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Abstract: Levulinic acid and its esters are close to being extensively produced through consolidated
industrial processes, thus playing a central role in biobased industries producing commodities
within the principles of the circular economy. One of the main pathways of levulinic acid and
ester valorization is their transformation with hydrogen to obtain γ-valerolactone, valeric esters,
1,4-pentanediol and 2-methyl tetrahydrofuran. These reactions are catalyzed by noble and non-noble
metal-based heterogeneous catalysts. The use of an abundant and non-toxic element, such as copper,
is advantageous with respect to expensive or harmful metals, such as Rh, Ru, Pt or Ni. In this critical
review, we wish to give a deeper insight into research advancements in the last ten years regarding
the processing of levulinic acid and its esters with hydrogen using heterogeneous copper catalysts.

Keywords: levulinic acid; heterogeneous copper catalysts; γ-valerolactone; valeric esters; 1,4-pentanediol;
2-methyl tetrahydrofuran

1. Introduction
1.1. Importance of LA/LEs and Scope of the Review

Levulinic acid (LA) is likely the most attractive platform molecule derived from
lignocellulose, as it can be produced in relatively high yields from this renewable source.
Indeed, it has been identified by the United States Department of Energy as one of the top
12 promising bio-based building blocks [1,2]. LA is typically produced using mineral acids
(i.e., HCl or H2SO4) at around 200 ◦C, in a process in which C-6 sugars are converted into
LA and formic acid, while C-5 sugars yield furfural. Biofine (by Biofine Renewables) is
one of the most celebrated technologies in the production of this chemical, even if the first
attempt at a conversion plant based on this process, which was developed in Caserta (Italy)
by GFBiochemicals, has not gone into operation thus far. An improved process was recently
designed, and a joint venture between GFBiochemicals and Towell Engineering group
(named NXTLEVVEL) is currently working on a new production plant [1–3]. Levulinic
esters (levulinates, LEs), especially methyl and ethyl levulinates, are also convenient
platform chemicals, instead of LA, because of their specific physicochemical properties. LEs
can be directly obtained from lignocellulose in the presence of an alcohol, in particular from
the cellulose stream through the transformation of glucose [4–6], or from the hemicellulose
stream, via a domino reaction from furfural [7–10]. Compared to LA, LEs show easier
product separation [4] and they limit the metal leaching when a reaction is carried out in
the presence of a metal-based heterogeneous catalyst [5,11].

As already pointed out, the synthetic routes of LA and LEs commonly involve the use
of mineral acids that result in equipment corrosion, difficult separation and purification
and potential environmental pollution, thus limiting the sustainability of the process. For
these reasons, research is also oriented towards heterogeneous catalysts (i.e., Brønsted
acid-based ones, such as zeolites, or ion exchange resins), but they result in lower LA/LE
yields and easy deactivation [2,6,12].
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LA and LEs are near to being extensively produced through consolidated and sus-
tainable processes, and therefore they could play a central role in biobased industries
producing commodities within the principles of the circular economy. Indeed, they can be
transformed into different chemicals, such as γ-valerolactone (GVL), succinic acid, diphe-
nolic acid, 1,4-pentanediol (1,4-PDO), valeric esters, 2-methyl tetrahydrofuran (2-MTHF),
aminolevulinic acid, ketals and others [1,13–15], by different catalyzed processes (e.g.,
hydrogenation, oxidation, amination, condensation). In this critical review, we wish to
give a deeper insight into recent research advancements (over the last ten years) related to
the transformation of LA/LEs with hydrogen using heterogeneous copper-based catalysts.
Thus, we will focus our attention on the following products: GVL, valeric esters, 1,4-PDO,
and 2-MTHF (Scheme 1). The processes of catalytic transfer hydrogenation (CTH), as an
alternative to the use of molecular hydrogen, will also be examined, although copper-based
materials find a limited diffusion compared to others (e.g., Zr-catalysts).
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1.2. General Considerations about Copper Catalysts

Heterogeneous Cu-based catalysts are materials used in a wide range of chemical
transformations, especially those linked to the methanol economy, but also in organic
chemistry (i.e., C=O and C=C hydrogenation, coupling reactions and click chemistry, dehy-
drogenations, deoxygenation) [16], environmental remediation and deNOx activity [17–21].
Copper is a non-noble metal, with a very low toxicity, compared to other metals such as
Ni [22,23].

Moving to the objective of this review, several copper-based catalysts have been
designed for the hydrogenation of LA/LEs in the last ten years. The dominant controlling
factors are Cu-support interactions, morphology and dispersion of the Cu phase and the
use of a second metal (e.g., Ni, Ag). The preparation method is the key, but the combination
and the rationalization of all these parameters to obtain a highly performant catalyst is not
an easy task and, at the same time, not always linear. One of the main issues preventing
their large-scale application is deactivation, which mainly occurs through copper leaching,
metal sintering or carbon deposition [24–28]. Catalyst stability and durability represent
priorities in the scaling-up of the process at an industrial level. It is worth noting that
sintering phenomena are in strong correlation with temperature. In particular, copper
Hüttig temperature (that is, the semi-empirical value at which atoms at the surface start to
exhibit mobility) is only 134 ◦C, while the reactions of LA/LE hydrogenation are normally
carried out over 200 ◦C [29,30], thus limiting the lifetime (and the applicability) of copper
catalysts. Traditionally, Adkins-type catalysts, namely copper chromites, have been used
for hydrogenation of carboxylic acids and esters to alcohols due to their effectiveness and
inexpensiveness [31,32]. Because of these reasons, since the 1950s, they have been applied
in the production of biomass-derived chemicals, in particular in the hydrogenation of LA
and LEs to GVL [33]; some examples can also be found in the recent literature [34,35].
However, despite copper chromites being simple and cheap catalysts, they suffer from
toxicity and recyclability problems and could rapidly undergo deactivation, especially
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when free carboxylic acids are used. In particular, the presence of free acids or short-chain
alcohols slows down the hydrogenation reaction rate [31,36].

2. LA/LE Hydrogenation to GVL and Valerates

There is a growing interest in the production of GVL under environmentally friendly
conditions because it is a safe, non-toxic, biodegradable and renewable-based added-value
chemical, with many applications [37–39]. GVL can be (i) used as a biofuel additive,
with combustion properties comparable to ethanol when blended with gasoline [40–43],
(ii) converted to alkyl valerates, which are used as fuel components for gasoline and
diesel engines [24,39,44], (iii) an environmentally safe solvent [25,40] hydrogenated to form
1,4-PDO, which undergoes dehydration to form 2-MTHF [45,46], and (iv) employed as a
renewable monomer to produce polyesters [47,48]. In addition, it can be used as cutting
oil, brake fluid and as a coupling agent in dye baths [26], converted to methyl pentenoate,
which can be further transformed into nylon intermediates, such as adipic acid, dimethyl
adipate or caprolactam [27], or even used as a food additive [49]. Several noble metals,
such as supported Ru, Rh, Pt and Ir, have also been recently employed [41,50–59] for
the heterogeneous catalyzed selective hydrocyclization of LA/LEs to GVL, in high yield.
However, noble metals are expensive, and their supply is a limitation for large-scale plant
applications. On the contrary, the use of abundant elements, such as Cu and Zr, offers more
environmentally friendly routes because of their higher abundance and lower price.

