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Abstract: As a versatile and valuable intermediate, furfuryl alcohol (FOL) is widely utilized in
manufacturing vitamin C, perfume, fruit acid, lubricant, lysine, plasticizer, dispersing agent, resin,
fuel additive, and biofuel. This study aimed at the establishment of a cascade catalysis of biomass to
FOL via a hybrid approach in a deep eutectic solvent medium. The catalysis of corn stover (75 g/L)
with solid acid AT-Sn-WLS (1.2 wt%) produced 110.5 mM FAL in a ChCl:PEG10000–water (20:80,
wt/wt) system at 170 ◦C for 30 min, and then the formed FAL was biologically transformed into FOL
with recombinant E. coli SF harboring aldehyde reductase at pH 7.0 and 35 ◦C. This established hybrid
strategy could efficiently valorize corn stover into FOL, with the productivity of 0.41 g FOL per g
xylan in corn stover. Consequently, one combination of chemocatalytic and biocatalytic reactions
leading to a one-pot catalytic process was shown as an attractive approach in the valorization of
lignocellulose into valuable biobased chemicals.

Keywords: furfuryl alcohol; biomass; furfural; heterogeneous catalyst; deep eutectic solvent

1. Introduction

The swift depletion of traditional fossil energy and the excessive emission of green-
house gases have attracted much attention to alleviate the heavy reliance on non-renewable
sources [1]. Great efforts have been made worldwide to develop various sustainable
and eco-friendly processes for manufacturing valuable biobased compounds and biofuel
molecules from available, abundant, inexpensive, and renewable biomacromolecules [2,3].
Generally speaking, lignocellulosic biomass is composed of cellulose, hemicellulose, lignin [4],
and other components (e.g., proteins, ash, extractives, and pectin). As one of the value-
added bio-based platform molecules, furfuryl alcohol (FOL), which can be obtained via the
selective hydrogenation of furfural (FAL) [5,6], is widely utilized as an important platform
molecule for the synthesis of furan-based chemicals [7,8], and it can also be used in the
production of resins, vitamin C, perfume, lysine, polymer, plasticizer, lubricant, dispers-
ing agent, and biofuels [9–12]. Approximately 62% of furfural (FAL) is utilized for the
production of FOL [13]. Industrially, the liquid- or gas-phase hydrogenation of FAL is
utilized to manufacture FOL [14,15]. To avoid the high temperature/pressure and noble
metal catalysts, significant efforts have been made to develop efficient and sustainable
processing technology under mild performance conditions [16,17]. Biocatalytic synthesis is
now an attractive and eco-friendly alternative to the traditional chemical processes [18,19].
In addition, the use of whole cells or enzymes as catalysts can thus provide suitable and
efficient methodologies for developing sustainable catalytic processes [20]. To efficiently
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synthesize FOL under mild conditions, biological reduction can be used to transform FAL
using some bacteria-harboring reductases [21–23].

