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Abstract: In this work, an Fe3O4 catalyst was synthetized in a single step via electrochemical synthesis.
The Fe3O4 catalyst was used to evaluate the degradation of Ofloxacin (OFX) using a heterogeneous
advanced oxidation process with sodium persulfate (PS). PS activation was successfully achieved
via thermal conventional heating directly and subsequently applied for the degradation of OFX. The
degradation kinetics were studied under different conditions, such as catalyst and oxidant concen-
tration and temperature. The results show that a higher reaction temperature, catalyst and initial
PS dose strongly influence the degradation efficiency. Thermal activation of persulfate was tested
at 20, 40 and 60 ◦C. At 60 ◦C, the half-time of OFX was 23 times greater than at 20 ◦C, confirming
the activation of persulfate. Mineralization studies also showed that under optimized conditions
(20 mM of persulfate, 1 g/L catalyst and 100 mg/L OFX), a 66% reduction in organic matter was
observed, in contrast to that obtained at 40 ◦C and 20 ◦C, which was null. The reusability, as tested
through the fourth reuse cycle, resulted in a 38% reduced degradation efficiency when comparing
the first and last cycle. Furthermore, the electrosynthesized catalyst presented similar degrada-
tion efficiencies in both real water and MilliQ, mainly because of the Cl−2 generation at high Cl−

concentrations that takes place in Cl− contaminated water.

Keywords: Fe3O4; persulfate activation; ofloxacin; mineralization; reusability; real water

1. Introduction

Antibiotics represent a breakthrough in the treatment for bacterial infection; how-
ever, because of their extensive use and high solubility, and their poor biodegradability,
antibiotics are nowadays an important concern. Globally, antibiotics are being detected in
wastewater, which may produce environmental toxicity, in conjunction with the additional
problem of bacteria antibiotic resistance which would seriously hinder the cure of dis-
eases [1]. In 2017, the World Health Organization issued a warning about the re-emergence
of flu and tuberculosis, and several studies that observed high resistance levels of those
strains encouraged researchers to come up solutions to manage emerging pollutants in
effluents [2–4].

The factors primary responsible for the release of high levels of antibiotics and other
pharmaceutical wastes into the environment are the pharmaceutical industries [5], munic-
ipal wastewater discharges, intensified farming, human excretory wastes, leaching and
farmland run-off from fertilized farmland with animal livestock manure and aquaculture
nutrition [6].

Antibiotics are difficult to degrade through conventional wastewater treatment. Sev-
eral techniques have been assayed for the degradation and mineralization of antibiotics
to reduce their environmental impact; strategies focused on physical, chemical, biological,
and combined processes for degradation have been designed [7–10]. Physical and chemical
methods include sedimentation, filtration, and oxidation using chemical compounds, UV
or Vis light, ultrasound, and ions. Biological ones include the use of microorganisms or
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enzymes [11]. Unfortunately, many of these conventional wastewater treatments are not
appropriate for removing highly polar micropollutants, such as antibiotics.

Advanced Oxidation Processes (AOPs) have been proposed for industrial wastewater
treatments, such as UV photolysis [12], Fenton [13], Photo-Fenton, [14], or electro-Fenton
processes [15]. The Fenton process basically comprises a reaction between iron and hydro-
gen peroxide to produce hydroxyl radicals (HO•). Even though in many cases the Fenton
method may be effective, its efficiency decreases in certain situations, especially due to
the residence times of hydroxyl radicals generated in the solution. In this regard, the use
of persulfate (PS), ( S2O2−

8

)
, is currently being tested to induce the formation of sulfate

radicals, with a longer lifetime and higher redox potential (E0 = 2.5–3.1 V) compared with
hydroxyl radicals (HO•, E0 = 2.8 V). Sulfate radical formation can be produced via heat [16],
ultrasound, ultraviolet, microwave [17], non-contact magnetic heating [18], transition met-
als, and other techniques [8,19]. Out of all these methods, conventional heat activation is an
environmentally friendly and clean-energy method. Additionally, it is an efficient activator,
reducing the reaction time and enhancing the degradation efficiency [20]. However, the
use of iron ions in solutions results in the formation of sludge that is difficult to extract.
To solve this drawback, heterogeneous catalysts such as iron oxides [21], metal iron fer-
rites [22], perovskites [23,24], metal-carbon nanotubes [25], etc., are often used to activate
radical generation superficially, preventing the generation of sludge. The magnetic Fe3O4
nanoparticles can be extracted from the medium via magnetic harvesting. In addition, a
further advantage is the possibility of working with less acidic medium than that required
for the classical Fenton method.

