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Abstract: The large amount of waste synthetic polyester plastics has complicated waste manage-
ment and also endangering the environment due to improper littering. In this study, a novel
carboxylesterase from Thermobacillus composti KWC4 (Tcca) was identified, heterologously expressed
in Escherichia coli, purified and characterized with various plastic substrates. Irregular grooves were
detected on polybutylene adipate terephthalate (PBAT) film by scanning electron microscopy (SEM)
after Tcca treatment, and Tcca can also hydrolyze short–chain diester bis(hydroxyethyl) terephthalate
(BHET). The optimal pH and temperature for Tcca were 7.0 and 40 ◦C, respectively. In order to
explore its catalytic mechanism and improve its potential for plastic hydrolysis, we modeled the
protein structure of Tcca and compared it with its homologous structures, and we identified posi-
tions that might be crucial for the binding of substrates. We generated a variety of Tcca variants
by mutating these key positions; the variant F325A exhibited a more than 1.4–fold improvement in
PBAT hydrolytic activity, and E80A exhibited a more than 4.1–fold increase in BHET activity when
compared to the wild type. Tcca and its variants demonstrated future applicability for the recycling
of bioplastic waste containing a PBAT fraction.

Keywords: polybutylene adipate terephthalate (PBAT); carboxyl esterase; enzymatic degradation;
protein engineering

1. Introduction

Biodegradable plastics, such as polybutylene adipate terephthalate (PBAT), maintain
some of the beneficial polymer properties of polyester plastics and can be biodegraded at
significantly faster rates [1]. They have been introduced to the market as an environmen-
tally friendly alternative to recalcitrant plastics such as polyethylene (PE), and thus they
have potential for broader applications [2]. PBAT is a biodegradable aliphatic aromatic
co–polyester synthesized by esterifying 1,4–butanediol with an aromatic dicarboxylic acid
and then polycondensing with succinic acid [3]. It could be used alone or as a blend com-
ponent with poly(lactic acid)PLA, PHBV (Poly(β–hydroxybutyrate–β–hydroxyvalerate)),
cellulose and many other materials [4–10], and it has been produced on an industrial scale as
commercial products, such as mulching films, organic waste bags or packaging material [11].
PBAT can be biodegraded under soil and composting conditions by microorganisms [12–14];
under composting conditions, it can be decomposed within several months [15]. As PBAT
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has similar terephthalate moieties to PET in its backbones [16], many PET hydrolases
(including members from lipases, esterases and cutinase [17–19]) can also degrade PBAT.
For example, PBAT hydrolysis has been described with esterases EstA and EstB from
Clostridium botulinum ATCC 3502 [20], PpEst from Pseudomonas pseudoalcaligenes [21], Est1
and Est119 from Thermobifida alba [22], Cutinase HiC from Humicola insolens [23], Thc_Cut1
from Thermobifida cellulosilytica [24], lipase PfL1 from the anaerobic groundwater organism
Pelosinus fermentans DSM 17108 [25], serine hydrolase TfH from Thermobifida fusca [26], and
Ple629 from marine consortium [27,28]. Enzymatic PBAT degradation yields a mixture of
the terephthalate–butanediol monoester (Bte) intermediate and monomers; enzymes that
can efficiently degrade PBAT are still scarce. To improve the bio–degradation processes
for PBAT plastic wastes [29], more novel enzymes that can degrade polyester plastics
are needed.

Here, we describe the cloning, expression, purification, and biochemical characteriza-
tion of a novel carboxylesterase from Thermobacillus composti KWC4 (Tcca), which exhibits the
ability to hydrolyze polyester plastics such as PBAT and PET monomer BHET. By structure
modeling and comparisons, we identified amino–acid residues that may affect its substrate
binding. We created Tcca variants by site–directed mutagenesis and characterized them
with various substrates, revealing that some variants have improved hydrolysis activity.