To efficiently transform biomacromolecules into FOL, a chemoenzymatic cascade
process has been developed by combining the chemical catalysis of biomass into FAL and
the biological reduction of FAL into FOL [22,23]. It is of importance to establish an efficient
process for transforming lignocellulose to FAL in a high yield and obtain a high load of
FAL. Generally, FAL can be manufactured from biomacromolecules and D-xylose by acidic
catalysts [4]. FAL can be used to prepare a series of furan-based compounds [24,25]. It is
widely used in the production of plastics, fuels, perfumes, resins, polymers, oil refining,
pharmaceuticals, and agrochemicals [26–28]. In industry, FAL is mainly prepared from
lignocellulose biomass using homogeneous mineral acid catalysts and heterogeneous
solid acid catalysts [29–31]. Furfural (FAL) is a widely used versatile building block
that can be derived from lignocellulosic biomass via acid hydrolysis/dehydration [32].
It is a versatile starting material for numerous intermediate chemicals, monomers, and
biofuel molecules [14]. Homogeneous catalysts (HCl, HCOOH, H2SO4, etc.) [32–34] and
heterogeneous catalysts (Amberlyst, modified coal fly ash, sulfonated zeolite, microporous
acids, zeolite, Nafion, lignin, etc.) have been prepared and utilized to manufacture FAL.
Distinct from the homogeneous catalysts, heterogeneous catalysts have the advantages
of good thermostability, low corrosivity, excellent catalytic activity, and repeated use
and can be easily separated [35–37]. The extraction of FAL from the catalytic system
employing effective chemocatalysts or extraction solvents has been used for enhancing
the productivity of FAL. Recently, deep eutectic solvent (DES) has become known as an
eco-friendly solvent. It can be obtained by blending a hydrogen-bond acceptor (HBA) and
a hydrogen-bond donor (HBD) that is capable of self-association via hydrogen-bonding
interactions to generate a eutectic [38,39]. DESs possess the advantages of low toxicity, low
cost, ease of syntheses, biodegradability, and negligible volatility. In addition, DESs can
be utilized to fractionate and pretreat lignocellulose, as well as to catalyze the conversion
of carbohydrates [40]. Choline chloride (ChCl) is one of the most widespread quaternary
ammonium salts used for the formation of DES because ChCl is cheap and can be easily
extracted from biomass. ChCl-based DESs have attracted considerable attention for FAL
production [41].

The seafood-processing industries generate approximately 6–8 million tons of crus-
tacean waste (e.g., crab waste, shrimp shell, and lobster shell) globally every year [42,43].
In processing lobster, ~70% of the body weight is discarded as waste. As one kind of
biomass resource, waste lobster shell (WLS) containing chitin was attempted as biobased
carrier to prepare heterogeneous catalyst (AT-Sn-WLS). Polyethylene glycol (PEG) is a
water-soluble neutral polyether and a PEG-based DES (ChCl:PEG10000). To efficiently
transform biomass into value-added furans, it is necessary to establish an appropriate
catalytic process [30,37,44,45]. Herein, the objective of this work is to develop a chemoenzy-
matic process for the hybrid conversion of corn stover (CS) to FOL in a tandem reaction with
AT-Sn-WLS catalysis and biocatalysis in a PEG-based DES medium. The corresponding
chemocatalytic and biocatalytic operational parameters are optimized. One efficient and
sustainable transformation of biomacromolecules into high-value chemicals is developed
in an eco-friendly medium.

2. Results and Discussion
2.1. Characterization of Raw Corn Stover and UST-Sn-LS-Treated Corn Stover

Using WLS as biobased support, the sulfonated tin-based heterogeneous chemocata-
lyst AT-Sn-WLS was prepared. The surface morphologies of WLS and AT-Sn-WLS were
examined by using SEM and the results are illustrated in Figure 1. It was obviously shown
that AT-Sn-WLS had a loose structure with micropores and cracks, verifying that and the
preparation process of AT-Sn-WLS could change the structure of the WLS surface (Figure 1).
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Figure 1. SEM characterization of raw LS (a) and UST-Sn-LS (b). 
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and functional groups [17]. The structure of the AT-Sn-WLS catalysts was further charac-
terized by FTIR (Figure 2). It indicated that AT-Sn-WLS had a different surface compared 
with the untreated LS. The bond near 678 cm−1 is associated with SnO2 [36]. The 876 cm−1 
is assigned to β-glycosidic linkage or CO32−. The wide band 1141 cm−1 is associated with 
the stretch vibration of C-O and S=O [46]. 1446 cm− 1 is related to the N-H stretching of 
chitin and C-O bending. The peak near 1648 is ascribed to amide I bonds (two types of 
hydrogen bonds in a CO group with the NH group of the adjacent chain and the OH 
group of the interchain). The peaks at around 3268 and 2934 cm−1 are assigned to N-H and 
-CH in chitin, and were observed to be substantially weakened because of the removal of 
chitin after the preparation of AT-Sn-WLS. The bond near 3443 cm−1 was associated with 
the stretching vibration of -OH [17,22]. 