Of the numerous types of commercialized antibiotics, one of the most widely used is
Ofloxacin (OFX). OFX is a broad-spectrum fluoroquinolone antibiotic frequently used in
clinics for treating bacterial infections. It has already been reported that OFX antibiotics
decrease species interaction in the prokaryotic community by reducing the nitrogen fixation,
photosynthetic, and metabolic capacities of the microbial community [26]. This antibiotic
was chosen as a model for the present work, to study a degradation process with magnetite
nanoparticles. The catalyst was synthesized via a facile electrochemical method [27,28]. It
exhibited great activity for OFX removal through thermal activation of PS. The correlation
between the PS, catalyst concentration, and temperature to the degradation performance
was discussed. The reusability of the iron oxide nanoparticles and their performance in
real water were also assessed.

2. Results and Discussion
2.1. Fe3O4 Catalyst Characterization

The TEM image shown in Figure 1a reveals a sample with certain aggregation and a
quasi-spherical shape. The average nanoparticle size measured for at least 150 diameters
was 27 nm with an SD of 8 nm, as shown in the inset in Figure 1a. Measurements of the
hydrodynamic size (HS) were performed at pH 3.5, the same pH at which the degradation
experiments were conducted, which reflects how the particle behaves in a fluid. The mean
diameter was 260 (17) nm. The polydispersity index obtained was below 0.2, indicating a
relative low polydispersity of the sample in a water matrix. This is in accordance with the
Zeta Potential measured at the same pH, whose value was + 28 mV. A high electrostatic
repulsion results in a smaller hydrodynamic size and good stability of the suspension. In
contrast, the nanoparticle size measured from TEM images was logically smaller than the
HS because the particle size was not influenced by the hydration shell in this analysis. The
predominant species of OFX at pH < 5.6 is the protonated OFX+ [29]. Consequently, the
adsorption between catalyst with a positively charged surface at pH 3.5 and prevalent OFX
species under these acidic conditions was not favored due the electrostatic repulsions.
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Figure 1. (a) TEM micrography of Fe3O4 catalyst, histogram of the average particle size, inset. (b) 

Hydrodynamic size of Fe3O4 measured at pH 3.5. 
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Figure 1. (a) TEM micrography of Fe3O4 catalyst, histogram of the average particle size, inset.
(b) Hydrodynamic size of Fe3O4 measured at pH 3.5.

2.2. Pollutant Removal

It is well known that the solution pH has an important impact on the dissociation of
organic pollutants, the surface properties of the catalyst, and the PS activation. In this study,
the pH of the solution was maintained at pH 3.5 to ensure catalyst stability via electrostatic
forces (zeta potential) in the solution and an efficient PS activation at acidic pH [30,31].
Additionally, the pollutant concentration was kept at 100 mg/L for all the experiments. In
contrast, to achieve the best degradation efficiency, several parameters affecting degradation
performance, including PS and catalyst concentration, were parameterized individually at
60 ◦C, to ensure the highest thermal activation of PS.