2. Results
2.1. Protein Sequence Analysis

Tcca is a carboxylesterase from Thermobacillus composti KWC4 (WP_015255658.1) con-
sisting of 508 amino acids with an estimated molecular weight of 57 kDa. A phylogenetic
tree is constructed based on its protein sequence and its similarity with other PBAT–
degrading enzymes, to show potential evolutionary relationships (Figure 1). Tcca shares the
highest protein sequence identity with the carboxylesterase from Paenibacillaceae bacterium
ZCTH02–B3 (OUM99208.1, 88%). It also shares a high protein sequence identity with
carboxylesterases from Thermobifida fusca (WP_104613014.1, 32%) and Geobacillus stearother-
mophilus (2OGS_A, 36%). Most of the PBAT hydrolyzing enzymes are lipases (EC 3.1.1.3)
and cutinases (EC 3.1.1.74). However, Tcca belongs to carboxylesterases (EC 3.1.1.1), which
have only rarely been reported to hydrolyze polyesters such as PBAT.
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Figure 1. Phylogenetic dendrogram of Tcca from Thermobacillus composti KWC4 and its homologues. 
The phylogenetic tree was constructed by neighbor–joining method, evolutionary analyses were 
conducted with MEGA11, and the box is Tcca. Carboxylesterase: Thermobacillus composti KWC4 
(Tcca), WP_015255658.1; Thermobacillus sp, REK52384.1; Thermobifida fusca (TfCa), WP_104613014.1; 
Geobacillus stearothermophilus (Est55), PDB: 2OGS. Esterase: Bacillus subtilis, PDB:1QE3; Pseudomonas 
pseudoalcaligenes (PpEst), WP_003460012; Clostridium botulinum (EstA), PDB: 5AH1; Thermbifida fusca 
DSM 43793 (TfH), CAH17554.1. Cutinase: Humicola insolens (Hic), PDB: 4OYL; Thermobifida cellulosi-
lytica (Thc cut1), PDB: 5LUI; Thermobifida alba AHK119 (Est119), PDB: 3VIS; Thermobifida alba (Est1), 
D4Q9N1.2. Lipase: Pelosinus fermentans (PfL1), EIW29778.1. Acetylcholinesterase: Human, PDB: 
4BDT; Mus musculus, PDB: 2C0P. Butyrylcholinesterase: Homo sapiens, PDB: 6EMI. 
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mobifida fusca (PDB: 7W1K [32], 32% identity), Est55 from Geobacillus stearothermophilus 
(PDB: 2OGS [33], 31% identity) and p–nitrobenzyl esterase (pNB–E) from Bacillus subtilis 
(PDB: 1QE3 [34], 30% identity). Protein sequence alignment of Tcca against TfCa, Est55 
and pNB–E (Figure 2) indicates that Tcca contains a conserved catalytic triad consisting of 
S203, E324 and H414, in which S203 is located on the top of “nucleophile elbow” and 
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conducted with MEGA11, and the box is Tcca. Carboxylesterase: Thermobacillus composti KWC4
(Tcca), WP_015255658.1; Thermobacillus sp, REK52384.1; Thermobifida fusca (TfCa), WP_104613014.1;
Geobacillus stearothermophilus (Est55), PDB: 2OGS. Esterase: Bacillus subtilis, PDB:1QE3; Pseudomonas
pseudoalcaligenes (PpEst), WP_003460012; Clostridium botulinum (EstA), PDB: 5AH1; Thermbifida fusca
DSM 43793 (TfH), CAH17554.1. Cutinase: Humicola insolens (Hic), PDB: 4OYL; Thermobifida cellulosi-
lytica (Thc cut1), PDB: 5LUI; Thermobifida alba AHK119 (Est119), PDB: 3VIS; Thermobifida alba (Est1),
D4Q9N1.2. Lipase: Pelosinus fermentans (PfL1), EIW29778.1. Acetylcholinesterase: Human, PDB:
4BDT; Mus musculus, PDB: 2C0P. Butyrylcholinesterase: Homo sapiens, PDB: 6EMI.