Figure 1. SEM characterization of raw LS (a) and UST-Sn-LS (b).

FTIR is widely employed to obtain information on the existence of chemical bonds and
functional groups [17]. The structure of the AT-Sn-WLS catalysts was further characterized
by FTIR (Figure 2). It indicated that AT-Sn-WLS had a different surface compared with
the untreated LS. The bond near 678 cm−1 is associated with SnO2 [36]. The 876 cm−1 is
assigned to β-glycosidic linkage or CO3

2−. The wide band 1141 cm−1 is associated with
the stretch vibration of C-O and S=O [46]. 1446 cm− 1 is related to the N-H stretching of
chitin and C-O bending. The peak near 1648 is ascribed to amide I bonds (two types of
hydrogen bonds in a CO group with the NH group of the adjacent chain and the OH group
of the interchain). The peaks at around 3268 and 2934 cm−1 are assigned to N-H and -CH
in chitin, and were observed to be substantially weakened because of the removal of chitin
after the preparation of AT-Sn-WLS. The bond near 3443 cm−1 was associated with the
stretching vibration of -OH [17,22].
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Figure 2. FTIR characterization of raw LS and UST-Sn-LS in the range of 4000–500 cm−1.

XRD analysis can be performed to understand the crystalline state of the chemical
catalyst during carbonization and sulfonation [47]. As presented in Figure 3, AT-Sn-WLS
has an amorphous structure, which is different from WLS. The crystalline peak of LS at
29.4◦ is ascribed to chitin. In addition, the narrow diffraction peaks detected at 25.4◦, 31.4◦,
38.4◦, 40.8◦, 43.3◦, 48.7◦, 51.7◦, 55.7◦, and 65.9◦ are associated with the crystal structure of
SnO2 loaded on tin-based solid acid [48].
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Figure 3. XRD characterization of raw LS and UST-Sn-LS. The 2θ angle was scanned between 20◦

and 70◦.

Thermogravimetric analysis (TG) was used to examine the structural changes of the
samples with temperature, which to some extent reflected the thermal stability of the
catalysts [49]. The TG curve of AT-Sn-WLS is illustrated in Figure 3. When the heating
temperature reaches 750 ◦C, only 1.47% mass loss is observed on the AT-Sn-WLS prepared
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in this study, reflecting the good thermal stability of AT-Sn-WLS (Figure 4). The TG curve of
AT-Sn-WLS is composed of three main stages for weight loss in the range of 50–750 ◦C. In
the first stage of 50–100 ◦C, it is likely that CO2 emission and/or water evaporation causes
the loss of weight. In the second stage of 200–400 ◦C, the degradation of the carboxyl group
(-COOH) and hydroxyl group (HO-) may cause a slight mass loss [50]. In the third stage
of 600–750 ◦C, the potential aromatization of the structural network may result in weight
loss [51].
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2.2. Synthesis of FAL from with UST-Sn-LS in ChCl:PEG10000–Water

FAL is a very promising platform molecule that can be utilized in turn to manufacture
a variety of valuable furan compounds. To efficiently convert corn stover into FAL, various
catalytic parameters (e.g., DES ChCl:PEG10000 dosage, UST-Sn-LS dose, catalytic tempera-
ture, catalytic duration) were tested on the FAL yield. Corn stover (75 g/L) was used as
feedstock for the preparation of FAL with UST-Sn-LS (0–6 wt%) in DES ChCl:PEG10000–
water (0:100–50:50, wt/wt) at 160–190 ◦C for 5–50 min.