Thermal activation of PS at 20, 40 and 60 ◦C was firstly indicated by the single oxidation
of PS (20 mM) without catalyst. Figure 2 depicts the evolution of the discoloration of OFX
with time. This figure demonstrates the thermal activation of PS as the temperature
rose, which progressively decreased the discoloration ratio C/Co (ratio of the pollutant
concentration at different experimental times to the initial concentration). In contrast, total
organic carbon (TOC) removal experiments after 120 min of the reaction revealed a null
reduction in the organic carbon content at 20 and 40 ◦C, whereas the value obtained at
60 ◦C was about 2%. So even though C/Co reduction was observed, as seen in Figure 2, it
was unrelated to the mineralization of the organic content. A single thermal activation of PS
has been performed by other researchers at different experimental conditions (lower doses
of OFX (10 ppm) and higher temperature (70◦C), yielding a TOC removal of 88%) [32]. PS
activation can also be fulfilled with a UV-vis source e.g., Liu et al. observed 46.4% TOC
removal at room temperature with 5 ppm OFX [33]. From these results, there is evidence
that the mineralization of the pollutant may take place without a catalyst, but hereafter, the
role of Fe3O4 catalysts in the thermal activation of PS will be addressed.
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Figure 2. C/Co evolution vs. time for OFX concentration with 20 mM of PS at 20, 40, and 60 ◦C
(100 mg/L pollutant) at pH 3.5.
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2.3. Effect of Operation Conditions on OFX Degradation

For the study of the effect of operation conditions on OFX degradation, pH and OFX
concentration was fixed at 3.5 and 100 mg/L, respectively. In Figure 3a, we can see the
obtained kinetic constant for OFX degradation with varied catalyst and PS doses at 60 ◦C.
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Assuming that among the reactions taking place during the AOPs, the reaction be-
tween sulfate radicals and OFX is the rate-determining step, the rate equation can be
given by v = dC

dt = k
[
SO•−

4
]
[OFX], where C is the concentration of the organic compound

and k is the reaction rate constant. We can assume that SO•−
4 rapidly achieves a con-

stant steady-state concentration in solution, and the previous equation can be written as a
pseudo-first-order reaction rate dC

dt = k
[
SO•−

4
]
[OFX] = kapp[OFX], where kapp (min−1) is

the apparent pseudo-first-order constant [34,35]. The degradation rate constant was deter-
mined from the slope of Ln

(
Ct
C0

)
= −kapp·t, where, C0 (mg/L) is the initial concentration

of OFX, Ct (mg/L) is the concentration at time t (min), and kapp (min−1) is the apparent
constant considering that the [PS] and [catalyst] concentration do not change with the
reaction time. All those kapp values are also summarized in Table 1, where high r2 values
indicate that the degradation process of OFX could be fitted well to the pseudo-first-order
kinetic model. Initially, the effect of temperature (60 ◦C) was evaluated by itself, showing a
null reduction in the C/Co ratio, which demonstrates that OFX was difficult to evaporate
or decompose at the experimental temperature. It was only when PS was added that a
decrease in C/Co was observed, allowing the estimation of the kinetic rates. The higher
the concentration of PS, the greater the increase in the kinetic rate, as seen in Table 1, being
more pronounced when the PS concentration was increased up to 20 mM. A similar effect
was observed for the different catalyst doses. At a catalyst concentration of 0.32 g/L, the
kinetic rate proportionately increased with the PS concentration, with values of 0.0130,
0.0307 and 0.0546 min−1 for 5, 10 and 20 mM, respectively. At a 1 g/L catalyst dose, the
increase in PS concentration had a less marked effect on the kapp observed for 10 and 20 mM
in comparison with the 0.32 g/L dose. Furthermore, at the highest catalyst concentration,
this effect was negligible, with kapp values of 0.787 and 0.780 min−1 being obtained for
PS doses of 10 and 20 mM, respectively. Under these experimental conditions, we can
consider three important factors: (I) Fe3O4 particles probably tend to aggregate at high
concentrations, reducing the dosage benefit, (II) the fixed amount of catalyst constrains the
rate of radical concentration even at excess PS loading [36], and (III) an increase in catalyst
concentration provides more active sites for PS activation, thus increasing the generation of
active radicals. As a result of this, an excess of SO•−

4 might serve as a scavenger compet-
ing in the SO•−

4 /OFX interaction, resulting in a null increase in the kapp between 10 and
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20 mM of PS at 2 g/L. Total organic content removal was also established to evaluate
the real organic reduction in the water matrix; those values are reported in Table 1 and
Figure 3b for all the experiments conducted.