Carboxylesterases possess a common catalytic triad consisting of a nucleophile (serine,
aspartate, or cysteine), a histidine, and a catalytic acid (aspartate or glutamate) [30]. The
serine residue of the catalytic triad is usually found in the pentapeptide G–X–S–X–G, on
the nucleophile elbow; these protein share a similar structural fold to the α/β hydrolase
superfamily [31]. Among Tcca homologous enzymes with available crystal structures,
the following three share the highest protein sequence identities with Tcca: TfCa from
Thermobifida fusca (PDB: 7W1K [32], 32% identity), Est55 from Geobacillus stearothermophilus
(PDB: 2OGS [33], 31% identity) and p–nitrobenzyl esterase (pNB–E) from Bacillus subtilis
(PDB: 1QE3 [34], 30% identity). Protein sequence alignment of Tcca against TfCa, Est55 and
pNB–E (Figure 2) indicates that Tcca contains a conserved catalytic triad consisting of S203,
E324 and H414, in which S203 is located on the top of “nucleophile elbow” and serves as
the nucleophile, to be polarized by the base amino acid H414 and stabilized by the acid
amino acid E324 [32–34].
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out with carboxylesterases TfCa from T. fusca (PDB: 7W1K), Est55 from G. stearothermophilus (PDB:
2OGS), and a pNB–E from B. subtilis (PDB: 1QE3). Strictly conserved residues are highlighted in a
red background, and catalytic triad consisting residues are represented by green dots. A secondary
structure topology based on the structure of Tcca modeling is shown on top of the sequence alignment.

2.2. Characterization of Tcca

Tcca was successfully over–expressed in the E. coli BL21 (DE3) and purified to homol-
ogy using a nickel affinity column. The melting temperatures (Tm), optimum temperature
and pH of Tcca were determined using the purified protein (Figure 3). The Tm of Tcca is
determined to be 70.07 ◦C (Figure 3A), suggesting that it has a high thermal stability. The
effect of temperature on Tcca activity was explored at various temperatures ranging from
30 to 70 ◦C, and Tcca exhibited the maximum enzyme activity at 40 ◦C, but it still retained
a 50% relative activity at 30 and 50 ◦C (Figure 3B). The relative enzyme activity of Tcca was
stable in the pH range of 6.0–8.0, with an optimum pH of 7.0 (Figure 3C).
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2.4. Tcca Structure Modeling and Possible Substrate Binding Cavity 

Figure 3. The Tm, optimal pH and temperature of Tcca. (A) The Tm of the Tcca; (B) The optimal
temperature of Tcca; (C) The optimal pH of Tcca. The optimum temperature of Tcca was determined
to be in the range of 30 to 70 ◦C, and the optimum pH of Tcca was tested in buffers at pH values
ranging from 6.0 to 9.5. All the hydrolysis reactions were performed using a piece of PBAT film
(Ø8 mm) with 10.9 µM enzyme in 0.8 mL buffer at 300 rpm for 24 h. Error bars denote the standard
deviations calculated based on triplicated determinations.

2.3. The Hydrolysis of PBAT Film by Tcca

The surface modification of PBAT by Tcca was confirmed by scanning electron mi-
croscopy (SEM) after a 48h hydrolysis. The buffer−only control sample had a smooth and
uniform surface (Figure 4A), and significant modifications with irregular grooves were
observed in Tcca−treated samples, indicating that Tcca could degrade PBAT (Figure 4B).
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Figure 4. SEM captures of PBAT film surface with and without treatment by Tcca. (A) SEM images
(10,000 × magnification) for control PBAT film without enzymatic treatment; (B) PBAT film after
incubation with Tcca. All SEM images were captured after 48 h of incubation at an enzyme loading of
2 mg/mL in 100 mM PBS buffer (pH 8.0) at 40 ◦C or with only buffer as a negative control.

