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Abstract: Electrocatalysts are the core component of electrocatalytic water splitting for improving
its overall energy conversion efficiency and reducing the energy input. At present, the design of
efficient electrocatalysts mainly focuses on optimizing their electronic structure and local reaction
microenvironment to improve the adsorption of reaction intermediates. Although many effective
strategies (such as heteroatom doping, vacancy, heterojunction construction, strain engineering,
and phase transformation) have been developed, the improvement in catalytic activity has been
very limited. Hence, the development of innovative strategies to enhance the optimization of
photoelectroactivity is desirable. Inspired by the strategy of applying a potential field to reduce
carrier radiation recombination in traditional photoelectrocatalysis, photogenerated carrier-assisted
electrocatalysis, based on the synergy effect of light and electric energy, provides a new strategy to
enhance the intrinsic activity of water splitting. The essence of the photo-assisted strategy can be
attributed to the injection of hot carriers and photogenerated electron–hole pairs or the accelerated
reaction kinetics caused by local temperature rises. The photogenerated carrier-assisted strategy has
received wide attention due to its simplicity and efficiency. In this review, we focus on the recent
advances in photogenerated carrier-assisted strategies (PCAS) for enhancing the performance of HER,
OER, and overall water splitting. The possible mechanisms are addressed and the basic composition
and latest progress in photo-assisted electrocatalysts using PCAS are summarized. Finally, the
challenges and development prospects of PCAS will be detailed.

Keywords: photogenerated carrier-assisted electrocatalysis; HER; OER; overall water splitting;
catalytic mechanism

1. Introduction

Electrochemical water splitting technology driven by renewable energy for hydrogen
production, due to its sustainability and environmental friendliness, has been considered
to be an effective strategy to solve the problem of resource shortages caused by the rapid
consumption of fossil fuel energy and realize green energy conversion in the future [1–3].
However, the slow dynamics of the two half-cell reactions in the hydrogen evolution reac-
tion (HER) and the oxygen evolution reaction (OER) results in an inferior energy conversion
efficiency [4]. To meet the expected demand for this industrially practical application, ef-
ficient electrocatalysts are essential for reducing the activation energy barrier of water
splitting and accelerating two terminal reactions [5,6]. Owing to the complex multiphase
physiochemical environment and multi-electron transfer involved in the process of water
splitting, an ideal electrocatalyst should possess high conductivity, a suitable adsorption
and desorption capacity, and high structural stability [7]. Currently, platinum group metals
have an onset potential approaching the theoretical thermodynamic potential, and are
regarded as the optimum electrocatalysts for water splitting. However, the high price
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and scarcity of precious metals limit their large-scale application [6,8–10]. In order to
improve the cost-effectiveness, it is imperative to develop a robust substitute for noble
metal catalysts composed of earth-abundant elements [1]. Transition-metal-based mate-
rials, with their advantages of rich reserves, good electronic conductivity, multiple redox
valences, and unsaturated transition metal sites, have been widely investigated for overall
water splitting and have achieved remarkable results [11]. However, transition metal
electrocatalysts are still limited by inherent performance bottlenecks; the improvement
in the activity and durability of pristine electrocatalytic materials is still the emphasis of
current research [12,13].

The deepening of theoretical research and the progress of advanced characterization
techniques help us to comprehensively understand the relationship between the struc-
ture/elemental properties of the catalysts and their reaction mechanisms and catalytic
activity, which can provide guidelines for the rational design of electrocatalysts [14,15].
In general, optimizing the adsorption energy of intermediates plays a decisive role in
improving the catalytic performance, and the regulation of the electronic structure of the
active sites can effectively ameliorate the adsorption free energy of the catalyst for inter-
mediate products [16,17]. Heteroatom doping and the surface vacancy can change the
local charge distribution and produce defects, and studies have shown that through their
integration, a more optimized electronic state can also be achieved cooperatively [17–19].
The construction of a heterojunction can induce charge rearrangement at the interface of
the heterojunction and modify the properties of active sites, and recent studies have also
identified the key role of heterogeneous catalysts in promoting the lattice oxygen oxidation
mechanism (LOM) [20–22]. Strain engineering can directly affect the atomic arrangement
and lattice structure of electrocatalysts; introducing a small strain can obviously cause the
displacement of the d band center [11,23]. Phase transitions can adjust the surface adsorp-
tion properties and charge state, which will result in a better conductivity and a higher
surface activity [24]. All these effective strategies can regulate the electronic structure.
In addition to rational design of electrocatalysts from the above points of view, it is also
particularly important to explore innovative strategies to improve the catalytic activity.
For instance, the studies have shown that pre-catalysts can achieve a dynamic activation
process in electrochemical water splitting by controlling the dissolution, the leaching of
intrinsic elements, and surface reconstruction [25–27].