Solvent plays a key role in the heterogeneous catalytic reaction and the FAL yield is
highly dependent on the reaction solvent [17]. By raising the DES ChCl:PEG10000 dose
from 0 to 20 wt% at 170 ◦C for 30 min, the FAL yield rose from 41.7% to 53.5% (Figure 5).
As the mass ratios of ChCl:PEG10000-to-water rose from 20:80 to 50:50, the FAL yields
weakened slightly. In the presence of ChCl:PEG10000 (50 wt%), the FAL yield reached
48.9%. It was likely that an excessive DES load might confine the contact opportunity of
substrate biomass to chemocatalyst to some extent, which would cause a slight decrease
in the formation of FAL [44]. Obviously, the optimal DES ChCl:PEG10000 dose in the
ChCl:PEG10000–water system was 20 wt%, and ChCl:PEG10000–water (20:80, wt/wt) was
employed as an appropriate reaction medium for the valorization of corn stover into FAL.

The catalyst loading can significantly affect the conversion of biomass into FAL [25,44].
In this constructed ChCl:PEG10000–water (20:80, wt/wt) medium, the FAL yields were
comparatively higher when the UST-Sn-LS load was raised from 0 to 1.2 wt%. The highest
FAL yield reached 53.5% in the presence of UST-Sn-LS (1.2 wt%) at 170 ◦C for 30 min
(Figure 6). As the UST-Sn-LS load increased from 1.2 wt% to 6.0 wt%, the formed FAL
had no obvious change. An excessive catalyst load might provide more acidity and cause
undesired side reactions [17], and the FAL yield maintained a stable level. Hence, the
optimal load of UST-Sn-LS was 1.2 wt%.
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(20:80, wt/wt) (CS 75 g/L, 170 ◦C, 30 min).

The catalytic temperature (160, 170, 180, and 190 ◦C) and catalytic duration (5–50 min)
had a profound influence on the generation of FAL (Figure 7). The maximum FAL yield
reached 53.5% using corn stover (75.0 g/L) as feedstock in the presence of UST-Sn-LS
(1.2 wt%) as chemocatalyst in ChCl:PEG10000–water (20:80, wt/wt) at 170 ◦C for 30 min.
The high reaction temperature was not only conducive to the dehydration of biomass-
derived D-xylose to FAL, but also promoted the side reaction, which led to the degradation
of FAL products through cracking, condensation, and resinization [26]. With the increase in
the reaction time, the side reaction was enhanced and the FAL yield gradually dropped [31].
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the FAL generation in ChCl:PEG10000–water (20:80, wt/wt) (CS 75 g/L, solid acid 1.2 wt%).

In the valorization of biomass or biomass-derived D-xylose to FAL, it is found that
chloride salts can be beneficial for stabilizing the structure of the transition state of the
reaction, alleviating the occurrence of undesired side reactions and enhancing the produc-
tivity of FAL [44]. Different chloride salts (SnCl4, CrCl3, AlCl3, FeCl3, CuCl2, KCl, CoCl2,
NH4Cl, LiCl, NaCl, MgCl2, CaCl2, and ZnCl2) (15.0 g/L) were separately added into the
ChCl:PEG10000–water system. Compared to the control without metal chlorides, SnCl4,
CrCl3, AlCl3, FeCl3, CuCl2, KCl, CoCl2, NH4Cl, LiCl, NaCl, and MgCl2 inhibited the FAL
productivity in ChCl:PEG10000–water (Figure 8a). CaCl2 and ZnCl2 slightly promoted
the formation of FAL. In particular, ZnCl2 (15.0 g/L) favored the generation of FAL with
the highest yield (57.2%) in ChCl:PEG10000–water. Furthermore, various doses of ZnCl2
(0–30 g/L) were individually supplemented to the ChCl:PEG10000–water medium for
testing (Figure 8b). No significant inhibition was observed. A slightly higher FAL yield was
obtained at 57.2% in ChCl:PEG10000–water containing 15 g/L of ZnCl2, while the FAL yield
(as the control) without the addition of ZnCl2 reached 53.5%. ZnCl2 possessing intrinsic
Brönsted/Lewis acidities might synergistically catalyze D-xylose to produce FAL [45]. Cl-

could catalyze the biomass-derived D-xylose enolization and facilitate the formation of
FAL via dehydration. Thus, ZnCl2 could assist the UST-Sn-LS catalysis of corn stover to
yield FAL.