Table 1. kapp and TOC removal (%) values obtained under the studied experimental conditions. (In
parentheses are (r2) values obtained from the pseudo-first-order fitting).

kapp (min−1) TOC Removal (%)

PS dose (mM) 0 g/L (r2) 0.32 g/L (r2) 1 g/L (r2) 2 g/L (r2) 0 g/L 0.32 g/L 1 g/L 2 g/L
5 mM 0.0076 (0.977) 0.0130 (0.992) 0.0285 (0.993) 0.0634 (0.990) 0 0 22.7 34.5

10 mM 0.0094 (0.971) 0.0307 (0.983) 0.0557 (0.981) 0.0787 (0.982) 0 23 47 59
20 mM 0.0310 (0.979) 0.0546 (0.984) 0.0688 (0.979) 0.0780 (0.978) 2 44 66 73

First, a reduction was observed from 0.32 g/L and 10 mM and onward, being only
23%. Therefore, it is evident that an increase in the catalyst and PS dose improves the total
organic content reduction. However, again, these increases were less pronounced with
1 and 2 g/L catalyst doses when the PS dosage was increased from 10 to 20 mM, with
TOC being observed to decrease by 1.40-fold and 1.24-fold at 1 and 2 g/L, respectively. In
other words, TOC degradation at 2 g/L in comparison to 1 g/L at 20 mM PS increased by
only 7%, which is close to the standard deviation of the analysis. Thus, considering the
optimization of both the economic costs of the process and the degradation efficiency, the
optimum Fe3O4 and PS concentration were fixed at 1 g/L and 20 mM, respectively.

2.4. Effect of the Temperature

With the operation conditions optimized, we compared OFX degradation at three
different temperatures: 20, 40 and 60 ◦C. Figure 4 shows a decrease in the C/Co value over
time with a rise in temperature. Control experiments are also depicted. TOC removal after
120 min was also different at the different temperatures, being 66% at 60 ◦C and null at
20 and 40 ◦C. So, increasing the temperature is conducive to thermal activation of PS and
improved pollutant removal. The apparent reaction rate constants, kapp at 20 ◦C, 40 ◦C and
60 ◦C were calculated with the pseudo-first-order kinetic equation, and corresponded to
0.0030, 0.0101 and 0.0688, with 3.4-fold and 22.9-fold, increases, respectively. Additionally,
to have better knowledge of the thermal degradation improvement, the time necessary
to reduce the initial concentration of OFX to 50%, the half-life time (t1/2 = Ln2

kapp
), was

calculated and is presented in Table 2. The half-time values obtained at 40 ◦C and 60 ◦C
were 3.3 and 23 times greater in comparison with t1/2 at 20 ◦C, which is a clear indication
of the thermal activation of PS.
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Figure 4. (a) C/Co discoloration evolution of OFX at temperatures of 20, 40 and 60 ◦C (filled
dots); control experiments are added for easy comparison (empty dots) (b) Arrhenius plot of OFX
degradation. Unless otherwise stated, the reaction conditions are based on: [OFX] = 100 mg/L,
[catalyst] = 1.0 g/L, [PS] = 20 mM, time = 2 h, pH = 3.5.
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Table 2. kapp and half-time values obtained under the studied experimental conditions.

Without Catalyst–20 mM PS 1 g/L dose–20 mM PS

Tª (◦C) 20 40 60 20 40 60
kapp (min−1) 0.0028 0.0063 0.031 0.0030 0.0101 0.0688

t1/2 (min) 247 110 22.3 231 69 10

The apparent activation energy (Ea) was evaluated according to the Arrhenius equa-
tion, lnkapp = lnA − Ea

RT , plotting ln kapp against 1/T, where kapp is the apparent rate
constant, R is the ideal gas constant (8.314 J/mol.K), A is the pre-exponential factor and
T (K) is the temperature. It should be noted that the activation energy (Ea) of the reaction
represents the temperature dependence, and a higher value of Ea indicates a higher temper-
ature dependence of the reaction [37]. The Ea value when using Fe3O4 as a catalyst was
63 kJ/mol, which is in the normal range of thermal activation energy (60–250 kJ/mol) [38]
and is smaller than other values obtained in similar studies [39]. Thus, the OFX degradation
by Fe3O4 needs moderate activation energy and is easy achieved.

