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Abstract: Alkali metals, as ideal electron donors, can effectively regulate the valence state distribution
of the host metals. Nevertheless, no studies have reported the application of alkali metal promoters
in the hydrogen evolution reaction (HER). Here, we designed an efficient and wide pH-universal
hydrogen evolution catalyst that utilizes alkali metal to control the valence, size, and dispersion
of Ru NPs. The experimental results reveal that the alkali metal additives contribute to the dis-
persion and stabilization of metallic Ru. More importantly, the interaction between Na and Ru
regulates the distribution of Ru valence states and helps to form more active components of Ru0.
Additionally, NaCl functioned as an in situ template to assist the construction of a porous carbon
skeleton promotes mass transfer and exposes more active sites, further promoting the synergistic
effect of Ru and Na. As a result, the optimal Ru0.3/C−800 delivers high efficiency for HER with
an overpotential as low as 29 mV in 1.0 M KOH and 83 mV in 0.5 M H2SO4 under 10 mA cm−2.
Particularly, the catalytic performance of Ru0.3/C−800 even outbalanced that of commercial Pt/C in
an alkaline medium. This rational construction strategy opens up new avenues for obtaining superior
pH-universal electrocatalysts.

Keywords: alkali metal; Ru based; hydrogen evolution reaction; wide-range pH; promotional effect

1. Introduction

As a sustainable secondary energy, hydrogen (H2) energy has the advantages of wide
raw material sources and zero carbon emission, and it has demonstrated an excellent
application foreground in industries such as automotive, chemical, and aviation [1,2].
Compared with traditional steam reforming technology, producing hydrogen by water
electrolysis fundamentally eliminates the dependence on fossil fuels and achieves zero
carbon emissions [3,4]. Nowadays, the electrolysis of water has become the most com-
petitive hydrogen production technology [5,6]. Alkaline electrolyzer, proton exchange
membrane electrolyzer, and other types of electrolyzers are available on the market. The
various operating environments put forward higher requirements for the design of cata-
lysts. It is highly desirable to create economical and pH-universal catalysts. Moreover, the
practical deployment of water electrolysis technology is heavily restricted by the sluggish
kinetics of the cathode catalysts, which results in a high overpotential to drive H2 produc-
tion [7]. Currently, Pt-based electrocatalysts, as the benchmark for HER, exhibit excellent
catalytic performance [8–11]. Unfortunately, the scarce reserves and exorbitant price largely
impede their commercialization. Developing cost-effective electrocatalysts to substitute
Pt/C is a central issue in the water industry [12]. As a Pt-group metal, Ru possesses a
moderate metal–hydrogen bond strength similar to Pt–H, but the cost is only 1/30 that of
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Pt [13–16]. In general, the HER efficiency is determined by the strength of the metal–
hydrogen bond [17]. Ru serving as a catalyst’s active center instead of expensive Pt metal
is expected to keep the catalytic activity unchanged while reducing the catalyst cost [18,19].
However, the current Ru-based catalysts suffer from complex preparation methods, the
high toxicity of reagents, and high metal loading [20]. Therefore, it is urgent and challeng-
ing to develop facile, economical, and green synthetic strategies for fabricating efficient
Ru-based catalysts.

Alkali metal, serving as a structural or electronic regulator, plays vital role in ther-
mocatalytic reactions [21]. Since the first report on the promotional effect of alkali metal
in 1845, the function of alkali metal has been systematically studied in hydrogenation
reactions, such as ammonia production [22], Fischer–Tropsch process [23], aromatics [24],
hydrogenation of unsaturated hydrocarbons [25–28], and CO2 [29]. In the meantime, it
is generally believed that alkali metals act as electron donors to modulate the electronic
structures of the active metals, thereby changing the adsorption of reacting intermedi-
ates [30–32]. For example, Zhang introduced Na dopant and oxygen vacancy, which made
the d-band center of RuO2 far away from the Fermi level, resulting in the weakening of the
chemical bond between the oxygen intermediate and the surface of RuO2, thus reducing the
activation barrier of the oxygen evolution reaction (OER) to optimize the performance [33].
By regulating the interplay of Na and Co, Wu’s group obtained stable Na-Co2C active sites,
formed Na-CO bonds to strengthen the interaction between Na and Co2C, dispersed the
Co2C, and reduced the particle size [34]. Despite alkali metal promoters being widely used
in thermocatalysis, OER, etc., the application of alkali metal promoters in HER has not been
reported, let alone the influencing mechanism of alkali metal on the HER performance.