Catalysts 2023, 13, 467 8 of 16
Catalysts 2023, 13, x FOR PEER REVIEW 8 of 16 
 

 

 
Figure 8. Effects of chlorides (15 g/L) on the FAL production in ChCl:PEG10000–water (20:80, wt/wt) 
(corn stover 75 g/L, solid acid 1.2 wt%, 170 °C, 30 min) (a); effects of ZnCl2 loading (0–30 g/L) on the 
FAL production in ChCl:PEG10000–water (20:80, wt/wt) (corn stover 75 g/L, solid acid 1.2 wt%, 170 
°C, 30 min) (b). 

2.3. Synthesis of FOL from FAL in ChCl:PEG10000–Water 
2.3.1. Effects of ChCl:PEG10000 Load on Whole-Cell Bioreduction Activity 

DES loading might have a profound effect on the biocatalysis [52,53]. The SF whole 
cells harboring NADPH-dependent reductase (CgCR) could be employed to biologically 
transform FAL to FOL in ChCl:PEG10000–water medium, and the effects of different 
ChCl:PEG10000 loading (0–60 wt%) were tested on the FAL-reducing activity (Figure 9). 
Upon increasing ChCl:PEG10000 from 0 to 30 wt%, the FAL-reducing activity was clearly 
raised. In the range of 10–30 wt%, the biological reduction activity increased by 1.4–1.6-
fold compared to control. It is known that the limitation of FAL solubility in the water 
phase might confine the biocatalytic reaction. It is likely that these loadings of DES 
ChCl:PEG1000 (10–30 wt%) facilitate the substrate diffusion and thus enhance the bio-
transformation. From 30 wt% to 60 wt%, the activity decreased slightly. At 60 wt% of 
ChCl:PEG10000, similar bioreductive activity was found compared to the control without 
the addition of ChCl:PEG10000. Obviously, 1–60 wt% of ChCl:PEG10000 had no inhibition 
on the bioreduction activity of SF cells. An excessive ChCl:PEG10000 (over 20 wt%) might 
affect the contact opportunity of substrate FAL to SF cell biocatalyst, which results in a 
decrease of FOL formation from 30 wt% to 60 wt%. Obviously, the ChCl:PEG10000 load 

Figure 8. Effects of chlorides (15 g/L) on the FAL production in ChCl:PEG10000–water (20:80, wt/wt)
(corn stover 75 g/L, solid acid 1.2 wt%, 170 ◦C, 30 min) (a); effects of ZnCl2 loading (0–30 g/L) on
the FAL production in ChCl:PEG10000–water (20:80, wt/wt) (corn stover 75 g/L, solid acid 1.2 wt%,
170 ◦C, 30 min) (b).

2.3. Synthesis of FOL from FAL in ChCl:PEG10000–Water
2.3.1. Effects of ChCl:PEG10000 Load on Whole-Cell Bioreduction Activity