The demonstrated improved oxidation reaction rates at high temperatures, which
degraded the organic matter through the generated active free radicals, is a consequence
of the endothermicity of the process, which is in accordance with the Arrhenius law,
considering the fast generation of active radicals as the temperature rises [19]. The increased
diffusion rate and mass transfer rate under high temperatures proved to be beneficial for
the removal of pollutants. Through this process, the generation and diffusion of SO•−

4
radicals and electron transport from Fe3+ to Fe2+ became higher, and most importantly, the
molecule collision involving SO•−

4 and pollutant occurred more fiercely. Hence, we may
conclude that the positive impact of high temperatures on the removal of pollutants in the
advanced oxidation process might result in oxidation promotion.

Table 3 outlines several studies reported in the literature regarding the degradation
of OFX when using persulfate. It is worth mentioning, that degradation percentages are
exclusively referred to as TOC determinations.

Table 3. Research on the removal of OFX from water using persulfate and different activation
methodologies.

Catalyst PS Conc. OFX Conc. Catalyst
Conc. pH Temperature

(◦C)
TOC

Removal (%) REF

Fe3O4 Thermal/PS 20 mM 100 mg/L 1 g/L 3.5 60 66 This work

———- UV -Vis 0.15 mM 5 mg/L ———- 3 25 46.4 [33]

CuFe2O4 PS 15 mM 10 mg/L 0.5 g/L 6 25 24.6 [40]

Mn doped
CuO PS 1 mM 10 mg/L 0.5 g/L 8 25 69 [31]

N-doped
biochar PMS 2 mM 40 mg/L 0.4 g/L 5.6 25 63.8 [41]

Nano-FeS2 Electrochemical 4 mM 10 mg/L 1 g/L 4 25 78.2 [42]

LaMnO3 PS 0.2 g/L 10 mg/L 0.04 g/L 5 25 41.5 [43]

MnCeOx PS 1 mM 20 mg/L 0.8 g/L 6.7 25 66 [44]

———- Thermal 4 mM 10 mg/L — 3 70 88 [32]

Because of the diversity of the studies found in the literature, a comparison can hardly
be made. Nevertheless, we must consider that the 66% TOC removal obtained in our
research was achieved with an initial concentration of 100 mg/L OFX, whereas in most
reported studies, it is possible to achieve a higher degradation % but only with much lower
initial OFX concentrations, e.g., 10 mg/L. Furthermore, the simplicity of the synthesis
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method for the proposed catalyst, requires less effort than the long and costly synthesis
methods referred to in Table 3.

Evidently, the easiest way to compare the benefit of using Fe3O4 nanoparticles is by
performing a homogeneous test. In a recent paper, we conducted this comparison by
estimating the effective surface Fe concentration on the catalyst, based on the weight used
as well as factors including particle volume, hydrodynamic size, unit cell stoichiometry,
etc. [13]. The outcome shows that only 0.5 ppm Fe was present on the catalyst surface,
yielding similar degradation rates in both heterogeneous and homogeneous states at
that concentration. In contrast, the facile magnetic recovery and reuse ability make the
heterogeneous method a more versatile procedure.

2.5. Reusability

The stability and reusability of a catalyst are critical factors for their applicability in
practical environments. Herein, four consecutive degradation runs were conducted to
assess the catalytic activity of Fe3O4 nanoparticles. The solid catalyst was magnetically
separated, thoroughly washed, and dried for subsequent analysis. As shown in Figure 5a,
the C/Co analysis of the fourth consecutive run was very similar; in addition, the kapp
obtained for the different runs only slightly decreased, as seen in Table 4. Nevertheless,
TOC removal analysis revealed a progressive reduction in the organic matter removed,
as seen in Table 4. The decrease in OFX degradation after the first and second cycles was
greater than that achieved in the latter cycles, being very similar in the next two cycles, at
44 and 41% TOC removal, respectively. The adsorption of intermediates during degradation,
which hinders the active sites, could be a plausible reason for the reduction observed [45].
In any case, the normalized percentage reduction from first to fourth cycle was 38%; this
value is not big enough to not consider the electrosynthetized Fe3O4 a cost-effective catalyst.
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Figure 5. (a) C/Co discoloration evolution for OFX degradation with Fe3O4 cycling runs. (b) TOC
removal efficiency for 2 h of experimentation after four consecutive runs. Unless otherwise stated,
the reaction conditions are based on the following: [OFX] = 100 mg/L, [catalyst] = 1.0 g/L, T = 60 ◦C,
[PS] = 20 mM, time = 2 h, pH = 3.5.