Herein, “starch strips” derived from potatoes, commercially used in the preparation
of puffed food were chosen as the carbon source. The “starch strips” were economical,
widely sourced, and rich in NaCl. Utilizing abundant NaCl in “starch strips” as the pore-
forming agent, the porous carbon-supported ultra-dispersed Ru-based composite (Ru/C)
was synthesized by a simple impregnation–pyrolysis strategy; meanwhile, alkali metal
Na promoters were introduced in situ. It was found that the introduction of Na greatly
modulated the valence state distribution of Ru species, inducing the formation of more
Ru0 states which, in turn, boosted the electrocatalytic performance. Benefitting from the
interplay between Na and Ru, as well as the developed texture structure, Ru0.3/C−800
functioned as a super and long-lasting HER catalyst over a broad pH range. In 1.0 M KOH
and 0.5 M H2SO4, the overpotentials of Ru0.3/C−800 were only 29 mV and 83 mV to achieve
the current density of 10 mA cm−2. Notably, the mass loading of Ru in Ru0.3/C−800 was
as low as 0.81 wt%, greatly reducing the synthetic cost compared with that of commercial
Pt/C (20 wt%). Furthermore, the HER performance for Ru0.3/C−800 outbalanced Pt/C in
alkaline solution. This work provides a new method for alkali metal promoters to tune the
electrocatalytic performance, which could lead to the design of novel catalysts for efficient
hydrogen evolution.

2. Results and Discussion
2.1. Catalyst Synthesis and Characterization

The Ru/C was synthesized using the method of impregnation adsorption and one-step
pyrolysis starting from RuCl3 and “starch strips” derived from potatoes as the feedstock,
which was ecofriendly, commercially available, and inexpensive (Figure 1). Benefitting from
the confinement effect of the carbon skeleton, Ru species were converted into monodis-
persed nanoparticles (NPs) [35]. In this study, the as-prepared catalysts were named
Rux/C−T, where x refers to the additional amounts of Ru (0, 0.2, 0.3, and 0.4 mmol),
and T refers to pyrolysis temperature (700, 800, 900, and 1000 °C). Transmission electron
microscopy (TEM) was performed to observe their morphologies and microstructures. For
Ru0.3/C−800, a distinct pore structure was exhibited on the carbon substrate (Figure S1),
which was attributed to the pore-forming effect of NaCl. It was not difficult to find that,
the Ru NPs of Ru0.3/C−800 were uniformly distributed on the carbon frame with a mean
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particle size of ~1.90 nm (Figure 2a). When the dose of Ru3+ was lower than 0.4 mmol, the
Ru particles of Ru0.2/C−800 had a uniform size. However, upon increasing the addition
of Ru3+ to 0.4 mmol, the Ru particles of Ru0.4/C−800 were significantly agglomerated
(Figure S2). In addition, the pyrolysis temperature also played a vital part in the distribution
of Ru particles. As displayed in Figure S3a, Ru0.3/C−700 displayed the homogeneous
distribution of Ru NPs due to the fact of insufficient nucleation under low pyrolysis temper-
ature. However, with the increase in the pyrolysis temperature, the agglomeration of the Ru
NPs occurred obviously (Figure S3b,c). Furthermore, to investigate the role of NaCl on the
microstructure and metal phase of the catalysts, the “starch strips” were pretreated to wash
off NaCl as much as possible, and the obtained catalyst was denoted as Ru0.3/C−800−WF.
Compared with Ru0.3/C−800, the pore structure of Ru0.3/C−800−WF was not obvious at
the same scale, indicating the pore-forming effect of NaCl. In addition, Ru0.3/C−800−WF
only contained a small number of Ru particles, which demonstrates that NaCl also con-
tributed to dispersing and anchoring the metallic Ru (Figure S4). The mass loading of Ru
and Na was, furthermore, measured by an inductively coupled plasma-optical emission
spectrometer (ICP-OES). As elevating the pyrolysis temperature from 800 °C to 1000 °C,
the Na content gradually reduced from 0.36 wt% to 0.004 wt% (Table S1). Accordingly, the
content of Ru showed the same variation trend as that of Na content with the decreased
content from 0.81 wt% to 0.11 wt%. Similarly, the Ru content of Ru0.3/C−800−WF was
reduced as the Na content decreased compared with Ru0.3/C−800. Such results revealed
that the stabilizing effect of Na on Ru was due to the interaction between them. Detected
by high-resolution transmission electron microscopy (HRTEM), the interplanar spacings of
Ru0.3/C−800 were measured to be 0.205 nm and 0.231 nm (Figure 2b), coincident with the
(101) and (100) planes of Ru, respectively. In addition, the uniform distribution of metallic
Ru in the carbon matrix was further identified under a high-angle annular dark-field scan-
ning transmission electron microscope (HADDF-STEM) (Figure 2c) [36]. The elemental
mapping of Ru0.3/C−800 (Figure 2d – i) demonstrated the homogeneous dispersion of
C, O, N, Ru, Na, and Cl. Notably, it could be found that the element Ru was distributed
around Na, as shown in the Figure S5, indicating the interaction between them, to a
certain extent.

