 2H), 7.30 (s, 1H), 7.29 (s, 1H), 7.03 (s, 1H), 7.00 (d, J = 7.8 Hz, 1H), 5.48 (s, 2H),
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4.66 (s, 2H), 2.40 (s, 3H); 13C{1H} NMR (150 MHz, CDCl3): δ (ppm) 157.4, 152.2, 144.3, 141.7,
134.7, 129.4, 128.2, 126.2, 125.1, 124.3, 121.8, 112.7, 46.6, 21.6; HRMS (ESI): m/z [M+H]+

calcd for C16H17N4: 265.1453; found: 265.1459.

4.32. 3-Benzyl-7-chloro-4-imino-3,4-dihydroquinazolin-2-amine (5ah)

Yield 65% (185.7 mg); Rf (EtOAc/CH3OH; 10:1) 0.25; white solid; m.p. 185–186 ◦C; 1H
NMR (600 MHz, CDCl3): δ (ppm) 7.63 (d, J = 8.4 Hz, 1H), 7.39 (s, 1H), 7.37 (d, J = 7.2 Hz,
2H), 7.32–7.31 (m, 3H), 7.21 (d, J = 7.8 Hz, 1H), 7.11 (d, J = 8.4 Hz, 1H), 5.46 (s, 2H), 4.72 (s,
2H); 13C{1H} NMR (150 MHz, CDCl3): δ (ppm) 152.3, 147.1, 138.7, 135.1, 129.4, 128.1, 126.1,
125.7, 124.3, 123.2, 114.8, 46.9; HRMS (ESI): m/z [M+H]+ calcd for C15H14N4Cl: 285.0907;
found: 285.0906.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/catal13111447/s1. Table S1. The crystallographic data of 3aa (CCDC:
2294005); Table S2. The crystallographic data of 5ab (CCDC: 2294029); spectral copies of 1HNMR,
and 13CNMR.
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