2.4. Tcca Structure Modeling and Possible Substrate Binding Cavity

In order to probe into the possible substrate binding mode of Tcca to its substrates PBAT
and BHET (Figure 5A), we modeled the protein structure of Tcca by using Alphafold [35].
The model exhibits a α/β hydrolase fold comprising a central twisted β−sheet, which
is formed by 13 mixed β−strands and surrounded by 16 α–helices (Figure 5B). As ob-
served in other α/β−hydrolases superfamilies [36,37], such as lipases and serine pro-
teases, the catalytic apparatus of carboxylesterase contains three residues: a serine, a
glutamate or aspartate, and a histidine. In Tcca, the possible conserved catalytic triad
consists of S203−E324−H414 and the conserved serine hydrolase G−x1−S−x2−G motif
(G201−Q202−S203−A204−G205). We superimposed the structure of the modeled Tcca
with TfCa (PDB: 7W1K) [30], and it turned out that they had very similar overall structures,
the main chain root mean square deviation (RMSD) of both structures being 1.230 Å. The
relative positions of the catalytic residues serine, glutamate and histidine, as well as the
substrate binding channels, are similar (Figure 5B).
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Figure 5. Comparison of Tcca structure and identification of substrate binding tunnel. (A) Illustrations
of TCCA substrates PBAT and BHET. (B) Superimposition of modeled Tcca with TfCa crystal structure.
The modeled structure of Tcca is in purple, and the crystal structure for TfCa (PDB: 7W1K) is
in green. The catalytic triad of Tcca (S203−E324−H414) superimposed well with that of TfCa
(S185−E319−H415). (C) Alignment of Tcca to TfCa with bound ligands. The modeled Tcca structure
is shown as the surface, the residues around the substrate binding channel of Tcca are shown in sticks
in purple, and the bound substrates BHET and MHET are in green.
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In recent years, the structural study and protein engineering of plastic degradation
enzymes such as PETase have gained a lot of attention. Typically, residues around the
substrate binding tunnel are more prone to affect the substrate binding and hydrolytic
activity [17]. The complex structure of TfCa with bound mono(2−hydroxyethyl) tereph-
thalate(MHET) and BHET was reported recently, as was its engineering [30]. Similarly, we
identified several key residues near the possible substrate binding region of Tcca, and they
are Y77, R79, E80, W81, E129, F130, F325, K427 and W429, based on the possible substrate
conformation obtained by a structural alignment with TfCa (Figure 5C).

2.5. Protein Engineering of Tcca

In order to check if the aforementioned residues in the substrate binding tunnel of Tcca
can affect its activity, we constructed the following variants of Tcca: Y77W, R79A, E80A,
W81A, E129A, F130A, F325A, K427A and W429A. All purified variants were evaluated
based on their hydrolysis activity in comparison with the wild−type (WT) enzyme against
PBAT film and BHET. Tcca and all of its variants exhibited activity on PBAT (Figure 6A). The
variant F325A exhibited the highest PBAT hydrolysis activity, which was 1.4−fold higher
than the WT enzyme. We hypothesized that switching larger residues to less bulky ones may
considerably increase the space in the substrate binding channel, hence increasing the PBAT
degradation efficiency. We also examined the activity of these mutants on BHET (Figure 6B).
While many of the mutants exhibited clearly decreased BHET hydrolysis activity when
compared to the WT enzyme, E80A and F325A showed a 4.1−fold and 2.9−fold increased
release of TPA and MHET from BHET after 2 h of incubation, respectively.
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Figure 6. The hydrolysis activity of Tcca and its variants with PBAT and BHET. (A) The amounts of
hydrolysis products released after 24 h degradation reaction with PBAT film by Tcca and its variants
are shown. (B) The amounts of hydrolysis products released after 2 h degradation reaction with BHET
by Tcca and its variants. BHET were converted to TPA and MHET by biocatalysis. The total product
release was quantified as the sum of the UV−detectable small molecules by high−performance liquid
chromatography system (HPLC). Each measurement was conducted in triplicate, from which the
average values ± s.d. were calculated.