2.1. Hydrogenation of LA/LEs to GVL with Molecular Hydrogen

In Table 1, the main results obtained in the last ten years in the hydrogenation of
LA/LEs to GVL with copper-based heterogeneous catalysts are summarized. The reactions
are performed by using water, alcohols (primary or secondary) or, rarely, organic solvents
such as THF [11], dioxane [60] or even n-hexane [61]. However, some of these compounds
are toxic or harmful, thus their replacement is a priority to improve the sustainability of the
process. This is the case with n-hexane, which is neurotoxic [62,63], and of THF, which is
suspected to be carcinogenic [64]. 2-MTHF, which is less toxic and which can be derived
from LA/LEs via GVL (vide infra), can be proposed instead of THF [46,65,66]. The solvent
has a strong impact on the reaction, and from this point of view, water is considered a
green solvent and LA is highly soluble in this medium. However, easier copper leaching
is observed in water, thus reducing the lifetime of the catalyst [5,67]. Therefore, the use
of organic solvents and/or LEs can have a positive effect on the phenomenon. It is worth
noting that a reaction under no solvent conditions is reported [68], following the principles
that “the best solvent is no solvent” [69]. The vapor phase hydrogenation of LA was indeed
performed in a fixed-bed down-flow gas reactor, over a bimetallic Cu-Ni/SiO2 catalyst,
and provided a conversion (C) and GVL selectivity (S) of 98% and 97%, respectively [68].

The temperature range is generally between 180 and 250 ◦C. Remarkably, in some
cases, it has been possible to reduce the temperature to 110, 120 or 140 ◦C [70–72]. This
was achieved using, respectively, Cu–Ni bimetallic NPs supported on functionalized SiO2
nanosphere (C = 99% and S = 97% in 13 h), CuMgAl mixed oxides derived from calcined
hydrotalcites (C = 100% and S = 95%) or Cu/Al2O3-SiO2 (C = 79% and S = 96%) in
continuous plants.

Usually, the reactions are performed using high-pressure batch reactors at a H2
pressure >25 atm. On the other hand, the literature on continuous-flow systems is still
scarce [41–43,72], despite their role as a step ahead towards industrial scale-up [30,68,73–75].

As summarized in Scheme 2, GVL can be synthesized from LA/LEs via two reaction
pathways, both containing hydrogenation and dehydration steps. The first one involves
the hydrogenation of the carbonyl functionality of LA, thereby forming the unstable in-
termediate 4-hydroxypentanoic acid (4-HPA), and the subsequent dehydration followed
by an intramolecular esterification (ring closure) to yield GVL. The other one is promoted
by an acid catalyzed dehydration of LA to form angelica lactone (AL), followed by its hy-
drogenation to GVL [24,39,44]. Starting from LEs, the reaction was found to preferentially
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proceed via the first pathway, in which the levulinate hydrogenation forms the 4-hydroxy
pentanoic ester (HPE), which undergoes a rapid lactonization to yield GVL [25,45].
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As already stated, the use of LEs instead of LA has a positive effect on catalyst
stability, since it can limit copper leaching [5,11]. Regardless of the reaction pathway, a
well-balanced amount of metal sites and of acidic ones for the hydrogenation and the
dehydration, respectively, is a prerequisite to obtain an efficient catalyst [44–46].

Metallic copper is indeed required for the hydrocyclization of LA/LEs to give GVL, as
well highlighted in the literature [76–78]. Interestingly, some publications have pointed out
that a balanced Cu(0) and Cu(I) surface distribution can promote the hydrogenation of ester,
acyl and ketone groups [30,79–81]. In particular, Cu(0) facilitates the H2 adsorption and
dissociation, while Cu(I) can activate LA/LEs C=O groups [30]. Small Cu nanoparticles
(NPs) and a highly dispersed copper phase are reported to be crucial factors to achieve
good catalytic performances [76,82] on a high surface area support [83], although they
would easily sinter and deactivate during the reaction (we already pointed out the low Cu
Hüttig temperature, namely 134 ◦C) [30]. Therefore, the catalyst preparation method and
support are precious tools helping to overcome this issue.

Copper-based catalysts for the hydrogenation of LA/LEs to GVL were prepared
over different oxides or mixed oxides such as SiO2, TiO2, ZrO2, Al2O3, Cr2O3, BaO,
SiO2-ZrO2, Al2O3-ZrO2, WO3–ZrO2 and others [76,77,82]. The ZrO2-based ones are the
most widespread [5,30,61,73,76,77,82,84]. Indeed, the fruitful combination between copper
and zirconia has been demonstrated to be a winning strategy in the design of active catalysts
with tunable properties for many applications (e.g., methanol economy) [85]. High surface
area [30,76] and strong Cu-support interactions [30,61,75,77,82] enhance the dispersion of
the metal phase, especially at high Cu loading, and reduce the sintering. Despite this, many
papers (among these the majority of those related to Zr-based materials) report catalysts
with very low surface area (i.e., <100 m2/g, but also <50 m2/g) [5,61,71,73,77,82,84] and
this usually results in either reduced copper dispersion or metal loading, thus leaving space
for further improvements. Some oxides (e.g., Al2O3) [11,74,86,87] more commonly lead to
high surface area materials, while for other systems, the use of an amorphous phase [88],
instead of crystalline ones, or their dispersion into a high surface area matrix (e.g., SiO2)
would be preferable [89,90]. This is the case, for example, with ZrO2.

The support not only affects the metal dispersion, but it also plays a direct role
in the activation of the reactants. The presence of acid sites, both Lewis and Brønsted
ones, for instance, favors C=O polarization or the dehydration reaction [5,71,74]. It is
curious that this aspect is often neglected in many papers that focus their attention mainly
on hydrogenation activity. Balla et al. [73] compared a series of Cu-supported catalysts
prepared on different oxides (ZrO2, Al2O3, SiO2, TiO2). They found that the most acidic
material, namely Cu/Al2O3, was the most active one, resulting in conversion and selectivity
even higher than the Cu/ZrO2 (C = 98% and S = 87%, respectively, vs. C = 81% and S = 83%).
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Previously, Hengne et al. also showed that supports not exhibiting acid sites (e.g., BaO)
have a considerably low activity when compared to ZrO2- and Al2O3-based catalysts,
which both provided C = 100% and S > 90% [5]. Unfortunately, these papers do not discuss
in depth the role of the acid sites and, in particular, their nature (Lewis vs. Brønsted) and
strength. In 2019, a more in-depth analysis of the acid–base properties of the catalyst was
performed, through pyridine-adsorbed FT-IR, and NH3 and CO2 TPD measurements on a
series of CuMgAl catalysts with different Mg/Al ratios [71]. In this case, moderately strong
Brønsted acidity appears to be the most suitable feature to obtain GVL from LA, while the
introduction of basic sites promotes the formation of 1,4-PDO through ring opening. In
this paper, the authors present the Brønsted acid sites’ role in suppressing the ring-opening
reaction. This contrasts with what was reported one year earlier in another work, where
this side reaction was ascribed to the strong Brønsted acidity [70]. In this view, we agree
that the control of the acid strength is critical to promote/inhibit the ring-opening reaction,
analogous to what we reported on furfural and HMF [91].