In recent years, multi-field coupling technology has been widely applied in the cataly-
sis field. Introducing some external fields effects can optimize the catalytic process, and the
reasonable utilization of resources can also be realized through the interconnection gain
between energy fields [28,29]. Electrocatalytic and photocatalytic water splitting are essen-
tially the same, both of which are redox reactions involving an electron transfer process [30].
Benefitting from this, the integration of light field and electric field has become possible
and has been practiced in traditional photoelectrochemical (PEC) systems. In general,
a PEC system is composed of a photoanode and a photocathode to independently drive
the corresponding oxidation and reduction reactions, and an appropriate photoelectrode
must have a matching band gap and energy band position [31,32]. In photoelectrocat-
alytic water splitting processes, light is the main driving force and the introduction of
a small amount of electrical energy can help the reaction system to regulate the radiation
recombination of some electron hole pairs and accelerate the separation of carriers excited
by semiconductor photoelectrodes under sunlight [33,34]. Although the mechanism of
photoelectrocatalytic water splitting has been relatively well-studied and a large number of
photoelectric materials have been developed [35–38], the overall solar to hydrogen (STH)
conversion efficiency is not still satisfactory. Inspired by electro-assisted photocatalysis
strategies, photogenerated carrier-assisted electrocatalysis is considered as an innovative
and feasible way to improve the overall catalytic performance. When introducing the light
field, the electronic structure and surface reaction microenvironment of a specific electro-
catalyst will be affected and thereby the internal catalytic pathway and performance will
significantly change [39,40]. So far, the photothermal effect and the local surface plasmon
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resonance (LSPR) effect of noble metal nanoparticles and photogenerated carriers have been
demonstrated to be effective strategies to assist in enhancing the activity of electrocatalytic
HER or OER [41,42]. The photothermal effect generates a local high temperature to enhance
the thermodynamic and kinetic processes of electrocatalytic reactions through the collision
of photoexcited phonons, which is applicable to most electrocatalysts, but the stability of
the catalyst structure at high temperature still needs to be considered [39,43]. Hot carri-
ers excited by plasma radiation undergoing non-radiative decay in the LSPR effect have
a higher energy than those directly excited by light and are hence the essence behind the
enhancement in electrocatalytic activity, but the inevitable local heating of the surrounding
environment caused by the internal relaxation of the high energy carrier makes distinguish-
ing it from the photothermal effect challenging. In addition, high cost precious metals
further limit the wide application of this strategy and transition metal/semiconducting
metal oxide bifunctional catalysts are becoming more attractive [42,44]. In comparison, the
photogenerated carrier-assisted strategy shows broader research prospects. Photogener-
ated carriers produced by photo-responsive electrocatalysts absorbing light energy can
directly participate in the redox reaction and reduce the potential reaction barrier. The
whole process is simple and efficient and can be realized by embedding the photoactive
components [45,46]. However, there are few studies on photogenerated carrier-assisted
electrocatalysis at present, and the specific enhancement steps are still unclear [47]. It
is necessary to systematically summarize this field to promote the rational design and
development of photogenerated carrier-assisted electrocatalysts.

In this review, we first report the innovative strategy of photogenerated carrier-assisted
electrocatalysis and elucidate their possible mechanism for the enhancement in performance
by summarizing the reaction mechanism of HER and OER. Then, recent advances in photo-
generated carrier-enhanced electrocatalytic HER, OER, and overall water splitting are intro-
duced, and their design and fundamental principle are briefly described. Finally, the pivotal
issues and challenges of current photoelectric integrated electrocatalysts are addressed, and
the future research and applications will be envisioned. The purpose of this review is to
help readers understand the application of photogenerated carrier-assisted electrocatalysis
and provide effective guidance to rationally design photo-responsive electrocatalysts.