3. Discussion

Many PET plastic degrading enzymes originate from composting environments, such
as LCC−cutinase [38] and PES−H1/H2 [39]. All these enzymes are thermophilic in nature,
thereby exhibiting a high hydrolytic activity on polyester (e.g., PET) at high tempera-
tures [17]. Thus, compost is a valuable source of thermophilic microorganisms and enzymes
with polymer degrading activities. In this study, we verified that the polyester hydrolyzing
activity of recombinant Tcca is a carboxylesterase from the compost−dwelling bacterium
Thermobacillus composti KWC4. As most previously identified polyester hydrolases from
compost samples are cutinase−like enzymes (EC 3.1.1.74), the PBAT depolymerizing activ-
ity of the carboxylesterase (EC 3.1.1.1) Tcca proved to be unusual.

Protein sequence analysis indicated that Tcca is similar to other carboxylesterases,
with the conserved catalytic triad (serine, histidine, glutamate). Through SEM scanning, we
observed some irregular grooves on PBAT film after Tcca treatment, suggesting that Tcca
can hydrolyze the PBAT. PBAT degrading enzymes have been identified in both mesophilic
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and thermophilic microorganisms. For example, Cbotu_EstA and Cbotu_EstB have an
optimum temperature of 60 ◦C and 40 ◦C, respectively [20]. PfL1 showed an optimum
temperature of 50 ◦C [25], whereas Ple629 was most active at 30 ◦C [27]. The melting
temperature (Tm) of Tcca reported in this research is 70 ◦C. The catalytic efficiency of Tcca
is similar to known PABT degrading enzymes. After 24 h hydrolysis of PBAT plastic, the
reaction catalyzed by WT Tcca produced about 4 µM TPA per mole protein, while PpEst
and Ple629 can produce 0.3 µM TPA [21] and 60 µM [27] TPA under similar conditions,
respectively.

Based on structure modeling, we identified nine amino acid residues that should be
involved in the binding polymer substrate. Therefore, we generated single site−specific
variants to investigate their roles in the catalytic reaction, and we obtained Tcca variants
with improved hydrolytic activities. Variant F325A has a 1.4−fold higher hydrolytic activity
on PBAT film than WT. F325 is a bulky residue close to the catalytic triad (Figure 5C). PBAT
has aliphatic moieties flanking the large aromatic TPA repeating units (Figure 5A). Hence,
substituting the bulky F325 with smaller residues might provide more space to facilitate
the entrance of polymeric substrate and thereby accelerate the degradation of PBAT. The
variant E80A exhibits a 4.1−fold higher hydrolytic activity on BHET. E80 is located slightly
further away from the suggested catalytic cavity (Figure 5C). In the homologous enzyme
TfCa [39], the corresponding position has been identified as influencing the substrate bind-
ing. Therefore, we performed a similar residue substitution and hypothesized that the
improved BHET hydrolysis activity of the Tcca E80A variant could also be a result of the
less bulky alanine and modified charge. However, more detailed structural information
is needed to verify the abovementioned hypothesis. Additionally, further protein engi-
neering, such as combinatorial saturated mutagenesis, is needed to generate further better
performing variants for both small molecule and polymeric substrates.

In conclusion, Tcca has a high potential for use in the biocatalytic recycling of commer-
cial PBAT bioplastics as well as in the biodegradation of PET waste in order to serve as a
helper enzyme to mitigate the product inhibition partly caused by BHET, similar to what
has been described in recent studies [30,40]. Tcca could be further engineered to increase
its thermal stability and hydrolytic activity in order to meet the requirements of potential
applications at industrially relevant scales.