The choice of the support is not the only way to tune the acid–base properties, but also
the metal phase can have an important role. Ravasio and co-workers [92] showed the possi-
bility of preparing very small copper nanoparticles with a Lewis acid character (Figure 1)
with a peculiar, but easy, preparation method (namely, chemisorption–hydrolysis—CH).
A similar effect can be obtained by stabilizing Cu+ species on the catalyst surface using a
support such as Al2O3 or ZrO2. Indeed, as discussed above, it has been shown that Cu+

possesses an acidic character [61,93]. Alternatively, the acidity of the catalyst can be tuned
by introducing a second metal (e.g., Ni) [86] or by catalyst doping strategies [30]. This is
the case of Li et al., who used boron oxides to modulate the distribution of Cu0 and Cu+ on
a Cu/ZrO2. This resulted in a double effect: on one side, the co-presence of Cu0 and Cu+

species facilitates the H2 adsorption and the activation of LA C=O groups; on the other
side, the presence of boron oxide retarded the Cu sintering. This led to a total conversion
and a selectivity above 90% in a long-term experiment (up to 100 h) in a fixed-bed reactor
at a low temperature of 140 ◦C [30].
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One of the most common strategies to obtain more stable materials is the introduction
of another metal (e.g., Ni or Ag) to obtain bimetallic catalysts. Monometallic Ni-based
supported materials show high activity, but low selectivity due to the formation of side
products and a significant amount of deposited carbon [87]. On the other hand, the intrinsic
synergy between Cu and Ni particles in supported bimetallic Cu-Ni catalysts was proposed
to be responsible for the higher activity, stability and recyclability. Indeed, the presence of
Cu in bimetallic catalysts enhances the reducibility of NiO, behaving as an activation site
for H2 molecules [86]. In the meantime, the reduced Ni species act as a co-active site, able
to accelerate the H2 adsorption and activation, thus lowering the reduction temperature
of bimetallic samples [70]. Compared to monometallic systems, the promotion effects of
Ni allowed the achieving of full LA conversion after 2 h, while Cu sites were responsible
for selectivity improvements (S = 96%) [87]. Moreover, Ni was found to prevent copper
leaching [60] and sintering [94], while Cu was capable of suppressing coke formation [87].
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Nevertheless, nickel has been classified as a toxic metal and its use should be avoided for a
more environmentally friendly process [95,96].

A remarkable attempt to improve Cu catalysts using a different doping metal, namely
Ag, was carried out by Zhang et al. [11]. The authors proposed that Ag promotes the CuO
in situ reduction during the reaction with less severe sintering. In addition, Ag prevents Cu
leaching by maintaining it at metallic state. This improved the catalyst stability, allowing
nine catalyst recycles under mild reaction conditions, and providing complete conversion
and selectivity in only 1 h at 180 ◦C.

In Table 1, we summarized the catalytic behavior of the supported Cu or Cu-Ni
catalysts for the hydrocyclization of LA/LEs to GVL in the presence of molecular H2.

Table 1. Catalysts for the selective hydrogenation of LA/LE to GVL.

Batch

Catalyst Preparation
Procedure Reaction Conditions Catalytic

Performances (%) Ref.

Cu/ZrO2 CP

LA/LEs, H2O or
MeOH, molLA/gcat = 0.086 mol g−1 in H2O,

molLE/gcat = 0.069 mol g−1 in MeOH,
molLA/gcat = 0.086 mol g−1 in MeOH, 200 ◦C, 5 h,

P(H2) = 35 bar, batch

C = 100
S > 90 [5]

Cu-Ni/γAl2O3
WI
SG

LA, H2O, molLA/gcat = 0.086 mol g−1, 250 ◦C, 6 h,
P(H2) = 65 bar, batch

C = 100
S = 96 [87]

(1) Cu-WO3/ZrO2
(2) Cu/ZrO2

CP
OG

LA, (1) EtOH or (2) H2O,
molLA/gcat = 0.022 mol g−1, 200 ◦C, 6 h,

P(H2) = 50 bar, batch

C = 100
(1) S = 94
(2) S = 99

[84]

Cu/ZrO2 CP LA, H2O, molLA/gcat = 0.086 mol g−1, 200 ◦C, 2 h,
P(H2) = 35 bar, batch.

C = 100
S = 80 [76]

Cu/ZrO2

OG
DP
MT

LA, H2O, molLA/gcat = 0.086 mol g−1, 200 ◦C, 1 h,
P(H2) = 35 bar, batch

C = 90
S = 100 [77]

Cu-Ag/Al2O3 WI LA, THF, molLA/gcat = 0.017 mol g−1, 180 ◦C, 1 h,
P(H2) = 14 bar, batch

C = 100
S = 100 [11]

Cu-Ni
organosilica
nanospheres

ST
WI
CP

LA, 2-PrOH, molLA/gcat = 0.031 mol g−1, 120 ◦C,
13 h, P(H2) = 40 bar, batch

C = 99
S = 97 [70]

Cu-Al2O3 CP LA, EtOH, molLA/gcat = 0.0086 mol g−1, 110 ◦C, 2 h,
P(H2) = 30 bar, batch

C = 100
S = 95 [71]

Al2O3-Cu/ZrO2 CP LA, H2O, molLA/gcat = 0.086 mol g−1, 200 ◦C, 2 h,
P(H2) = 30 bar, batch

C = 100
S = 100 [82]

Cu-Ni/γ-Al2O3 WI
LA, solvent-free, molLA/gcat = 0.196 mol g−1, 220 ◦C,

6 h,
P(H2) = 30 bar, batch

C = 100
S = 99 [86]

Cu-Ni/Al2O3 CI LEs, n-HEX, molLE/gcat = 0.069 mol g−1, 180 ◦C, 6 h,
P(H2) = 25 bar, batch

C = 100
S = 98 [61]

B2O3-Cu/ZrO2

CP for
Cu/ZrO2, then

boric acid

LA, H2O, molLA/gcat = 0.069 mol g−1, 150 ◦C, 5 h,
P(H2) = 30 bar, batch

C = 100
S = 100 [30]

Flow

Catalyst Preparation
Procedure Reaction Conditions Catalytic

Performances (%) Ref.

Cu/γAl2O3 WI LA, H2O, 265 ◦C, P(H2) = 1 bar, H2 = 30 mL min−1,
WHSV = 0.169 h−1, H2/LA molar ratio = 201, flow

C = 98
S = 87 [74]
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Table 1. Cont.