2. Fundamental Principle of Photo-Assisted Electrocatalysis Strategies

Electrochemical water splitting consists of a cathode HER and an anode OER, both of
which involve multi-electron transfer and the formation of intermediates. Understanding
the reaction path is beneficial to the deep understanding of the photogenerated carrier-
assisted electrochemical splitting mechanism. Taking an alkaline HER system as an example,
due to the low proton concentration, a H2O molecule directly participates in the reaction
and is decomposed into adsorbed hydrogen (Hads) and hydroxide ions through the electron
transfer process under the action of catalytic sites (Volmer step) [48]. Then, the Hads
combines with H2O (Heyrovsky step) or another Hads under high Hads coverage (Tafel
step) to generate H2 [7]. The OER mechanism is mainly composed of a series of proton-
coupled electron transfer (PCET) processes based on catalytic active centers, involving the
sequential and step-by-step formation of intermediates (OH*, O*, and OOH*) [49,50]. In
general, the OER activity is closely related to the adsorption energies of these intermediates.
Photogenerated carrier-assisted electrochemical water splitting combines photocatalysis
and electrocatalysis, its essence is the redistribution of photogenerated carriers. Compared
to the traditional PEC system, the difference is that electric energy is the main driving
force of the catalytic reaction [30]. When exposed to light, the photoactive components
in the electrocatalyst excite the carriers, which subsequently migrate to participate in
the decomposition of water. Photogenerated electrons can effectively diffuse from the
conduction band to the electrocatalyst under the action of an external electric field and
directly participate in reduction reactions, while reducing the energy barrier required
for HER and compensating for power consumption [46,51]. The photogenerated holes
in the valence band with strong oxidizability can directly react with the OH- adsorbed
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on the electrode surface to generate OH*. The generated OH* and photogenerated holes
subsequently participate in the oxidation of OH- and other intermediates to produce
O2 (Figure 1) [52,53]. Simultaneously, the formation of high-valence active sites can be
promoted under the oxidation of holes. For instance, Alberto Naldoni et al. investigated
a hematite (a-Fe2O3) photoanode covered with a nickel hydroxide electrocatalyst and
confirmed that the nickel hydroxide was completely oxidized to nickel oxyhydroxide by
photogenerated holes. Nickel reached a higher oxidation state (NiIV), which is beneficial
to the electrochemical oxidation process [54]. With the help of traditional PEC theory, the
photogenerated carriers excited by photo-responsive electrocatalysts can be effectively
separated under an applied potential, which means that more photogenerated carriers can
be injected into the electrocatalytic redox reaction and enable the photogenerated carrier-
assisted electrocatalytic water splitting to be more efficient [34]. Therefore, the efficiency
of photogenerated carrier-assisted electrocatalysis depends on the effective separation of
photogenerated carriers [55]. At the same time, the inherent electrocatalytic activity of
photoelectric integrated catalysts under non-optical conditions cannot be ignored. The
development and rational design of high-efficiency photoelectric integrated catalysts are
crucial for photogenerated carrier-assisted electrocatalysis.
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3. Photo-Electro Integrated Catalysts

In a photoelectrochemical system, the significant recombination of charge carriers,
the high overpotential of the interface charge transfer, and the slow reaction kinetics
lead to a low overall efficiency [56]. The introduction of cocatalysts can lead to them
forming an interface with the semiconductor photoelectrode, capturing the photogenerated
carriers, and accelerating their separation, while simultaneously providing surface active
sites for the redox reaction to catalyze the reaction of the photogenerated carriers with
intermediate ions [57]. Electrocatalysts are well known to have the electrochemical activity
of reducing the overpotentials of the HER and the OER, which also exhibits their potential
to be used as cocatalysts for photoactive substrates to accelerate the photoelectrochemical
kinetics [58,59]. The semiconductor photoelectrode and the introduced electrocatalyst
composite can be used as a photoelectric integrated catalyst in the traditional PEC system.
In the composite electrode, the electrocatalyst does not play the role of a light absorber.
On the contrary, in a photogenerated carrier-assisted electrocatalysis system, the design of
photoelectric integrated catalysts can be realized by embedding photoactive components
such as semiconductors and quantum dots. The photoactive component acts as the light
absorption material, and the electrocatalyst provides the redox reaction active sites. This
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reflects the broad prospects of the synergistic effect of light energy and electric energy for
electrochemical gain. However, at present, there are still few reports on photogenerated
carrier-assisted photoelectric integrated catalysts for electrochemical water splitting. It
is necessary to make a systematic summary to promote the development and reasonable
design of high-efficiency photoelectric integrated catalysts.

3.1. Photogenerated Carrier-Assisted Electrocatalysts for HER

Single-component photoelectric integrated catalysts can naturally couple the elec-
trocatalytic activity with the photoexcitation ability without introducing a photoactive
component or an electrocatalytic promoter [60]. At the same time, they also have a strong
photoelectric interaction and an efficient charge carrier transfer process, which are very
attractive in the photoelectric coupling field [46]. Hao et al. prepared a photo-responsive
Ni3(VO4)2 electrocatalyst with a sea-urchin-like shape (Figure 2a,d). Single component
Ni3(VO4)2 showed an enhanced HER performance under light. The unique sea-urchin-like
structure was conducive to the exposure of surface active sites and the effective extraction of
photogenerated carriers [61]. Rhenium disulfide (ReS2) has a weak interlayer coupling and
larger interlayer spacing caused by Peierls distortion, which gives it excellent photoelectric
properties and exposes more edge active sites and proton permeation channels [60,62,63].
Zeng et al. found that few-layer ReS2 with the advantages of both light collection and pro-
ton reduction kinetics can be used as a new single-component platform for photo-assisted
electrocatalytic HER (Figure 2b,e). Due to the guidance of an external electric field and
highly active sites, high-energy electrons can be effectively injected and the Fermi energy
level of proton reduction can be improved, thus achieving excellent HER performance [60].
Inspired, Xu et al. constructed a ReS2/Ni3S2 p-n heterojunction on Ni foam in situ. Ben-
efiting from the strong coupling cooperation between ReS2 and Ni3S2 heterointerfaces,
effective separation of photogenerated carriers can be achieved, and the obtained electrode
exhibited an obviously enhanced HER activity (Figure 2c,f) [64].
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Figure 2. (a) SEM images of Ni3(VO4)2 and (d) time—dependent photocurrent responses curve
under open circuit potential with/without visible light irradiation. Adapted with permission from
ref. [61]. Copyright 2017, Royal Society of Chemistry. (b) SEM image and (e) LSV curves of ReS2@CFC.
Adapted with permission from ref. [60]. Copyright 2018, Elsevier. (c) HRTEM image of ReS2/Ni3S2