Figure 1. The synthetic procedure for Rux/C−T catalysts.

More structural details of the catalysts were then confirmed by X-ray diffractometer
(XRD). From Figure 3a, a broad peak belonging to amorphous carbon was observed in
all samples. Apart from that, the diffraction peaks coincided well with the (100), (002),
and (101) planes of Ru (PDF#06-0663) located at ≈38.4◦, 42.2◦, and 44.0◦, which appeared
in Ru0.3/C−800 and Ru0.3/C−900. This result was associated with the good crystalline
character of Ru at 800 ◦C and 900 ◦C (Figure S6). In addition, the typical diffraction peaks
of NaCl (PDF#05-0628) at ≈31.7◦ and 45.5◦ were presented as well. It was worth noting
that the intensity of the NaCl peaks weakened obviously along with the elevated pyrolysis
temperature, which was due to the volatilization of NaCl as the temperature increased [37].
As for Ru0.3/C−800−WF, there were only amorphous carbon peaks existing from the
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XRD pattern, revealing that NaCl was completely removed (Figure S7b). Moreover, as
exhibited in Figure S7a, the NaCl peak intensity gradually weakened as the content of in Ru
content increased.

Figure 2. (a) TEM image of Ru0.3/C−800 (inset: the corresponding Ru NPs size distribution his-
togram); (b) HRTEM image of Ru0.3/C−800; (c) HAADF-STEM image of Ru0.3/C−800; (d–i) Ele-
mental mappings for C, N, O, Ru, Na, and Cl in Ru0.3/C−800, respectively.

X-ray photoelectron spectroscopy (XPS) was further employed to reveal the chemical
valence and elemental compositions of the samples [17]. Here, the C 1s peak of 284.5 eV
served as the standard for all of the peaks’ calibration [38]. Figure 3b visually showed
the Na 1s peaks of Ru0.3/C−800 and C−800. In contrast to C−800, the Na 1s peak of
Ru0.3/C−800 was shifted towards higher binding energy owing to the electron transfer
from Na to Ru. From the Ru 3p spectra in Figure 3c, the peaks at 462.0 eV, 484.2 eV,
464.6 eV, and 486.5 eV were corresponding to Ru0 3p3/2, Ru0 3p1/2, Run+ 3p3/2, and Run+

3p1/2, respectively [17,39]. The binding energy of Ru 3p of Ru0.3/C−800 was negatively
biased compared with Ru0.3/C−800−WF. Moreover, the peak positions of Na 1s and Ru
3p varied with the pyrolysis temperature. As shown in Figure S8a, with the increase in
the temperature, Na 1s shifted to the low binding energy. In Figure S8b, when the content
of Na is high, the shift in the Ru 3p peak position was more obvious, because more Na
transferred electrons to Ru. It was calculated that the ratio of Ru0/Run+ for Ru0.3/C−800
was 1.68, which was much higher than that of other control groups (Table S2). According to
reports, Ru0 was the active center of catalytic hydrogen production, and the high content
of Ru0 was helpful for improving catalytic hydrogen production [40]. In this system, Na,
as an electronic structure regulator, could effectively adjust the valence distribution of Ru,
promoting the formation of more Ru0, and hopefully improved catalytic activity.
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Figure 3. (a) XRD patterns of Ru0.3/C−700, Ru0.3/C−800, Ru0.3/C−900. and Ru0.3/C−1000;
(b) XPS spectra of Na 1s of Ru0.3/C−800 and C−800; (c) XPS spectra of Ru 3p of Ru0.3/C−800
and Ru0.3/C−800−WF; (d) N2 adsorption/desorption curves of Ru0.3/C−800 (inset: pore size
distribution plot).