Table 4. kapp and TOC removal (%) values obtained under the studied experimental conditions.

kapp (min−1) TOC Removal (%)

1st 0.0688 66
2nd 0.0660 55
3rd 0.0641 44
4th 0.0614 41
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2.6. Catalysis in Real Water

The wastewater itself comprises variable inorganic and organic content, both of which
can induce inactivation of the catalyst as well as the suppression of the oxidants, disrupting
the catalytic reactions. The representative sample characterization of the matrix is given
in Table 5. Then, to demonstrate the catalyst’s efficiency in removing OFX, the catalyst
was applied to a secondary effluent sample from municipal wastewater treatment plant
(WWTP) effluent, and spiked with the pollutant.

Table 5. Representative analysis of the secondary effluent sample tested in this work.

pH TOC
(mg/L) IC (mg/L) Conductivity

(µS/cm)
Cl−

(mg/L)
Total Solids

(mg/L) Fe (mg/L)

7.6 7.9 19.02 488 270 12 0.049

On the basis of the findings from the operating conditions study, the oxidation tests
were carried out with a PS concentration of 20 mM, a catalyst dose of 1 g/L and pH 3.5 at
60 ◦C. The initial OFX concentration was set at 100 mg/L. The obtained results are shown
in Figure 6. It is clear whether the catalytic system was efficient for OFX removal regardless
of the water matrix composition. In general, the oxidation is significantly lower in the
real water matrix when compared to that in deionized water, but it is not the represented
case. Pseudo-first order rate constant values of 0.0688 and 0.0531 min−1 were obtained for
deionized and real water, respectively. In contrast, there are no differences in TOC removal.
Despite, of the important quantity of HCO−

3 /CO2−
3 (measured as inorganic carbon), in

the water matrix, no degradation reduction is observed by scavenging reactions where
persulphate radicals are consumed by inorganic matter. Conversely, Cl− ions was found to
have a dual effect (inhibition or enhancement) depending on the Cl−/PS ratio as described
Peng et al. [25]. We can assume this opposite effect considering both, the Cl− reaction
with SO•−

4 and HO• radicals to renders Cl•−2 , a less reactive radical (E0 = 1.36 V), together
with a greater production of Cl•−2 at high Cl− concentrations. On the other hand, the Fe
found in real water (0.054 ppm) is not high enough to consider an improved degradation
by homogeneous reaction.
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Figure 6. C/Co evolution vs. time for OFX concentration with 20 mM PS at 60 ◦C (100 mg/L pollutant)
at pH 3.5 in mQ and Real water; inset shows TOC removal efficiency for 2 h of experimentation.