and (f) schematic diagram of photogenerated electron transfer path on ReS2/Ni3S2 p-n heterojunction
under light. Adapted with permission from ref. [64]. Copyright 2019, American Chemical Society.
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Quantum dots (QDs), as a rising material in the photocatalytic field, have received
much attention for their unique photophysical and photochemical properties. According to
the quantum confinement effect, a controllable adjustment of the band gap can be achieved
by adjusting the size of the QDs, thus enhancing the optical absorption ability [65]. At the
same time, the small particle size is also conducive to the effective separation of charge in
QDs for a short transmission distance, while the small particle size endows a larger specific
surface area to expose more active sites [66–68]. It is possible to achieve a more effective
optical gain by introducing QDs as photoactive components into an electrocatalytic sys-
tem. Mao et al. successfully constructed dense bannite Cu5FeS4 QDs on the surface of Ni
foam for photo-assisted electrocatalytic HER, and their universal applicability in different
electrolytes was verified (Figure 3a). The transient photovoltage (TPV) test indicated the
effective extraction of charge in Cu5FeS4 QDs, which is conducive to the accumulation
of surface charge. Combined with DFT theoretical calculations, it was proven that photo-
generated electrons can reduce the H* adsorption free energy and optimize the electronic
structure of the original electrocatalyst (Figure 3b) [46]. Hao et al. used CdSe QDs as
sensitizers and successfully designed and prepared a CdSe QDs/WS2 composite material
for HER in a neutral electrolyte solution. Zero-dimensional (0D) and two-dimensional
(2D) interfaces were beneficial to the rapid transfer of electrons. The enhanced hydrogen
evolution performance under light could be attributed to the transfer of photo-induced
electrons in CdSe towards the active sites of WS2 nanosheets (Figure 3c) [69]. In addition,
the integration of semiconductor photoactive components and electrochemical active com-
ponents also shows good prospects in photo-assisted electrochemical systems. Owing to
a high conductivity and a tunable surface terminal, 2D Ti3C2Tx (MXene) is considered
as a promising electrocatalyst. Meanwhile, MXene can be also used as a cocatalyst to ac-
celerate charge separation and transfer in photocatalysis [70,71]. Hao et al. successfully
constructed a new type of p-n tungsten oxide homojunction by tuning the phosphorus
doping and oxygen vacancies [72]. Based on the synergy of MXene, HER enhanced by visi-
ble and near-infrared light can be performed. Under light irradiation, the photogenerated
electrons tend to transfer to the n-type WO3 part to participate in the reduction reaction,
and the photogenerated holes face the p-type part with a high valence band position. At the
same time, the hole trapping ability of MXene and the internal electric field formed by the
p-n junction are also conducive to the separation of charges, and thereby greatly improve
the photo-assisted efficiency of MXene@P-WO3 (Figure 3d). Similarly, MXene-modified
phosphorus-doped TiO2 for photo-assisted electrocatalytic HER has also been reported
(Figure 3e). The in situ growth of P-doped TiO2 greatly increased the specific surface area of
the composite, and the increased charge density at the edge of the valence band indicated
a rapid charge transfer [73]. Additionally, based on the light adsorption ability of TiO2,
Ru species supported on MOF-derived N-doped TiO2/C (TC) hybrids were successfully
prepared and used as an efficient electrocatalytic–photocatalytic HER catalyst [74]. The re-
sultant high HER performance was attributed to its larger specific surface area and benefits
from synergistic coupling of Ru NPs and Ru single atoms (SAs) (Figure 2f). Finally, the main
catalysts and experimental conditions and activities of photogenerated carrier-assisted
electrocatalysts for HER are listed in Table 1.
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−0.15 V vs. RHE

[64]