Na not only served as an assistant to regulate the valence distribution of Ru and
increase the content of Ru0 but also acted as a pore-forming agent that could affect the
pore structure of the catalysts [41]. The pore structure was studied using the Brunauer–
Emmett–Teller (BET) method, as displayed in Figure 3d. The N2 adsorption/desorption
plots exhibited that the specific surface area of Ru0.3/C−800 was 592.0 m2 g−1, significantly
larger than other catalysts (Table S3). The decreased specific surface areas of Ru0.3/C−900
and Ru0.3/C−1000 were possibly caused by the collapse of the mesoporous structure
when the material calcined at high temperatures (especially over 800 ◦C). Furthermore, the
pore size distribution of Ru0.3/C−800 (inset in Figure 3d) manifested a large number of
mesopores. The existence of a large number of mesopores was beneficial for the solution
to enter during the reaction, which increased the contact area, exposed more active sites,
and accelerated mass transfer [42]. Additionally, the defective nature of the catalysts was
investigated by Raman spectroscopy [43]. A typical D band and G band of carbon was
manifested in Ru0.3/C−800, and the intensity ratio ID/IG was 0.856. Moreover, the value
of ID/IG increased with the increase in the pyrolysis temperatures (Figure S9), possibly
because too high pyrolysis temperature would lead to the collapse of the pore structure. It
displayed that only an appropriate pyrolysis temperature can optimize the conductivity, as
well as the catalytic abilities of the composites.

2.2. Electrochemical Characterization

The Ru powder, commercial Pt/C (20 wt%), Pt electrode, and Rux/C−T were tested for
HER in 1.0 M KOH, 0.5 M H2SO4, and 1.0 M PBS, respectively. As is well known, the HER ac-
tivity was evaluated by the overpotential (η10) at the current density of
10 mA cm−2 [43–46]. From Figure 4a, the blank carbon (C−800) displayed almost no
activity for hydrogen generation within the applied potential window. However, upon
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introducing trace Ru in the system, the catalytic activity was significantly improved. With
the increase in the Ru concentration, the η10 distinctly declined from 73 mV (Ru0.2/C−800)
to 29 mV (Ru0.3/C−800). Whereas, the η10 further increased to 35 mV (Ru0.4/C−800) when
the Ru dosage was increased to 0.4 mmol. These results indicate that the appropriate
Ru content was able to enhance the catalytic activity. It is noteworthy that the HER of
Ru0.3/C−800 exhibited an even better performance than Pt/C (20 wt%), Ru powder, and
Pt electrode in 1.0 M KOH, as shown in Figures 4a and S10. Additionally, an effective
catalyst for HER was able to initiate proton reduction with minimum overpotential and fast
kinetics [46]. Normally, the Tafel slope is a vital indicator to investigate the reaction kinetics
for HER [47]. According to the polarization curves of the samples, the corresponding Tafel
slopes were obtained (Figure 4b). It was not hard to find that the order of Tafel slopes was
Ru0.3/C−800 (34.43 mV dec−1) < Ru0.4/C−800 (36.89 mV dec−1) < Pt/C (59.44 mV dec−1)
< Ru0.2/C−800 (78.74 mV dec−1), which was in line with the trend of η10. The smaller Tafel
slope value of Ru0.3/C−800 suggested a higher reaction rate, and the HER catalyzed by
Ru0.3/C−800 followed a Volmer–Heyrovsky mechanism [12]. Then, the charge transfer
kinetics involved in HER was detected through EIS. The subsequent Nyquist diagram
(Figure 4c) demonstrated that the curve of the sample was virtually semicircular, with
the diameter of the curve standing for the associated charge transfer resistance (Rct). In
addition, the lower Rct indicated a rapid electrode reaction rate. The Ru0.3/C−800 had the
smallest Rct, indicating that the reaction rate was the fastest, which was consistent with
the results of the voltammetry measurements. Furthermore, the electrochemical double-
layer capacitance (Cdl), which was measured in the non-Faraday region of the CV curves,
was used to evaluate the ECSA. The Cdl value was produced by linearly graphing the
capacitance current density response vs. the scanning rate [17]. Figure S11 depicts the
ECSA curves with various Ru contents. The Cdl of Ru0.3/C−800 was 135.66 mF cm−2

(Figure 4d), which was significantly higher than the Cdl of Ru0.4/C−800 (113.54 mF cm−2),
Ru0.2/C−800 (65.31 mF cm−2), and C−800 (4.60 mF cm−2). The increase in the Cdl value
means that Ru0.3/C-800 possesses a large active surface area, which contributes to the
exposure of active sites and the charge transfer [48].