4. Materials and Methods
4.1. Materials

Terephthalic acid (TPA, CAS: 100−21−0) and bis−(2−hydroxyethyl) terephthalate
(BHET, CAS: 956−26−2) and all other chemicals were purchased from Sigma−Aldrich
(Shanghai, China), PBAT (CAS: 55231−08−8), and PBAT films were purchased from Shang-
hai Macklin Biochemical Co., Ltd (Shanghai, China).

4.2. Cloning and Site−Directed Mutagenesis

Tcca gene (GenBank accession number: WP_015255658.1) from Thermobacillus composti
KWC4 was chemically synthesized by GENE ray Biotech Co. (Shanghai, China) and
ligated into the pET−32a vector. Tcca mutants were prepared by using a QuickChange
site−directed mutagenesis kit (Agilent Technologies, Santa Clara, CA, USA) with the
pET32a–tcca plasmid as the template. The PCR products were incubated with DpnI (New
England Biolabs, Hitchin, UK) to digest the original DNA template and then separately
transformed into Escherichia coli strain XL1−Blue. The mutations were confirmed by
sequencing; the sequences of the mutagenesis oligonucleotides are listed in Table 1.

4.3. Protein Purification

The pET32a−tcca plasmid was transformed into E. coli BL21(DE3) cells, which were
grown in LB medium at 37 ◦C to an optical density (OD) 600 of 0.6~0.8 and then induced
by 0.4 mM isopropyl β−D−thiogalactopyranoside (IPTG) at 16 ◦C for 20 h. Cells were
harvested by centrifugation at 5000× g for 15 min and then re−suspended in lysis buffer
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containing 25 mM Tris−HCl, pH 7.5, 150 mM NaCl and 20 mM imidazole, followed by
disruption with a French Press. Cell debris were removed by centrifugation at 17,000× g
for 1 h. The supernatant was then applied to a Ni–NTA column with FPLC system ((Äkta
purifier, GE Healthcare, Chicago, IL, USA). The target proteins were eluted at ~100 mM
imidazole while using a 20–250 mM imidazole gradient. Each protein was dialyzed against
a buffer containing 25 mM Tris−HCl, pH 7.5, 150 mM NaCl, and was subjected to TEV pro-
tease digestion overnight to remove the 6× His tag. The mixture was then passed through
another Ni−NTA column. The untagged protein was eluted with 25 mM Tris−HCl, pH
7.5, 150 mM NaCl. The purity of each protein (>95%) was checked by SDS−PAGE analysis.
The purified proteins were each concentrated to 10 mg/mL for the following usage.

Table 1. Oligonucleotides used for mutagenesis.

Residue Substitutions Sequence (5′–3′)

Y77W ATTGATGTTAATAATATT tgg ACCCGCGAATGGGCCGTG
R79A GTTAATAATATTTATACCgctGAATGGGCCGTGGACCCG
E80A AATAATATTTATACCCGCgctTGGGCCGTGGACCCGGAT
W81A AATATTTATACCCGCGAAgctGCCGTGGACCCGGATATT
E129A CAGGTGGGTCATGCAAGTgctATGGAATTTGATGGCGAA
F130A CATGCAAGTGAAATGGAAgctGATGGCGAACGCATTGCA
F325A GGTAATACCACCGATGAAgctATTAGTCGTCCGCAGGTT
K427A TTTTTTGAAACCTTAGCCgctTGTTGGCGCCCGTTTGTG
W429A GAAACCTTAGCCAAATGTgctCGCCCGTTTGTGGGCAAA

4.4. Characterization of Melting Temperature, Optimal pH and Temperature of Tcca

The melting temperatures (Tm) of Tcca and its variants were determined using the
nano−differential scanning calorimeter (DSC, TA Instruments, New Castle County, DE,
USA), and the purified proteins were diluted to 1.0 mg/mL (PBS buffer, pH 7.4) and
degassed immediately prior to DSC testing. Samples were heated from 10 to 80 ◦C at a rate
of 1 ◦C per minute during the measurement; the basal line value of buffer without protein
was removed from the protein trace.