Cu5FeS4 QDs 1.0 M KOH 52(118), 10 mA cm−2 133(143) NA [46]
CdSe QDs/WS2 0.5 M Na2SO4 400(1030), 10 mA cm−2 56(132) NA [69]
MXene@P-WO3 1.0 M KOH 44(162), 10 mA cm−2 41(102) 200 µAcm−2 [72]
MXene@P-TiO2 1.0 M KOH 97(138), 10 mA cm−2 48.4(73.5) NA [73]
Ru@N-TiO2/C 1.0 M KOH 76(97), 10 mA cm−2 NA NA [74]

3.2. Photogenerated Carrier-Assisted Electrocatalysts for OER

OER is a four-electron transfer process, and the slow reaction kinetics greatly limit the
overall water cracking efficiency [75]. Therefore, it is necessary to develop highly active
oxygen evolution catalysts to reduce the kinetic barrier of OER. At present, noble-metal-
based materials such as Ir and Ru still represent the most advanced oxygen evolution
catalysts. However, due to their high cost and scarcity, reducing the amount of precious
metal loading while improving catalytic performance have become the main problems
that must be solved [76]. Liu et al. prepared a IrOx@In2O3 composite material by the
solvothermal method; the composite of In2O3 could reduce the loading of precious metal
IrOx, and the heterojunction exhibited an enhanced OER performance. When a weak LED
beam was introduced, the OER performance could be further improved. By amplifying
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the LSV curves, Liu et al. also discriminated the photocatalysis-dominated electro-assisted
region and electrocatalysis-dominated photo-assisted region during the photogenerated
carrier-assisted OER process, which provided effective insights for photogenerated carrier-
assisted electrocatalysis strategies (Figure 4a–c) [47]. In addition to precious-metal-based
materials, the development of efficient OER electrocatalysts based on non-noble metals is
also very important. Transition metal sulfides (TMDs) are considered as promising catalysts
for OER due to their unique electronic structure and excellent catalytic activity. The design
of photogenerated carrier-assisted electrocatalysts based on TMDs for enhancing OER
is equally promising. As a typical TMD, MoS2, with a unique layered structure and a
high number of active sites exposed on the edge, has been widely studied as an OER
electrocatalyst. Moreover, due to its appropriate band gap structure, MoS2 has also been
widely applied as a photocatalyst [77]. Qi et al. introduced black phosphorus quantum dots
(BP QDs) into MoS2 nanosheets by the liquid phase stripping method, and the constructed
BP QDs/MoS2 heterojunction could realize a photo-enhanced OER performance [78].
The wide absorption band of BP QDs and the rapid electron transfer between 0D/2D
heterojunctions results in more photogenerated holes being trapped. In addition, the large
specific surface area of BP QDs was conducive to the reaction of photogenerated holes and
electrolyte OH- ions (Figure 4d).

Du et al. reported an advanced CoFe Prussian blue analog (PBA)/CoS2 hybrid mate-
rial for photogenerated carrier-assisted electrocatalytic OER. As a class of MOF-derived
materials based on cyanide, PBAs possess high potential, such as an open skeleton structure,
an adjustable composition, and a high specific surface area, which has been widely studied
in the field of electrochemistry energy conversion [79,80]. Not only that, its photocatalytic
activity in water oxidation has also been confirmed [81]. Based on the synergistic effect
between CoFe PBA and CoS2 TMD, the OER performance could be optimized under light
irradiation. The enhanced OER activity was dependent on the rapid charge transfer from
CoFe PBA to CoS2 TMD, resulting in the enrichment of photogenerated holes on the surface
of CoFe PBA, which is greatly beneficial to the promotion of the water oxidation process
(Figure 4e,f) [82].