Figure 4. (a) LSV curves of C−800, Ru0.2/C−800, Ru0.3/C−800, Ru0.4/C−800, and 20 wt% Pt/C in
1.0 M KOH; (b) Tafel plots of C−800, Ru0.2/C−800, Ru0.3/C−800, Ru0.4/C−800, and 20 wt% Pt/C
in 1.0 M KOH; (c) Nyquist plots of C−800, Ru0.2/C−800, Ru0.3/C−800 and Ru0.4/C−800 in 1.0 M
KOH; (d) linear plot of the capacitive current against the scan rate for the estimation of Cdl.
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On this basis, the role of the pyrolysis temperature on the catalytic activity was subse-
quently explored [18]. As shown in Figure 5a, Ru0.3/C−700 presented a high overpotential
of 214 mV in alkaline solution to achieve 10 mA cm−2. Upon increasing the pyrolysis
temperature, the overpotential dropped sharply, and the overpotential of Ru0.3/C−800
only required 29 mV to achieve the same current density. However, further elevating the
pyrolysis temperature, the overpotential increased to 52 mV and 90 mV for Ru0.3/C−900
and Ru0.3/C−1000, respectively. Additionally, as exhibited in Figure S12, the Cdl value
rose first and then declined with the increase of the pyrolysis temperature. This result was
in line with the activity trend. It was further confirmed that the high Cdl was the reason
for the improved activity. However, the variation in the Cdl mainly came from the specific
surface area, which was ultimately ascribed to the NaCl template for the forming of pores.
Furthermore, the catalytic activity was closely correlated with the electrochemical reac-
tion rate and the capability of charge transfer, which was verified by the Tafel (Figure 5b)
and EIS (Figure 5c) results. In addition, Figure S13 illustrates the EIS fitting circuit for
Ru0.3/C−800, Ru0.3/C−900, and Ru0.3/C−1000 in 1.0 M KOH. It can be seen from Table S4
that the smaller Rct value of Ru0.3/C−800 corresponded to the higher reaction rates. More
importantly, the overpotential of Ru0.3/C-800-WF increased to 72 mV when the amount
of NaCl in the raw material was washed off (Figure 5d), and Figure S14 shows that the
corresponding Tafel, Cdl, and EIS results displayed a worsening trend. This was due to
the pore-forming effect of NaCl, which regulated the specific surface area of the catalysts
and, thus, affected their activity. Meanwhile, it can be seen from Figure 5e that the decrease
in the NaCl content in the raw materials was accompanied by the decrease in the Ru0

component and the deterioration of activity. Moreover, the same results can be obtained
from the catalysts calcined under varied temperatures. When the pyrolysis temperature
rose, the overpotential for Ru0.3/C−800, Ru0.3/C−900, and Ru0.3/C−1000 at 10 mA cm−2

was inversely proportional to the Ru0 content. To put it simply, the higher the Ru0 content,
the smaller the overpotential of the catalyst, and the better the electrochemical performance.
These findings again demonstrate the interaction between Na and Ru; that is, Na not only
adjusted the valence state of the Ru phase but also stabilized Ru. Simultaneously, an ideal
catalyst not only has excellent catalytic activity but also high catalytic stability. Therefore,
stability was another vital indicator to assess the performance of the catalyst [49–51]. On
the one hand, the durability of Ru0.3/C−800 was measured by continuous CV sweeps.
Figure 5f reveals that the overpotential only fell by 2 mV after 1000 cycles, suggesting the
excellent stability of Ru0.3/C−800. On the other hand, under the corresponding potential,
a further measurement was performed for 10 h by chronoamperometry. No significant
reduction in the current density could be observed (inset in Figure 5f).