3. Materials and Methods
3.1. Synthesis and Characterization of Magnetic Catalyst

Magnetic nanoparticles were synthesized via a previously reported electrochemical
method [27,28]. Iron electrodes of 4 and 2 cm2 were used as the cathode and anode, re-
spectively. A current density of 50 mA/cm2 was used to promote the oxidation of iron
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and the reduction of water to generate hydroxyl ions in solution. The synthesis was
carried out in 100 mL of 40 mM NaCl aqueous solution at 25 ◦C. Solution was stirred
at 1100 rpm during 30 min of reaction. The nanoparticles obtained were collected and
washed with miliQ water repeatedly until a colorless supernatant was obtained. Then, the
nanoparticles were separated from the medium via centrifugation and dried under vacuum
overnight. Once dried, the material was characterized using transmission electron mi-
croscopy (JEOL JEM 1010 operating at an acceleration voltage of 100 kV) to determine their
morphology. Dynamic light-scattering (DLS) measurements were carried out at 25 ◦C with
a Nano ZS (Malvern Panalytical Ltd., Malvern, UK) equipped with a solid-state He-Ne laser
(λ = 633 nm) to determine the hydrodynamic diameter of the water-dispersible nanoparti-
cles. The refraction index was 2.42 and the absorption was 0.8. Nano ZS was also used to
measure the zeta potential as a function of the pH at room temperature, using 0.01 M KNO3
as the electrolyte and HNO3 and KOH to adjust the pH. Real matrix ionic composition was
performed with a TXRF S2 PicoFox spectrometer (Bruker).

3.2. Advanced Oxidation Process Experiments

All degradation experiments were performed using 100 mg/L OFX as the target
organic pollutant in the solution. Experiments without a catalyst were performed using
5, 10 and 20 mM PS at 60 ◦C in order to study a possible single thermal activation. The
best degradation conditions were optimized in catalyst presence. PS dose optimization
was carried out varying the PS concentration in the range between 5 and 20 mM, while the
catalyst concentration was varied in the range 0.32 to 2 g/L. All degradation experiments
were performed in 25 mL of solution in a thermostatic bath under continuous stirring at
700 rpm for 2 h. The pH of all solution was adjusted to 3.5 using diluted HNO3 solutions
before the degradation trials began.

3.3. Advanced Oxidation Process Evaluation

Quantitative analysis of OFX degradation was followed by UV-Vis measuring the solu-
tion absorbance at λ = 292 nm for OFX using a Perkin Helmer UV Vis Lamda
365 spectrophotometer. Aliquots of 0.50 mL were withdrawn at 5, 10, 20, 30, 45, 60,
90 and 120 min once the experiment started. These aliquots were diluted to fit on the
calibration curve previously obtained (A = 0.00424 + 0.08755[OFX], r2 = 0.9994), and the
absorbances of the diluted samples were measured. Results are presented in this work
as the ratio between the concentration obtained for each degradation time and the initial
concentration (C/Co) of 100 mg/L. At the end of the experiment, magnetic nanoparticles
were removed using a magnet. The total organic carbon (TOC) of these final solutions was
also measured using a TOC-L-CSH model Shimadzu analyzer, considering the average of
at least three measurements with an accuracy of ±5%. TOC results in this work are shown
as TOC removal rate, that is, the ratio between the TOC measured and the initial TOC,
59.8 (1.1) mg/L.

3.4. Reusability Test

The reusability of the catalyst was evaluated by performing four cycling runs. After
the completion of the reaction, the separated catalyst was washed with distilled water and
dried for the subsequent cycle test. The TOC removal rate was measured after finishing
each run.

3.5. Performance in Real Water

The analysis of the catalytic efficiency in a real matrix was performed under catalyst-,
PS- and temperature-optimized conditions. The real matrix was previously filtered, with a
single filter paper, before use and spiked with 100 mg/L OFX. The solution pH dropped to
3.5 with the addition of diluted nitric acid.
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4. Conclusions

In this work, PS was activated using an Fe3O4 nanocatalyst at 60 ◦C and acidic pH
for the efficient mineralization of OFX. The results demonstrate that, when the dosage of
the catalyst was 1 g/L, the PS concentration was 20 mM and the temperature was 60 ◦C,
nearly 66% of OFX was eliminated at an acidic pH (3.5) over a 120 min reaction. The OFX
degradation rate can be effectively tuned by adjusting PS and catalyst loadings. Bicarbonate
ions and organic matter present in aqueous media do not suppress the activity of Fe3O4
in real water mainly because of the generation of Cl•−2 at high Cl− concentrations, which
enhances the degradation effect. During the reusability test, the TOC removal rate declined
from 66% in the first run to 41% after the fourth run, indicating an efficiency loss of 38%
between the two. This value is not big enough to not consider the electrosynthetized Fe3O4
nanoparticles as a cost-effective catalyst with a satisfactory reusability potential.
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