Batch

Cu/ZrO2 WI LA, H2O, 265 ◦C, P(H2) = 1 bar, H2 = 30 mL min−1,
WHSV = 0.169 h−1, H2/LA molar ratio = 201, flow

C = 81
S = 83 [73]

Cu/Al2O3-SiO2 CP
LEs, EtOH, 140 ◦C,

1000 h, P(H2) = 30 bar, WHSV = 0.6 h−1

trH2/LE molar ratio = 50, flow

C =79
S = 96 [72]

Cu-Ni/SiO2
WI with

citric acid
LA, solvent-free, 250 ◦C, P(H2) = 1 bar, H2 = 30 mL min−1,

WHSV = 13.2 h−1, H2/LA molar ratio = 6, flow
C = 98
S = 98 [68]

Cu-Ni/KIT6/
ZSM-5 WI LA, 250 ◦C, P(H2) = 1 bar, H2 = 30 mL min−1, time on

stream = 24 h, H2/LA molar ratio = 0.0024, flow
C = 100
S = 80 [75]

B2O3-Cu/ZrO2

CP for
Cu/ZrO2, then

boric acid

LA, H2O, 200 ◦C, P(H2) = 30 bar, H2 = 40 mL min−1,
H2/LA molar ratio = 2711, flow

C = 100
S = 100 [30]

2.2. Catalytic Transfer Hydrogenation (CTH) of LA/LEs to GVL

The use of molecular hydrogen in high-pressure reactors poses several concerns in
terms of sustainability, safety and applicability of the process. An alternative strategy is the
catalytic transfer hydrogenation (CTH) that exploits an alcohol, both primary or secondary,
or formic acid (FA) as hydrogen donor [78,97–102], reducing most of the problems related to
the use of high-pressure molecular hydrogen (purchase, transport, safety hazard, expensive
high-pressurized industrial plants) [103,104]. Moreover, several hydrogen-donor molecules
can be obtained from renewable feedstock, such as lignocellulosic biomass, as in the case
of bio-alcohols (obtained from biomass fermentation), and FA (that is a side product in
LA/LE production). CTH was performed over Ni-, Zr- and Cu-based systems without the
use of precious metal catalysts [105,106]. One of the drawbacks of the CTH process with
alcohols is that the primary or secondary alcohol is transformed into the corresponding
aldehyde or ketone, respectively, as a side product. Indeed, this may significantly affect the
selectivity of the process, opening the path to aldol condensation side reactions [107–109].

The CTH reaction of LA/LEs with alcohols is reported in Scheme 3. First, the alcohol
donates the hydrogen to LA/LEs, thus forming 4-hydroxypentanoic acid or its ester, and
then GVL is formed by cyclization and ROH elimination.
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Two mechanisms have been proposed for this reaction in the literature, depending
on the catalyst used. When non-noble metals (e.g., Cu, Ni) are used, the reaction proceeds
via a hydrogen-borrowing mechanism [94,110,111]. On the other hand, when ZrO2 is used,
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the reaction occurs without the evolution of molecular hydrogen through a concerted
Meerwein–Ponndorf–Verley (MPV) mechanism, in which both the reducing alcohol and
the carbonyl group are coordinated to the same metal center [91,98,112,113]. In the CTH
process of LA/LEs in the presence of alcohols, the transesterification reaction is usually a
competitive process. However, the resulting product can, in turn, undergo CTH, thus not
usually hindering the GVL formation (Scheme 3).

Several heterogeneous Cu catalysts prepared on different supports, such as ZrO2, SiO2,
TiO2, ZnO and γ-Al2O3, were proposed for this reaction. Monometallic and bimetallic (i.e.,
Cu in combination with Ni) materials have been designed by using different preparation
methods, such as wet impregnation (WI), deposition–precipitation (DP) or oxalate gel
coprecipitation method (OG), and tested, providing high conversion and selectivity to
GVL under mild reaction conditions [78,110]. Among these, the best results were obtained
when ZrO2 was employed, thus confirming the importance of Lewis acid-base pairs on
the catalyst surface for the CTH reaction. An attempt to improve the catalytic system
using bifunctional catalysts with aluminum oxide and hydrogenation sites (Cu-Ni alloy)
supported on active carbon (AC) was made by Yu et al. [114]. An adequate Al/Cu-Ni ratio
of 1, resulting in the best acidity of the catalyst, was found to promote the esterification
reaction step, and thus increase the GVL yield (C = 100% and S = 97%, respectively).

The use of a high surface area support, such as SBA-15, provided high metallic
dispersion and a limited diffusion of the metal NPs in the SBA channels, and repressed
agglomeration as well as leaching [83]. The introduction of Ni provided benefits also for
the CTH reaction, by remarkably enhancing the catalytic activity and stability to poisoning
and sintering, thus allowing a better catalyst recyclability [94].

The literature reports the notable work of Yuan et al. [78], in which FA, which is
co-produced in an equimolar amount along with LA during the biomass dehydration
process [115,116], was employed as an alternative in situ hydrogen source via its selective
decomposition. The CTH reaction proceeded in stream and in water on Cu/ZrO2, providing
100% of C and S, and is an interesting example of an integrated process. In Table 2, the
catalytic behavior of the supported Cu or Cu-Ni catalysts for the hydrocyclization of
LA/LEs to GVL under CTH conditions is summarized.

Table 2. Catalysts for the CTH of LA/LEs to GVL.

Catalyst Preparation
Procedure Reaction Conditions Catalytic

Performances (%) Ref.

Cu/ZrO2

WI
DP
OG

LA, FA, H2O, LA/FA molar ratio = 1,
200 ◦C, 5 h, flow.

C = 100
S = 100 [78]

Cu-Ni/Al2O3 WI LEs, 2-BuOH, molLE/gcat = 0.01mol g−1, 150 ◦C,
12 h, batch.

C = 100
S = 97 [94]

Cu-Ni/SBA15 glycol WI LEs, 2-PrOH, molLE/gcat = 0.0048 mol g−1,
140 ◦C, 3 h, batch.

C = 91
S = 90 [83]

Cu/ZrO2 OG LEs, MeOH, molLE/gcat = 0.019 mol g−1, 220 ◦C,
1 h, batch.

C = 99
S = 88 [110]

Cu-Ni-Al2O3/AC WI LA, 2-PrOH, molLA/gcat = 0.086 mol g−1, 220 ◦C,
2 h, batch.

C = 100
S = 97 [114]

It is worth noting that bare ZrO2 is a very active and selective material for CTH
processes, including the transformation of LA/LEs to GVL [91,97]. It is our opinion that
although the addition of Cu or other metals deserves to be explored to optimize the catalytic
performance, the bare ZrO2 behaves as an effective system by itself [10,67,104,106,117–121].