DES loading might have a profound effect on the biocatalysis [52,53]. The SF whole
cells harboring NADPH-dependent reductase (CgCR) could be employed to biologically
transform FAL to FOL in ChCl:PEG10000–water medium, and the effects of different
ChCl:PEG10000 loading (0–60 wt%) were tested on the FAL-reducing activity (Figure 9).
Upon increasing ChCl:PEG10000 from 0 to 30 wt%, the FAL-reducing activity was clearly
raised. In the range of 10–30 wt%, the biological reduction activity increased by 1.4–1.6-fold
compared to control. It is known that the limitation of FAL solubility in the water phase
might confine the biocatalytic reaction. It is likely that these loadings of DES ChCl:PEG1000
(10–30 wt%) facilitate the substrate diffusion and thus enhance the biotransformation.
From 30 wt% to 60 wt%, the activity decreased slightly. At 60 wt% of ChCl:PEG10000,
similar bioreductive activity was found compared to the control without the addition
of ChCl:PEG10000. Obviously, 1–60 wt% of ChCl:PEG10000 had no inhibition on the
bioreduction activity of SF cells. An excessive ChCl:PEG10000 (over 20 wt%) might affect
the contact opportunity of substrate FAL to SF cell biocatalyst, which results in a decrease
of FOL formation from 30 wt% to 60 wt%. Obviously, the ChCl:PEG10000 load chosen at
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20 wt% could significantly enhance the biological reduction activity. To establish the one-pot
chemoenzymatic hybrid conversion process of biomass into FOL, ChCl:PEG10000–water
(20:80, wt/wt) was used as a reaction medium.
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Figure 9. Effects of ChCl:PEG10000 load (0–60 wt%) on the biological reduction [NADP+ (1 mmol
NADP+ per mol FAL, glucose (1.5 mol glucose per mol FAL), pH 7.0, 35 ◦C]. In the absence of
ChCl:PEG10000, the bioreduction activity was defined as 100%. The FAL-reducing activity was
quantified based on the bioreduction reaction rate.

2.3.2. Effects of NADP+ Load and Co-Substrate Glucose Dosage on Whole-Cell
Bioreduction

To efficiently reduce carbonyl/aldehyde chemicals into NADPH-dependent alcohols
of the reductase biocatalyst, it is of importance to obtain the optimum NADP+ dose. As
the NADP+-to-FAL molar ratio was raised from 0:1 to 1:1 (µmol/mmol), the FAL-reducing
activity increased considerably (Figure 10a). As the ratio from 1:1 to 3:1 (µmol/mmol) was
chosen, the reduction activity weakened gradually. The suitable NADP+ load was 1.0 µmol
NADP+ per mmol FAL (Figure 10a). The co-substrate glucose load can significantly affect
biological reduction activity [18]. When the molar ratio of glucose-to-FAL increased from 0
to 1.5:1 (mol/mol), the reduction activity enhanced significantly (Figure 10b). As this ratio
was raised from 1.5:1 to 3:1 (mol/mol), the reduction activity weakened slightly. It is likely
that a high load of glucose can result in an increase in the reaction medium’s viscosity and
confine the biological reduction. Thus, the suitable glucose load was 1.5 mol glucose per
mol FAL.
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Figure 10. Effects of NADP+ load (NADP+/FAL 0–3 µmol/mmol, pH 7.0, temperature 35 ◦C, co-
substrate glucose/FAL 1.5 mol/mol) (a), co-substrate glucose load (glucose/FAL 0–3 mol/mol, pH
7.0, temperature 35 ◦C, NADP+/FAL 1 µmol/mmol) (b), medium pH (6–8) (temperature 35 ◦C,
glucose/FAL 1.5 mol/mol, NADP+/FAL 1 µmol/mmol) (c), and bioreduction temperature (25–50 ◦C,
pH 7.0, glucose/FAL 1.5 mol/mol, NADP+/FAL 1 µmol/mmol) (d) on the FAL-reducing activity.

2.3.3. Effects of Reaction Temperature and Medium pH on Whole-Cell Bioreduction
Activity

It was known that medium pH and biocatalytic temperature could significantly influ-
ence the FAL-reducing activity [17]. In ChCl:PEG10000–water (20:80, wt/wt), the effects of
performance temperature (25–45 ◦C) and medium pH (6.0–8.0) on FAL-reducing activity
were tested using whole-cell SF (50 g/L, wet weight) as a biocatalyst. The FAL-reducing
pH (6.0–8.0) had an obvious influence on the biological reduction, and the maximum
activity was observed at pH 6.5. A pH that is too low or too high may inactivate reductase
denaturation. It was observed that the FAL-reducing reaction temperature significantly
influenced the biological reduction activity. When the performance temperature was in-
creased from 25 ◦C to 35 ◦C, the biocatalytic activity enhanced gradually. The highest
FAL-reducing activity was observed at 35 ◦C. Increasing the catalytic temperature from
35 ◦C to 50 ◦C, the FAL-reducing activity weakened considerably. A higher FAL-reducing
temperature (>35 ◦C) would cause the destruction of the spatial structure of reductase and
the inactivation of reductase. The biocatalytic activity reached the maximum value at pH
6.5 (Figure 10c) and 35 ◦C (Figure 10d). Distinct from the chemo-selective reduction of FAL
into FOL [44], the biological reduction of FAL is regarded as an eco-friendly route for the
production of FOL under the eco-friendly performance condition.
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2.3.4. Effects of FAL Dosage on Whole-Cell Bioreduction Activity