The optimum pH range of Tcca was tested in buffers ranging from pH 6.0 to 9.5
(pH 6.0–7.0: 0.1 M Na2HPO4/NaH2PO4 buffer, pH 7.0–8.0: 0.1 M K2HPO4/KH2PO4 buffer,
pH 8.0−9.0: 0.1 M Tris–HCl buffer, pH 9.0–9.5: 0.1 M glycine–NaOH buffer). All the
reactions were performed with a piece of PBAT film (Ø8 mm × 8 mm square) with 10.9 µM
enzyme in 0.8 mL buffer at 300 rpm, 40 ◦C for 24 h. The optimum temperature range of Tcca
was measured in the range of 30 to 70 ◦C. All the reactions were performed with a piece
of PBAT film (Ø8 mm × 8mm square) with 10.9 µM enzyme in 0.8 mL buffer containing
100 mM PBS (pH 8.0) at 300 rpm for 24 h.

4.5. Scanning Electron Microscopy

After enzymatic treatment, PBAT films were first washed with distilled water and
ethanol. The morphology of PBAT films before and after enzyme treatment was examined
by SU8010 SEM (Hitachi, Tokyo, Japan) at an accelerating voltage of 1.0 kV. Samples were
sputter–coated with platinum in an ion sputter (E1045, Hitachi, Japan).

4.6. Hydrolysis Activity of PBAT and BHET by Tcca and Its Mutants

PBAT films with a size of 8 mm × 8 mm were used for the hydrolysis experiments.
Prior to incubation, the films were washed with Milli–Q water three times and dried. The
films (Ø8 mm) were soaked with 10.9 µM enzyme in 0.8 mL buffer containing 100 mM
PBS (pH 8.0) at 300 rpm, 40 ◦C. The reactions were terminated after 24 h by dilution
with the same volume of cold methanol. The supernatant obtained by centrifugation
(15,000× g, 10 min) was then analyzed by HPLC. After filtration through a 0.22 µm filter
membrane, 10 µL of assay solution was analyzed using a HPLC system (Agilent 1200,
Agilent Technologies, Wilmington, DE, USA) equipped with a Welch Ultimate XB−C18
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column (4.6 × 250 mm, 5 µm, Welch Materials, Inc., Shanghai, China). The mobile phase
for PBAT hydrolysates was acetonitrile with 0.1% (V/V) formic acid in Milli–Q water at
a flow rate of 0.8 mL/min, and the effluent was monitored at a wavelength of 240 nm.
The typical elution condition was 0–9 min with 25% acetonitrile, 9–10 min with 25–55%
acetonitrile linear gradient, and 10–20 min with 55% acetonitrile. The hydrolytic product
TPA was identified by comparing the retention time with the standard compound, and
reactions without enzyme were used as negative controls.

Activity assays of Tcca and its mutants for BHET hydrolysis were performed in 20%
DMSO in 100 mM PBS (pH 8.0) and 1.0 mM BHET at 40 ◦C, the final concentration of
Tcca was 10.9 µM, and the reaction volume was 0.8 mL. The supernatant obtained by
centrifugation (15,000× g, 10 min) was then analyzed by HPLC using the same machine
and column as for PBAT activity detections. The mobile phase for BHET reactions was 19%
acetonitrile with 0.1% (V/V) formic acid in Milli–Q water at a flow rate of 0.8 mL/min, and
the effluent was monitored at a wavelength of 254 nm. The hydrolytic products of TPA
and MHET were identified by comparing the retention time with those of the standard
compounds. All samples were analyzed in triplicate in each independent experiment; the
resulting data were averaged, and the standard errors were calculated.
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