With the help of in situ characterization techniques, transition metal oxyhydroxides
have been identified to be the most active for electrocatalytic OER [83]. Hu et al. synthesized
a uniform FeOOH nanotube-loaded carbon cloth by the template electroetching strategy
and used it as a photo-responsive electrocatalyst. Based on the high OER activity of
FeOOH, charge carrier injection further reduced the OER overpotential (Figure 5a–c) [84].
In addition to designing photoelectric integrated catalysts, highly active electrocatalysts
are also vital for the modification of photoactive species to enhance the efficiency of
photogenerated carrier-assisted electrocatalysis. Lu et al. prepared a p-n heterojunction
structured material: p-n WO3/SnSe2 [85]. The p-n heterojunction between WO3 and SnSe2,
with a small bandgap, can improve the high carrier recombination in the original WO3
while enhancing its optical absorption ability. The p-n WO3/SnSe2 heterojunction was used
to absorb light and generated high energy carriers. Coupling carbon nanotubes (CNTs)
with CoFe LDH as the electroactive component leads to the construction of a successful
photoelectric integrated catalyst. The coexistence of CNTs and CoFe LDH efficiently
separates the photogenerated carriers, and thereby greatly enhances the photo-assisted
electrocatalytic efficiency (Figure 5d–f).
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Figure 5. (a) Schematic diagram of the preparation process for FeOOH and the photoactive elec-
trocatalytic OER curves, (b) SEM image of FeOOH nanotubes, and (c) the generated O2 content of
FeOOH under dark and light conditions. Adapted with permission from ref. [84]. Copyright 2018,
American Chemical Society. (d) Transient photocurrent density of CF/WS/CNTs, (e) LSV curves of
CF/WS/CNTs, and (f) schematic illustration of the photo-assisted mechanism of CF/WS/CNTs for
OER under light irradiation. Adapted with permission from ref. [85]. Copyright 2022, Wiley—VCH.
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Owing to the surface charge accumulation, photogenerated holes can not only directly
participate in oxidation reactions, but can also promote the formation of high-valence active
species to indirectly enhance the OER performance. Fu et al. confirmed that photogenerated
holes on the single-component CoCr-LDH could simultaneously stimulate the production
of high-valence Co3+ active species and accelerate the charge transfer process, which are
also the main reasons for the significant enhancement in electrochemical OER activity
(Figure 6a,b) [30]. Similarly, Yang et al. showed that a p-n SnS2/NiO heterojunction
could generate more high-valence Ni (Ni3+) on NiO as OER active sites after irradiation,
which was further confirmed by XPS and electrochemical surface area (ECSA) tests after
irradiation (Figure 6c,d) [45]. Such investigations provide new insights into the role of
photogenerated holes in photogenerated carrier-assisted strategies. The main catalysts,
experimental conditions, and activities of photogenerated carrier-assisted electrocatalysts
for OER are listed in Table 2.
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Table 2. The main catalysts, experimental conditions, and activities of photogenerated carrier-assisted
electrocatalysts for OER.

Catalyst Electrolyte
Performance Comparison, Light (Dark)

Photocurrent
Density Ref.Overpotential

/mV
Tafel Slope
/mV dec−1

IrOx@In2O3 1 M KOH 176(190), 10 mA cm−2

210(231), 50 mA cm−2 47(55) NA [47]

BP QDs/MoS2 1 M KOH 180(330), 10 mA cm−2 95(108) NA [78]
CoFe PBA/CoS2 1 M KOH 265(301), 10 mA cm−2 59(80) 6.5 mA cm−2 at 1.6 V [82]

FeOOH/CC 1 M KOH 328(352), 10 mA cm−2 42(47) NA [84]

WO3/SnSe2/CoFe-LDH/CNTs 1 M KOH 224(291), 10 mA cm−2 47(78) 53 µA cm−2

at 1.23 vs. RHE
[85]

CoCr-LDH 1 M KOH 338(360), 10 mA cm−2 74(85) 57 µA cm−2 at
η = 70 mV

[30]

SnS2/NiO 1 M KOH 310(388), 10 mA cm−2 190(215) 69.50 µAcm−2 at
1.23 V vs. RHE

[45]