A different load of FAL (50–350 mM) was biological transformed into FOL with SF
cells in ChCl:PEG10000–water (20:80, wt/wt) (Figure 11). No obvious substrate inhibition
was detected when the FAL loading was in the range of 50–200 mM. The transformation
of 50–200 mM FAL took 2–6 h, and a 100% FOL yield was obtained. An excessive load of
FAL (>200 mM) would weaken the biocatalytic synthesis of FOL. After the transformation
of 350 mM FAL for 4 h, FOL was obtained in the yield of 74.3%, and no further FOL was
generated after 4 h.
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Figure 11. Biological reduction of 50–350 mM FAL into FOL with SF whole cells, NADP+ (1 mmol
NADP+/mol FAL), and glucose (1.5 mol glucose per mol FAL) in ChCl:PEG10000–water (pH 7.0,
35 ◦C).

2.4. Transformation of Corn Stover to FOL in ChCl:PEG10000–Water

The combination of chemocatalytic and biocatalytic reactions leading to the one-
pot transformation process is an attractive approach in the valorization of biomass into
valuable biobased chemicals [39,40]. Time courses for catalyzing corn stover into FOL were
monitored during the cascade reaction under the optimum performance conditions. In
40 mL water, 75 g/L of milled corn stover (3.0 g) (0.894 g glucan, 1.02 g xylan, and 0.51 g
lignin), 0.6 g ZnCl2 and 0.48 g AT-Sn-WLS (1.2 wt%) were placed to an autoclave (100 mL,
300 rpm). At 170 ◦C, liquor A containing 110.5 mM FAL (0.42 g) formed within 30 min in
40 mL ChCl:PEG10000–water (20:80, wt/wt), and 1.6 g corn stover residue (0.59 g glucan,
0.20 g xylan, and 0.128 g lignin) remained. This mixture was regulated to pH 7.0 and
further biologically transformed with SF cells (2.5 g wet weight) at 35 ◦C. The diluted FAL
solution (51.4 mL, 0.42 g FAL) was completely transformed to FOL (0.42 g) (Figure 12), with
a productivity of 0.41 g FOL per g xylan in corncob.
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Figure 12. Time course of bioreduction of dilute corn stover-derived FAL with SF whole cells at
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3. Materials and Methods
3.1. Chemicals

NADP+ (≥99%), furfural (FAL) (≥99%), furfuryl alcohol (FOL) (≥99%), and other
chemicals were bought from Sinopharm Group Chemical Reagent Co., Ltd. (Shanghai,
China) and used without any further purification.

3.2. Synthesis of FAL from Corn Stover

At room temperature, the milled WLS powder (160.0 g) was immersed in 600 mL
NaOH (500 mM) ethanol solution for 4 h. The alkali-treated WLS (AT-WLS) was then
separated by simple filtration, washed with distilled water to neutral, and oven-dried
(60 ◦C). The prepared AT-WLS powder was immersed in 300 mL of ethanol containing
40 g SnCl4·5H2O, and the pH was regulated to 6.0 by adding ammonia (25.0 wt%). The
formed colloidal solution was oven-dried at 70 ◦C for 36 h and 90 ◦C for 36 h. This prepared
powder was immersed in 4 M H2SO4 for sulfonation at 60 ◦C. After the sulfonation for 4 h,
the sulfonated material was filtered, oven-dried for 15 h at 90 ◦C, and calcined at 550 ◦C for
4 h. The formed catalyst AT-Sn-WLS was further used to transform the biomass into FAL.