Table 3 highlights the main milestones in the comprehension of supported Cu and
Cu-bimetallic catalysts for the hydrocyclization of LA/LEs to GVL under molecular H2 or
under CTH conditions. Metallic Cu was found to be the active phase, and highly dispersed
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Cu NPs are crucial to provide an active catalytic surface. The preparation method, together
with high surface area and/or 2D–3D supports, are key factors guaranteeing a highly
dispersed metal phase. Despite supported Cu catalysts being highly efficient and selective,
both for conventional hydrogenation using molecular H2 and for CTH, they suffer some
drawbacks, such as Cu leaching, especially when LA instead of LEs is used, or when
the reaction occurs in water. As many reactions work at temperatures higher than the
Cu Hüttig one, sintering occurs and catalysts deactivate. To overcome this, the use of
an additive, such as B2O3 or Al2O3 during catalyst preparation, helps prevent sintering.
Moreover, the addition of a second metal, namely Ni or Ag, improves the catalytic lifetime
because of synergic effects between the two metals: Ni or Ag prevent metal leaching, while
Cu prevents coking and facilitates Ni or Ag reduction. Lewis or Brønsted acid-base pairs
are crucial to the promotion of the dehydration step and thus the cyclization to GVL.

Table 3. Selected key catalytic aspects of the comprehension of Cu and bimetallic catalysts.

Focus Key Catalytic Aspects [Ref.]

Bimetallic Cu-Ni

• Balanced amount of acid and metallic sites
• NP synergistic effects
• Cu inhibits coke, Ni enhances activity and prevents sintering

[87]

Cu-γAl2O3
• Importance of catalytic acidity for the C-O bond cleavage [74]

Cu-MOx

• Effect of the support on acidity
• Catalytic performances: Cu-γAl2O3 > Cu-ZrO2 > Cu/SiO2 >

Cu/TiO2
• Effect of Cu loading on acid site concentration

[73]

Cu/SiO2 vs. Cu/Al2O3-SiO2

• Importance of the support acidity
• Tuning product selectivity with activation temperature
• Particle size matters

[72]

Cu/t-ZrO2
• Identification of Cu0 as the catalytically active site
• Importance of Cu NP dispersion [77]

Bimetallic
Cu-Ag/Al2O3

Effect of Ag:

• limitation of Cu leaching
• facilitated in situ CuO reduction
• maintenance of Cu in metallic state

[11]

Cu-Ni organosilica nanospheres

• Organosilica as innovative support allows lowering of the
reaction T

• Synergic effect of Cu-Ni is responsible for high reactivity and
stability

[70]
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Table 3. Cont.

Focus Key Catalytic Aspects [Ref.]

Cu-Ni on KIT-6 ZSM-5 doped

• Confinement effect of the support on metal nanoparticles:
high dispersed Cu-Ni and limited sintering

• Hydrogenation at ambient P due to highly dispersed and
active particles

• Importance of Lewis–Brønsted acid sites for the ring opening

[75]

B2O3-Cu/ZrO2

Effect of B:

• favored Cu dispersion
• retarded Cu sintering
• inhibited ZrO2 phase change
• tuning of Cu0/Cu+ surface distribution
• improved surface acidity

[30]

Al2O3-Cu/ZrO2
• enhanced electronic interaction between Cu and ZrO2 due to

the dilution of Cu by Al2O3 [114]

Cu-Ni on mesoporous high
surface SBA-15

• Low reaction temperature (140 ◦C), stable Cu-Ni into SBA-15
mesopores [83]

2.3. Transformation of LA/LEs and GVL to VE

Valeric esters (VE) have been identified as a new class of cellulosic-derived potential
biofuels, suitable both for gasoline and diesel engines, as they provide fully compatible
components with transportation fuels [39,44]. VE, depending on the alcoholic residue, have
shown better fuel blending properties than GVL because of energy density, appropriate
polarity and volatility–ignition properties [24,53,122].

The reaction occurs under H2 either from LA/LEs or GVL through nucleophilic
addition of the alcohol to the carboxylic group, followed by dehydration to pentenoate and
hydrogenation to valeric ester (Scheme 4).
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Lange et al. [24] were pioneers in developing a process to convert GVL into valerates,
in continuous high-pressure tubular reactor units, using a Pt/ZSM-5 bound with a SiO2
catalyst with balanced acidic and hydrogenation properties, or Pt supported on ZrO2 or
TiO2. Although Pt-based catalysts tend to convert GVL, providing a high PV/VA ratio,
they produce a large amount of undesired light hydrocarbons and are expensive, as already
discussed above. Some investigations [123] were reported of GVL conversion or one-pot
conversion of LA over Ni- [124], Ru- [125,126], Re-Ru- [127], Co- [128], Pd- [129], Rh- [130]
or Pt-based catalysts [131,132], whereas Cu-supported catalysts, although advantageous,
are still scarcely studied.

In an attempt to switch from noble to non-noble metal-based catalysts, and to develop
a bifunctional system for a one-pot cascade process, some of us [122] successfully com-
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bined the acidic properties of several solid supports with the hydrogenation activity of
pre-reduced CuO catalysts prepared by CH for the one-pot ring opening and hydrogena-
tion of GVL to valerate esters in a batch reactor. The best performances were obtained
with Cu/SiO2-ZrO2 (4.7 wt.% ZrO2) in the presence of ethanol or 1-pentanol to form ethyl
valerate (C = 69%; S = 59%) or pentyl pentanoate (C = 90%; S = 83%). The significant hydro-
genation activity of finely dispersed supported Cu, together with relevant Lewis acidity
exhibited by very small Cu particles, allowed us to design a new Cu/SiO2 bifunctional
catalyst [92], without the need of an acidic support, converting 91% of GVL and improving
the selectivity to 1-pentyl valerate up to 92%.

Liu et al. [93] claimed a novel separate nucleation and aging steps assistant reduction–oxidation
strategy, developed to synthesize CuO/ZrO2 with homogeneously distributed Cu and Zr
components, which were reduced to obtain highly dispersed Cu/ZrO2 catalysts and used
for the transformation of GVL to valerate esters under H2 pressure, exhibiting excellent
catalytic performances with several alcohols (e.g., with 1-pentanol C = 85%, S = 98%).

3. Hydrogenation of LA/LEs and GVL to Give 1,4-PDO

As shown in the previous section, LA/LEs can be converted into GVL through a com-
bination of hydrogenation and dehydration reactions. However, GVL can be further hydro-
genated to produce other interesting and useful compounds, such as 1,4-PDO and 2-MTHF
(Scheme 5). Biomass-derived diols can be utilized not only as bio-monomers to synthetize
bioderived polyesters [133,134] and polyurethanes [135,136] but also as solvents [137,138].
The reaction pathways of LA/LEs to give GVL and 1,4-PDO diverts depending on de-
hydration or hydrogenation sequences, as already reported. In particular, it involves the
formation of the 4-HPA intermediate if the hydrogenation occurs first; on the other hand, if
dehydration is the first step, angelica lactone (AL) is formed instead. GVL can be subse-
quently hydrogenated to 1,4-PDO, which can be further dehydrated to give 2-MTHF [139].

The Resasco group has given a possible reaction pathway and intermediate formation
thanks to a combination of experimental and theoretical studies, considering, in particular,
the hydrogenation of GVL in aqueous phase on 5% Ru/C catalysts [140]. The reaction may
start with a ring-opening step breaking the bond between the carbonylic carbon and the oxy-
gen, forming the surface intermediate CH3CH(O∗)–(CH2)2–CO∗. This species can undergo
three reversible parallel pathways: (i) decarbonylation to 2-butanol, (ii) hydrogenation to
1,4-PDO and (iii) C-O hydrogenolysis to 2-pentanol [140].