Furthermore, we also studied the electrocatalytic activity of the catalyst in acidic and
neutral media, verifying the universality of the designed catalyst in a wide pH [52]. In acidic
medium, a current density of 10 mA cm−2 could be reached by the low overpotential of 83
mV for Ru0.3/C−800, which was significantly lower than that of Ru0.3/C−700 (basically
inactivated), Ru0.3/C−900 (96 mV), and Ru0.3/C−1000 (131 mV). Meanwhile, the corre-
sponding Tafel slope and EIS plots (Figure 5h,i) showed the same trend as the activity curves.
Additionally, the activity of Ru0.3/C−800 was better than Ru powder in acidic medium
(Figure S15a), and Ru0.3/C−800 exhibited good stability (Figure S15b). Moreover, we
conducted activity tests in a. neutral environment (Figure S16a). The performance was
not ideal, but Ru0.3/C−800 still had advantages compared with the Ru powder. Surpris-
ingly, the performance of Ru0.3/C−800 was excellent in terms of stability (Figure S16b). In
summary, the above results strongly support the hypothesis that Ru0.3/C−800 has good
activity and stability for HER in a wide pH range.
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Figure 5. (a) LSV curves of Ru0.3/C−700, Ru0.3/C−800, Ru0.3/C−900, and Ru0.3/C−1000 in
1.0 M KOH; (b) Tafel plots of Ru0.3/C−700, Ru0.3/C−800, Ru0.3/C−900, and Ru0.3/C−1000;
(c) Nyquist plots of Ru0.3/C−700, Ru0.3/C−800, Ru0.3/C−900, and Ru0.3/C−1000; (d) LSV curves of
Ru0.3/C−800 and Ru0.3/C−800−WF in 1.0 M KOH; (e) relationship diagram of Ru0 content and Run+

content and overpotential of Ru0.3/C−800, Ru0.3/C−900, Ru0.3/C−1000, and Ru0.3/C−800−WF;
(f) LSV curves of Ru0.3/C−800 before and after 1000 CV tests (inset: the i–t curve of Ru0.3/C−800);
(g) LSV curves of Ru0.3/C−700, Ru0.3/C−800, Ru0.3/C−900, and Ru0.3/C−1000 in 0.5 M H2SO4;
(h) Tafel plots of Ru0.3/C−800, Ru0.3/C−900, and Ru0.3/C−1000; (i) Nyquist plots of Ru0.3/C−700,
Ru0.3/C−800, Ru0.3/C−900, and Ru0.3/C−1000.

3. Experimental
3.1. Chemicals

Potassium hydroxides (KOH), ruthenium (III) chloride (RuCl3, Ru content:
45 wt%~55 wt%), sulfuric acid (H2SO4), Ru powder, and ethanol were bought from Aladdin
Industrial Inc. The commercial Pt/C with 20 wt% Pt loading was purchased from Johnson
Matthey Company (Sigma, Shanghai, China). The main ingredient in the “starch strips”
was starch, which was bought from supermarkets and is usually used in the production
of puffed foods. Deionized water (DIW) was used to prepare all solutions. The DIW used
in the experiment was obtained using a water purifier Hitech-DW, Wenzhou, Zhejiang
Province, China).

3.2. Synthesis of Electrocatalysts
3.2.1. Synthesis of Ru0.3/C−800

First, 400 mg of RuCl3 was weighed and dissolved in 20 mL of DIW. Another clean
glass beaker was used and 17 mL of DIW was mixed with 3 mL of the prepared RuCl3
solution. After, ~4 g of the “starch strips” were soaked in the above RuCl3 solution at
room temperature for 1 h. Furthermore, the treated “starch strips” were transferred to
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a watchglass and dried at 60 ◦C to obtain the precursor. Afterward, the precursor was
calcined at 800 ◦C for 2 h in a tube furnace under an Ar environment. Finally, the product
was ultrasonically washed several times with DIW. The final product, Ru0.3/C−800, was
obtained after drying.

3.2.2. Synthesis of C−800, Ru0.2/C−800, and Ru0.4/C−800

For the comparison of the samples of C−800, Ru0.2/C−800, and Ru0.4/C−800, the total
volume of the reaction mixture remained at 20 mL. However, the addition of the RuCl3
solution was changed to 0/2/4 mL, respectively. The other conditions remained unchanged.