3.3. Photogenerated Carrier-Assisted Electrocatalysts for Overall Water Splitting

Photogenerated carrier-assisted electrocatalysts for HER and OER usually exhibit
unique physical and chemical properties to enhance the HER and OER processes, respec-
tively. At present, non-noble metal bifunctional electrocatalysts showing high performances
in both HER and OER are therefore of great significance and importance for applications in
the future [86]. Therefore, the development of bifunctional photogenerated carrier-assisted
electrocatalysts for overall water splitting is very attractive. The designable engineering
of covalent Mo-Ni-S coupling, integrating the activities of HER and OER, shows the great
application potential of dual-functional catalysts for overall water splitting [87]. Feng
et al. confirmed that the interface between MoS2 and Ni3S2 can promote the chemical
adsorption of hydrogen intermediates and oxygen-containing intermediates [88]. Xu et al.
reported the application of NiMoS as a photogenerated carrier-assisted electrocatalyst.
Its photogenerated carrier-enhanced water splitting activity could be attributed to the
transfer of photogenerated electrons to the uncoordinated active sites at the edge of Mo-S
and the rapid formation of high-valence active sites for OER (Figure 7a) [89]. Yang and
Fang et al. reported a series of CdS-based bifunctional photogenerated carrier-assisted
electrocatalysts, including CdS/Ni3S2 (Figure 7b) [90], CdS/Co9S8/Ni3S2 (Figure 7f) [91],
and CdS/Ni3S2/NixPy [92]. CdS has a suitable visible light absorption band gap and
conduction band position for water reduction, and it is commonly used as semiconduc-
tor material for photocatalytic water splitting [93]. Among them, one-dimensional CdS
nanorod arrays can significantly enhance the light absorption and scattering efficiency and
provide a fast electron transfer pathway for photogenerated electrons, leading to excel-
lent optical properties [94]. The in situ growth on metal foams first ensures an enhanced
electrical conductivity and mechanical stability for electrocatalytic water decomposition,
and the formed Ni3S2/NiCoS/NixPy at the outer end is also conducive to light absorption,
the separation of photogenerated charges, and the protection of CdS from photocorrosion.
DFT theoretical calculations and time-resolved photoluminescence (PL) decay spectra also
demonstrated that P doping could not only improve the electrochemical adsorption of
CdS/Ni3S2 on the water splitting intermediates, but could also prolong the lifetime of
charge carriers (Figure 7c–e). The photogenerated carrier-assisted strategy totally enhanced
the electrocatalytic performance of water. This is mainly attributed to the successful migra-
tion of photogenerated electron–hole pairs excited by CdS nanorods towards the anode and
cathode under the external electric field and the introduction of a heterojunction structure,
which can directly participate in the HER and OER processes.
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Two-dimensional transition-metal-based layered double hydroxides (LDHs) are a type
of layered ionic material, and are composed of brucite-like positive charged layers formed
by the coordination of trivalent metal cations with bivalent metal cations through hydroxyl
substitution [95,96]. LDHs have a unique layered structure and abundant active sites and
are often considered as excellent electrocatalysts [97]. Among various LDHs, NiFe LDH is
regarded as one of the most effective bifunctional water splitting catalysts, and is easy to
synthesize for the improvement in OER and HER activities [98]. In the past, the studies
on NiFe LDH have mainly included morphology engineering, defect engineering, and
the construction of layered/core–shell nanostructures [99]. An innovative strategy is to
combine the photoactive components with highly active NiFe LDH in a photo-assisted
electrocatalysis system to enhance its activity. Shi et al. embedded AgInZnS QDs into
NiFe LDH nanoflakes by a hydrothermal treatment, and the prepared composite showed
improved HER and OER properties under light irradiation. TPV tests indicated that the
unique 0D/2D heterostructure could effectively extract the photogenerated charge of Ag-
InZnS QDs to promote the charge transfer process (Figure 8a,e) [100]. Wang et al. prepared
hydrangea-like ZnO/NiFe LDH composites with a large specific surface area by a two-step
hydrothermal method. The introduction of light energy could greatly reduce the energy
barrier required for the water splitting reaction. In situ Raman tests confirmed the improve-
ment in the internal structure of the catalyst under illumination (Figure 8b,c). Combined
with theoretical calculations, the electron transfer process and the intermediate adsorption
were optimized, further revealing the origin of photo-enhanced activity (Figure 8f) [101]. In
addition to noble metals and non-precious metals, the photogenerated carrier-assisted strat-
egy can also be extended to metal-free dual-functional electrocatalysts. Kang et al. prepared
a polyaniline (PANI)/carbon dot (CDs) composite as a metal-free bifunctional photogen-
erated carrier-assisted electrocatalyst [102]. PANI is a low cost, conductive polymer with
a visible light response, a large π-conjugated electronic structure, fast redox characteristics,
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and excellent carrier mobility [103–105]. CDs, as a kind of carbon nanomaterial, due to
its environmental friendliness and excellent optical and physicochemical properties, ex-
hibits obvious advantages in the field of catalysis [106,107]. TPV tests showed that the
addition of CDs could improve the charge transfer rate and enhance the photoelectric
effect of a PANI/CDs composite (Figure 8c,g). Finally, the main catalysts, experimental
conditions, and activities of photogenerated carrier-assisted electrocatalysts for OER/HER
(water splitting) are listed in Table 3.
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Table 3. The main catalysts, experimental conditions, and activities of photogenerated carrier-assisted
electrocatalysts for OER/HER (water splitting).

Catalyst Electrolyte
Performance Comparison, Light (Dark)

Photocurrent
Density Ref.Overpotential

/mV
Tafel Slope
/mV dec−1

MoS2/Ni3S2 1 M KOH 1500(1530), 10 mA cm−2 NA NA [89]
CdS/Ni3S2 1 M KOH NA 75.9(85.8) NA [90]

CdS/Co9S8/Ni3S2 1 M KOH 285(300), 10 mA cm−2 87.2(91.3) 10 mA cm−2 at
1.56 vs. RHE

[91]

CdS/Ni3S2/NixPy 1 M KOH NA 103(108.7) NA [92]

AgInZnS QDs/NiFe-LDH 1 M KOH 1620(1670), 10 mA cm−2 105(111.7),
54.6 (71.6) NA [100]

ZnO/NiFe-LDH 1 M KOH 1630(1730), 10 mA cm−2 87.03(219.09),
67.28(201.47) NA [101]

PANI/CDs 0.5 M K2SO4
Decrease by 150 mV @30 mA
cm−2/65 mV @20 mA cm−2 192(283) 5.12 mA cm−2 at