Successively, the same research group had further investigated the reaction profile
to shed light on the rate-limiting step. In particular, DFT studies had suggested that the
rate-limiting step for the formation of the 1,4-PDO is the hydrogenation one, underlining
the need to design hydrogenation-promoting catalysts [141]. Actually, GVL hydrogenation
can also result in the formation of valeric acid (VA) or its esters [142].

The fine-tuning of the acid/base and hydrogenation properties of the catalysts allows
one to move toward the desired product through a different reaction pathway.
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There are several papers in the literature relying on noble metal catalysts to produce
1,4-PDO [47,48,144]. However, some examples of supported Cu catalysts that are effective
in the synthesis of 1,4-PDO from LA/LEs could be found. In these cases, the fine-tuning of
acidic and basic sites becomes of crucial importance to modulating the selectivity, having a
role in the GVL ring-opening process, has already been highlighted. In particular, basic
sites could boost the selectivity towards the diol, enabling the GVL ring opening. The
introduction of basic Mg species pushed the selective conversion of GVL to 1,4-PDO, with
a yield up to 98% at 140 ◦C and 60 bar of hydrogen [71]. On the contrary, a high Brønsted
acidity, similar to the one found over the CuAl catalyst, suppresses the ring-opening
reaction, inhibiting 1,4-PDO formation and thus improving the GVL yield [71]. These
results were further confirmed by the same group in a study in which the hydrogenation of
ethyl levulinate to give 1,4-PDO with a 99% yield was favored on a CuMg catalyst with
abundant basic sites [145].

Due to the complexity of the whole process, the production of 1,4-PDO can be advan-
tageously separated into two different steps: the first one is the synthesis of GVL from
LA/LEs, and the second is the transformation of GVL into the diol. In particular, GVL
is more prone to be hydrogenated using non-noble metal catalysts, as shown below in
this paragraph (see Table 4). Moreover, GVL can be easily obtained from LA/LEs using
non-noble metal catalysts, as shown in the previous section.

Table 4. Most relevant copper catalysts used for hydrogenation of GVL to give 1,4-PDO from
the literature.

Batch

Catalyst Preparation
Method Reaction Conditions Catalytic

Performances (%) Ref.

Cu/MgO CVD 1,4-dioxane, 240 ◦C, 10 h, P(H2) = 100 bar,
molGVL/g cat = 0.0125 mol g−1, batch

C = 91
S = 94 [146]

Cu1.5/Mg1.5AlO CP 1,4-dioxane, 160 ◦C, 12 h, P(H2) = 50 bar, molGVL/g
cat = 0.0625 mol g−1, batch

C = 93
S = 99 [147]

Zn1.5Cu/Al2O3 WI 1,4-dioxane, 200 ◦C, 2 h, P(H2) = 40 bar,
molGVL/g cat = 0.02 mol g−1, batch

C = 91
S = 97 [148]

Cu/SiO2 CH
Cyclopentyl-methylether, 160 ◦C, 22 h, P(H2) = 50

bar,
molGVL/g cat = 0.05 mol g−1, batch

C = 78
S = 98 [23]

Cu/SiO2 –10%
TEOCS CH

Cyclopentyl-methylether, 160 ◦C, 22 h, P(H2) = 50
bar,

molGVL/g cat= 0.05 mol g−1, batch

C = 80
S = 99 [149]

Flow

Catalyst Preparation
Method Reaction Conditions Catalytic

Performances (%) Ref.

Cu/ZnO WI 1,4-dioxane, 140 ◦C, WHSV = 0.4 h−1,
H2/GVL molar ratio = 810, flow

C = 82
S = 99 [143]

Cu/SiO2 WI 1-butanol, 130 ◦C, WHSV = 4.61 h−1,
H2/GVL molar ratio = 2485, flow

C = 32
S = 67 [150]

Most recently, supported copper-based catalysts were shown to be effective in the
selective hydrogenation of GVL to give 1,4-PDO. Copper can be supported on a wide fan of
metal oxide supports with different properties. A Cu/MgO prepared with a metal–organic
chemical vapor deposition method achieved a C = 91% and S = 94% at 100 bar of H2
for 10 h [146]. The loading of copper was found to be crucial for the catalytic activity
and selectivity towards 1,4-PDO. Moving from 6 to 18 copper wt.% loading, conversion
increased from 71% to 80%, reaching the maximum selectivity of 86%. On the other hand,
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when the copper loading was further increased, a rise in selectivity for 2-MTHF and
1-pentanol was observed [146].

As already cited, it is important to underline the major role of acid/basic sites when
considering this hydrogenation reaction. In fact, the major side reaction in the hydrogena-
tion of GVL to 1,4-PDO is the dehydration of the diol to give 2-MTHF, which is a typical
acid catalyzed reaction. Thus, it is likely to work with bifunctional basic catalysts or to
partially suppress their acidity. For instance, the basic Cu1.5/Mg1.5AlO catalyst derived
from layered double hydroxides precursors was found to be particularly efficient, achieving
a GVL conversion of 93% and a 1,4-PDO selectivity >99% [147]. These results were mainly
ascribed to the cooperative effect between its well-dispersed active Cu nanoparticles and
the proper surface basic sites nearby. Notably, when the acidic Cu/HZSM-5 is used, larger
amounts of 2-MTHF were obtained due to the acid-assisted diol dehydration. This was
observed also when 1,4-PDO was used as the substrate: a C = 69% was found over the
Cu/HZSM-5 catalyst when, in contrast, no 1,4-PDO conversion resulted using the basic
Cu1.5/Mg1.5AlO catalyst [147]. On the other hand, the addition of Zn on the Cu/Al2O3
catalyst significantly improved the selectivity towards the diol, passing from 46% obtained
with the bare Cu/Al2O3 to 98% in the case of the ZnCu/Al2O3 catalyst, with a Zn/Cu
molar ratio of 1. In fact, Zn reduced the quantity of surface Lewis acid sites and promoted
the formation of 1,4-PDO with respect to 2-MTHF [148].