3.2.3. Synthesis of Ru0.3/C−700, Ru0.3/C−900, and Ru0.3/C−1000

For the comparison of the samples of Ru0.3/C−700, Ru0.3/C−900, and Ru0.3/C−1000,
the preparation procedure followed that of Ru0.3/C−800, except that the calcination tem-
perature varied to 700 ◦C, 900 ◦C, and 1000 ◦C.

3.2.4. Synthesis of Ru0.3/C−800−WF (Wash First)

In addition, to demonstrate the influence of Na on the valence state of Ru, a control
sample was set. In the early stage, the NaCl in the “starch strips” were washed as much as
possible, and then the washed “starch strips” were used as raw materials for the synthesis
of Ru0.3/C−800−WF. The preparation process followed that of Ru0.3/C−800.

3.3. Material Characterization

The HRTEM was carried out on a Talos F200S S-Twin (Thermo Fisher, Czech Re-
public), and the accelerating voltage was 200 kV. A D/tex Ultima TV wide-angle X-ray
diffractometer (NIC, Japan) was employed to measure the metal phase of the samples. The
diffractometer was equipped with Cu Kα radiation (1.54 Å), and the scanning rate was
5 ◦/min. The Raman spectra were collected on a Raman spectrometer (Labram HR800-LS55,
HORIBA, France). The specific surface area and PSD curves were calculated by traditional
BET and BJH methods, respectively. The X-ray photoelectron spectra (XPS) for the bonding
states were obtained using a Thermo ESCALAB 250xi spectrometer (Thermo Fisher, Czech
Republic). In addition, the samples were first dissolved with aqua regia. Inductively
coupled plasma-optical emission spectrometry (ICP-OES) (PerkinElmer, Optima 5300 DV)
was used to measure the contents of Ru and Na. The Ru content of Ru0.3/C-800 was as low
as 0.81 wt% as measured by ICP-OES.

3.4. Electrochemical Characterization

To assess the HER performance of the catalysts, all experiments were performed on
a conventional three-electrode system with CHI 760E as the electrochemical workstation,
and the temperature during the test was kept at room temperature. A saturated calomel
electrode (SCE) and a carbon rod was employed as the reference and the counter electrode,
respectively. A glassy carbon electrode 5 mm in diameter acted as the working electrode.
A 3 mg catalyst was dispersed in the mixture of Nafion (20 µL) and ethanol (300 µL). Where-
after, the prepared ink was ultrasonic treated for 30 min to form a uniform suspension.
Then, 30 µL ink was coated on the surface of the glassy carbon electrode and dried at
room temperature. The electrochemical tests were operated in 0.5 M H2SO4, 1.0 M KOH,
and 1.0 M PBS solution. Linear sweep voltammogram (LSV) curves were acquired at a
scan rate of 5 mV s−1 over a potential window of −0.4 to 0.1 V (relative to a reversible
hydrogen electrode (RHE)). All polarization curves were IR-corrected. The Tafel equation
(η = a + b log(j)) was employed to fit the slope of Tafel. In order to obtain the electrochemical
active surface area (ECSA) of the prepared catalysts, we measured a series of cyclic voltam-
metry (CV) plots at different scanning rates from 10 to 50 mV s−1 in the potential window
of 0.1–0.2 V relative to RHE. Additionally, electrochemical impedance spectroscopy (EIS)
was collected from the frequency range of 0.01 Hz to 100 kHz, and the test voltage was
−0.023 V (vs. RHE).
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4. Conclusions

In this work, pH-universal Ru/C electrocatalysts for HER were constructed using
a two-step adsorption–pyrolysis strategy. In 1.0 M KOH and 0.5 M H2SO4, the overpo-
tentials of Ru0.3/C−800 were as low as 29 mV and 83 mV to obtain a current density of
10 mA cm−2. This work has several advantages over previously reported results:
(1) The “starch strips” containing natural alkali metal additives (NaCl) were used as
the raw material, which were green, ecofriendly, and economical. (2) The alkali metal
auxiliaries were able to stabilize Ru and regulate the distribution of Ru valence, which
contributed to the formation of more active components Ru0. (3) NaCl as a salt template
could induce a porous structure, promoting mass transfer and exposing more active sites.
The synthetic strategy was not only general and scalable but also emphasized the critical
role of alkali metal in promoting HER activity, which provides a new idea for developing
efficient non-Pt HER catalysts.
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