PEG10000 was used as a hydrogen donor. Choline chloride (ChCl) was also utilized as
a hydrogen donor. The PEG10000 and ChCl were placed into a 100 mL container in a molar
ratio of 1:1. After incubation at 80 ◦C by stirring (500 rpm) for 20 min, DES ChCl:PEG10000
was collected for further use. Corn stover (CS) powder (29.8 wt% glucan, 34.0 wt% xylan,
and 17.0 wt% lignin) was transformed to FAL with AT-Sn-WLS (0–6 wt%) in a reactor
(Shanghai Yuezhong Instrument Co., Zhenjiang, China) at 160–190 ◦C for 5–50 min in DES
ChCl:PEG10000–water (0:100–50:50, wt/wt). Based on the weight of xylan in the biomass,
the yield of FAL was calculated as follows:

FAL yield (%) =
FAL formed × 0.88

Xylan in biomass (g)
× 150

96
× 100 (1)

3.3. Whole-Cell Bioreduction of FAL into FOL

Cells of recombinant E. coli SF containing aldehyde reductase (CgCR) were cultivated
and harvested as previously reported [44]. The biological reduction of commercial FAL
was conducted as follows: in DES ChCl:PEG10000–water (0:100–60:40, wt/wt), whole-cell
reduction of FAL (50–350 mM) was conducted at the designed performance temperature
(25–50 ◦C) and pH (100 mM KH2PO4-K2HPO4 buffer, pH 6.0–8.0) in the presence of
metal chloride salt types (0.5 mM), NADP+ (0–3 mmol NADP+/mol FAL), and glucose
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(0–3 mol glucose/mol FAL). FAL and FOL were quantified with HPLC. The FOL yield was
defined as follows:

FOL yield (%) =
FOL formed (mM)

Initial FAL (mM)
× 100 (2)

3.4. Analytical Method

Fourier-transform infrared spectroscopy (FTIR) (Thermo Electron Co., Waltham, MA,
USA), scanning electron microscopy (SEM) (JEOL, Tokyo, Japan), thermogravimetric analy-
sis (TA) (Mettler Toledo AG, Schwerzenbach, Switzerland), and X-ray diffraction (XRD)
(Rigaku Co., Akishimashi, Japan) were used to measure the AT-Sn-WLS. The concentration
of FAL or FOL were quantified with HPLC (LC-2030C, Kyoto, Japan) using an Athena C18
column (4.6 mm× 250 mm, 5 µm) eluted with a mobile phase (20 v% methanol, 80 v%
water, and 0.10 wt% trifluoroacetic acid) at the flow rate of 0.8 mL/min. FAL and FOL were
detected at 254 nm and 210 nm, respectively.

4. Conclusions

The efficient transformation of the available renewable biomacromolecules to high-
value biobased chemicals is a sustainable and eco-friendly energy technology. This work
developed a sustainable and efficient approach for the transformation of corn stover to
FOL in a cascade reaction with AT-Sn-WLS catalysts and SF cells in ChCl:PEG10000–
water (20:80, wt/wt). Firstly, waste lobster shell (WLS) containing chitin was used as
biobased support to prepare the sulfonated tin-based heterogeneous catalyst (AT-Sn-WLS),
which was effectively utilized to transform the hemicellulose in corn stover into FAL
(110.5 mM) under the optimized performance conditions. Subsequently, the corn stover-
derived FAL was biologically transformed into FOL with SF cells harboring reductase
under mild bioreaction conditions. Finally, one efficient tandem conversion by bridging a
chemocatalysis and a mild biocatalysis was developed for the sustainable conversion of
biomacromolecules into FOL in a benign DES ChCl:PEG10000–water system.
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