However, it was demonstrated that high yields of 1,4-PDO can be obtained even using
mild acidic supports such as SiO2, both under flow conditions [150] and in batch [23].
Some of us were able to achieve a GVL conversion of 78% with a 1,4-PDO selectivity
of 98% using Cu/SiO2 prepared with the CH on a pyrogenic silica in the green solvent
cyclopenthyl methyl ether (T = 160 ◦C, P(H2) = 50 bar, t = 22 h) [23]. It was found that the
right acid strength is crucial in the activation of the carbonyl group of the lactone, while the
formation of 2-MTHF can be avoided, limiting the surface hydrophilicity of the catalyst. In
fact, the proper combination of solvent and catalyst hydrophobicity/hydrophilicity allows
one to improve the 1,4-PDO yield. In particular, when cyclopentylmethylether and a less
hydrophilic SiO2 are used, the yield in the diol rises from 46% to 78%. It was proposed
that a less hydrophilic surface facilitates the desorption of the diol, thus preventing side
reactions. On the other hand, the solvent affects the acidic strength [23]. The catalytic
system was further optimized by decreasing the hydrophilicity of a Cu/SiO2 prepared
with a silica gel carefully functionalizing the surface with trietoxyoctylsilane, achieving
99% of selectivity of 1,4-PDO, even at 1% loading of the silane under the same conditions
as the previous work [149]. The best yield of 80% was achieved with a silane loading of
10%. However, a higher silane loading hinders the GVL from reaching the catalytic active
Cu sites on the surface, decreasing the conversion despite keeping the 1,4-PDO selectivity
at 99%. This phenomenon was caused by the tendency of the organosilane to reticulate on
the surface at higher concentration [149].

It is worth noting that there are also few examples relying on heterogeneous copper
catalysts for the production of 1,4-PDO from GVL through flow processes. This is the case
with a Cu/ZnO prepared with a co-precipitation method using different copper-loading
and calcination temperatures. The 40% Cu/ZnO calcined at 500 ◦C was the best catalyst and
gave a C = 82% and S = 99%, at a GVL feed rate of 0.4 g h−1, 140 ◦C, H2 pressure of 15 bar
and H2 flow rate of 90 mL min−1 [143]. In addition, in this case, the selectivity towards
1,4-PDO increased with the H2 pressure, while the increase in temperature favored the
formation of 2-MTHF [143]. These trends were observed also in the work of Simakova et al.,
where Cu/SiO2 was used [150], obtaining a C = 32% and S = 67% in a continuous flow
reactor using 1-butanol as the solvent (10% GVL in 1-butanol, GVL flow rate 2.1 g h−1

cat = 0.455 g, T = 130 ◦C, P(H2) = 13 bar, H2 flow rate 167 mL min−1, 4 h). Once again, the
lower selectivity towards 1,4-PDO compared to that achieved with Cu/ZnO was ascribed
to the acidity of the silanol groups, which promotes the dehydration reaction to form
2-MTHF [150].
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The analysis of the literature confirms the necessity of having a high hydrogenating
system to reach high 1,4-PDO yields, by choosing an appropriate catalyst and/or by
increasing the hydrogen pressure. Moreover, strategies to prevent 1,4-PDO dehydration to
2-MTHF should be pursued through an accurate catalyst design. This can be achieved by
properly working on the catalyst surface, with the introduction of basic sites and/or with
the suppression of the acidic ones, or by playing with the catalyst wettability to promote
the diol desorption, thus preventing side reactions. It is worth noting that the wettability is
often an underrated parameter in catalyst design [151–153].

4. Hydrogenation of LA/LEs and GVL to Give 2-MTHF

2-MTHF is a very important product of the LA stream due to its role in bioderived
gasoline blends. In particular, it represents up to 20% of the “P-series fuels”, a family of
renewable, non-petroleum liquid fuels, containing about 35% liquid by-products, known
as “C5+” or “pentanes-plus”, and 45% ethanol, fermented from corn [154]. Moreover, it
is considered a sustainable solvent, with a promising environmental footprint (not only
biobased, but also easy to degrade) and low toxicity [66,155].

As already pointed out, to produce 2-MTHF from LA/LEs, GVL is initially formed
(Scheme 5) and therefore hydrogenated to form 2-hydroxy-5-methyltetrahydrofuran as in-
termediate. From here, two main routes can take place. The first one involves the formation
of 1,4-PDO (via a ring-opening and hydrogenation reaction), followed by intramolecular
etherification, as already explained. The second pathway proceeds by dehydration to form
2,3-dihydro-2-methylfuran that, in turn, is hydrogenated to 2-MTHF [65,143].

The literature suggests that the reaction preferentially occurs via the ring opening [84,156,157].
It is worth noting that noble metal-based catalysts also favor the C-O cleavage at the
methyl-group side with the formation of valeric acid that can be converted into 1-pentanol,
as highlighted by Sun et al. [65,143]. Based on these considerations, the use of non-noble
metals, such as copper, for the preparation of 2-MTHF is even more advantageous because
they combine low cost and higher availability with superior selectivity, compared to
noble-ones, as they exclude the formation of 1-pentanol via valeric acid.

Activity and selectivity are strongly related to both reaction conditions and catalyst
features. In particular, H2 pressure and its availability are critical parameters to obtaining
good yields in 2-MTHF, while acid/base properties and stability are the main points to look
at for catalyst optimization. Based on the previous considerations, we know that basicity
favors the selective formation of 1,4-PDO while acidity pushes towards 2-MTHF.

In Table 5, the main results of 2-MTHF synthesis from LA/LEs and GVL obtained
with copper catalysts are reported.

Table 5. Most relevant copper catalysts used for hydrogenation of LA/LEs or GVL to give 2-MTHF
from the literature.

Batch

Catalyst Preparation
Method Reaction Conditions Catalytic

Performances (%) Ref.

Cu-Ni/Al2O3–ZrO2
SG
WI

LA, 2-BuOH, 210 ◦C, 10 h,
P (H2) = 35 bar, molLA/gcat = 0.043 mol g−1, batch

C = 100
S = 100 [158]

Cu-Ni/Al2O3 WI LEs, n-HEX, 180 ◦C, 4 h,
P (H2) = 40 bar, molLE/g cat = 0.0083 mol g−1, batch

C = 100
S = 98 [159]

Ni2Cu1/Al2O3 CP GVL, 2-PrOH, 200 ◦C, 5 h,
P (H2) = 50 bar, molGVL/g cat = 0.04 mol g−1, batch

C = 100
S = 88 [160]



Catalysts 2023, 13, 697 15 of 24

Table 5. Cont.

Batch

Catalyst Preparation
Method Reaction Conditions Catalytic

Performances (%) Ref.

Flow

Cu/Al2O3-SiO2 CP
LEs, EtOH, 250 ◦C, 1000 h,

P (H2) = 30 bar, WHSV = 0.6 h−1,
H2/LE molar ratio = 50, flow

C = 100
S = 65 [72]

Ni–Cu/SiO2 CP
GVL, 1,4 dioxane, 265 ◦C,

P (H2) = 25 bar, WHSV = 0.5 h−1

H2/LE molar ratio = 80, flow

C = 100
S = 89 [161]

Cu/SiO2 DP
GVL, H2O, 300 ◦C,

P (H2) = 1 bar, H2 = 50 mL min−1, WHSV = 1.0 h−1,
H2/GVL molar ratio = 24, flow

C = 97
S = 84 [157]

The conversion of LA/LEs into 2-MTHF is usually obtained with high-loading copper
catalysts. A Cu/SiO2 system with 80 wt.% of Cu was found to be selective, allowing one to
obtain a 64% yield under 25 bar of H2 at 265 ◦C [161]. Interestingly, the results reported
show that the selectivity of the reaction can be tuned by changing the Cu loading: low
loading favors the selective hydrocyclization of LA to GVL, which, in turn, undergoes a
further hydrogenation to 2-MTHF and 1-pentanol in the presence of high-loading catalysts.
Other authors proposed the use of a Cu/SiO2 system doped with Al2O3, obtaining a
65% yield in 2-MTHF starting from LEs [72]. The authors underline the important role
of alumina in decreasing the particle size of CuO clusters in the co-precipitation process.
Smaller Cu particles after reduction and hydrogen spillover from Cu to Lewis acidic sites
may account for the much-improved activity of the Cu/Al2O3-SiO2 catalyst. The CuO
particles distribute around 20–60 nm in the spent and re-calcined catalyst due to sintering
inhibition by anchoring of Cu particles on the Lewis acidic sites and much lower reaction
temperature. The stronger Lewis acidic sites also accelerate the dehydration reaction to form
GVL as the main product, suppressing the formation of 1,4-PDO and 2-pentanol. The great
advantage obtained in the use of a bimetallic catalyst starting from LA/LEs is also claimed
in some papers relying on the hydrogenation promoted by Cu-Ni systems. A Cu-Ni/Al2O3
obtained 98% of 2-MTHF at 180 ◦C and 40 bar of H2 [159]. The excellent catalytic activity
observed was ascribed by the authors to both Ni and Cu compositions, where Ni was more
readily able to activate the H2 and hydrogenate EL into GVL, while Cu catalyzed the ring
opening of GVL to yield the target molecule 2-MTHF. Moreover, the use of a non-polar
solvent, such as n-hexane, significantly reduced the apparent activation energy for the
ring opening of GVL. The synergistic effect of Ni and Cu has also been highlighted in
another catalytic system, namely a Cu-Ni/ Al2O3-ZrO2 [158], which provided a 100% yield
in 2-MTHF starting from LA at 210 ◦C and 35 bar of H2, mainly due to the tunable acidic
properties of the support.

Some important differences arise when starting from GVL. Thus, while the effect of
increased acidity still remains a strong point in selectively obtaining 2-MTHF, the particle
size parameter shows a different effect.

Sun et al. compared Co, Ni and Cu catalysts in the vapor phase hydrogenation of
GVL, observing a marked higher activity of Cu with respect to Ni and Co, particularly in
terms of selectivity. Thus, a commercial Cu/Al2O3 obtained more than 93% selectivity in
2-MTHF vs. the 75 and 44%, respectively, obtained with Co/Al2O3 and Ni/Al2O3 [65]. The
optimization of the catalyst and of the reaction protocol led to excellent catalytic activity,
which means a 2-MTHF selectivity of 99% and a GVL conversion of 98%. Besides acidity,
the authors highlighted the importance of particle size as one of the main parameters to
work on to maximize 2-MTHF yield. In particular, by increasing the calcination temperature
up to 700 ◦C, the particle size increases with a coherent higher selectivity in 2-MTHF with
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respect to 1,4-PDO. A further increase in the calcination temperature leads, on the contrary,
to an inversion in product distribution due to the formation of a CuAl2O4 phase, which
reduces the amount of acid sites. This, once again, underlines the effect of acidity/basicity
in addressing the formation of 1,4-PDO or 2-MTHF. The optimization of the reaction
conditions and of the catalyst textural properties also allowed the obtaining of up to 81% of
2-MTHF at 300 ◦C under flow conditions with a Cu/SiO2-impregnated system [157].

Different catalyst properties and reaction conditions for each step would be necessary
for these three steps, which would increase the difficulty of the direct production of 2-MTHF
from LA. In contrast to the production of 1,4-PDO from LA, which needs precious metal
catalysts and high H2 pressures, the production of 1,4-PDO from GVL can be efficiently
catalyzed by Cu-based catalysts under mild reaction conditions [26].

Also, when starting from GVL, some bimetallic systems have been proposed, once
again Ni-Cu catalysts. Eighty-eight percent selectivity in 2-MTHF resulted from the use of
a Ni2Cu1/Al2O3 derived from layered double hydroxide (LDH) precursors [160], while the
strong beneficial effect of Ni in limiting sintering and leaching of copper was underlined in
using a Ni-Cu/SiO2 system [161].

5. Conclusions and Future Directions
5.1. General Strategies to Selectively Obtain the Desired Product

Copper-based materials are very promising catalysts for the cascade transformation
of LA/LEs in the presence of hydrogen. By tuning the experimental conditions (i.e., H2
pressure, temperature) and the catalyst properties, it is possible to move from one product
to another (Figure 2). All these products (GVL, valerates, 1,4-PDO, and 2-MTHF) are
obtained through consecutive reaction steps, starting from LA/LEs. A good catalyst is
a material with high hydrogenation activity and, depending on the target product, with
different acid-base properties. From the analysis of the literature, to draw a clear picture is
not an easy task, but some general considerations can be summarized:

- GVL and valerates are preferentially obtained when a catalyst with a pronounced
acidic character is used. Clearly, the presence of an alcoholic medium is required for
the preparation of valerates.

- By tuning the acid/base properties, the reaction is more prone to proceed through the
ring opening, leading to the formation of 1,4-PDO [71]. 1,4-PDO dehydration can be
avoided by limiting catalyst acidity or polarity. High H2 pressure is usually needed to
reach high yields.

- The yield in 2-MTHF can be optimized by increasing the acidity of the catalyst and
the copper particle size.
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5.2. Catalyst Deactivation and Stability Considerations

The use of a non-noble, non-toxic metal, such as copper, is a clear advantage for
the valorization of LA/LEs, and the literature shows some nice examples in which high
conversions and high selectivity are reported. Despite this, catalyst deactivation represents
one of the major obstacles to industrial scale-up (Figure 3). Different approaches have been
enacted to improve stability, but there is still much to do. Leaching can be limited by using
LEs instead of LA and by selecting the most suitable solvent. Water, which is considered a
green solvent, favors this phenomenon, but its replacement with an organic solvent could
entail sustainability problems. At the same time, leaching can decrease by controlling
copper–support or copper–metal (in the case of a bimetallic system) interactions. These
strategies are also effective in contrasting sintering, along with the use of high surface area
supports, or of materials with a particular 2D/3D structure. Despite its toxicity, the addition
of nickel appears to be a good strategy to facilitate H2 activation and to limit sintering and
leaching of copper. It is important to note that the reactions of hydrogenation of LA/LEs
usually require temperatures over 200 ◦C, while copper Hüttig temperature is only 135 ◦C.
It follows that the research should also focus on developing low-temperature processes
to improve the catalyst lifetime. Unlike other reactions, the deactivation of copper-based
systems due to carbon deposition in LA/LE hydrogenation seems to be less relevant.
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5.3. Future Directions

It is our opinion that future papers should put more stress on aspects related to
catalyst stability and recyclability, as well as implementation of continuous flow processes.
Moreover, there is still a gap in research concerning one-pot, cascade processes that produce
1,4-PDO or 2-MTHF starting from LA/LEs using copper-based catalysts.
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