2.0 V
[102]
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4. Conclusions and Prospects

In summary, we reviewed the latest progress in photoelectric integrated catalysts
using PCAS to enhance the activity of HER, OER, and overall water splitting. In the
photogenerated carrier-assisted strategy, electron–hole pairs excited by the photoactive
components in photoelectric integrated catalysts under illumination can directly participate
in redox reactions. Note that the photogenerated holes can additionally promote the
formation of high-valence active species for OER. This simple and efficient strategy for
enhancing the activity has become more attractive in applications for HER, OER, and
overall water splitting. Based on the feature of HER, OER, and water splitting, the structure
and composition of the corresponding photogenerated carrier-assisted electrocatalysts
were rationally designed to suit all kinds of HER, OER, and overall water splitting. Three
aspects of HER, OER, and water splitting were especially reviewed for the development of
a single-component photoelectric response and the coupling of photoactive components
and electrocatalysts. Among them, to accelerate the separation of charge carriers, the
construction of heterogeneous interfaces and the modification of highly conductive species
are the most efficient approaches. Although some aspects have made great progress,
the overall amount of research in photogenerated carrier-assisted electrocatalysis is still
relatively low. There is a huge research gap which needs to be filled and explored to improve
the efficiency of photoelectric integrated catalysts in HER, OER, and water splitting. Based
on the above-mentioned results and the corresponding issues, some pivotal challenges
that need to be confronted and the prospects of improving photogenerated carrier-assisted
electrolysis are addressed in the following.

Integrating photocatalytic and electrocatalytic materials into one electrode is still
a challenge. Although single-component photoelectric integrated catalysts have uncompli-
cated compositions and strong photoelectric coupling interfaces, they face the problems of
a low electrocatalytic activity or a poor photo-assisting effect. It is worth noting that some
layered MOF derivatives and transition metal oxides with abundant photoelectric prop-
erties show promising prospects as single-component photoelectric integrated catalysts.
Semiconductor materials are not ideal electrocatalysts due to their low conductivity. When
the photoactive component and the highly active electrocatalyst are synergistically coupled
together to enhance the photo-assisting ability and electrocatalytic activity, the introduction
of semiconductors may affect the overall performance of the photogenerated carrier-assisted
electrocatalyst. Coordinating the photoelectric characteristics of semiconductor materials
and deeply understanding the electrochemical behavior of semiconductors are conducive
to their application in photogenerated carrier-assisted electrocatalysis systems. Recent
investigations have discovered the abnormal phenomenon of carrier concentration on the
semiconductor surface, defined as the self-gating effect. This effect can effectively adjust the
surface conductivity of semiconductor electrocatalysts, and therefore succinctly explains
why ultra-thin semiconductors are highly efficient electrocatalysts [108]. Other studies
have revealed that charge transfer processes can occur in some active crystal surfaces and
atomic-level active sites of semiconductors. For example, MoS2 edge sites have been proven
to be an HER active center. In addition to the above-mentioned strategy, n-type and p-type
semiconductors have also been proven to be beneficial to cathodic reduction reactions and
anodic reactions, respectively. All these strategies provide effective insights into semicon-
ductor electrochemical applications. The rational design of the structure and interfacial
properties of photoactive and electroactive components can transform components from
inert to active.

The recombination of photogenerated carriers seriously influences the efficiency of
photogenerated carrier-assisted electrocatalysis. The effective injection of photogenerated
carriers is key to the photo-enhanced activity, but the inevitable recombination in the
migration process greatly affects the utilization efficiency of carriers. At the same time,
the accumulation of photogenerated carriers on the surface may lead to photoelectrode
corrosion, seriously affecting the long-term stability of photogenerated carrier-assisted
electrocatalysts. The rational design of photo-assisted electrocatalysts with a high carrier
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mobility is crucial for the synergetic use of light energy to enhance energy conversion.
In traditional photo(electro)catalysis, many studies have focused on the adjustment of
the charge transfer kinetics of photoelectrodes, from which we can gain inspiration. The
construction of a heterojunction can form a built-in electric field (BIEF) at the contact
interface and promote charge separation, which is one of the most important goals. Different
types of heterojunction structures will provide different charge transfer mechanisms to
adjust the electron density. In electrocatalysis, a BIEF has also been proven to be crucial
in the adsorption/desorption behavior of reactants and key intermediates. Therefore, it is
promising to synergize the rapid charge transfer process and the optimized electrochemical
behavior of heterojunctions in a photogenerated carrier-assisted electrocatalysis system.
In addition, element doping and defect engineering can adjust the band structure of
photoactive components to produce more photo-induced carriers and provide more charge
capture centers and adsorption sites for promoting charge separation, which can be used
as other strategies in photogenerated carrier-assisted electrocatalytic design.

The practical applications of photogenerated carrier-assisted electrocatalysis still need
to be further developed. On the one hand, the economic issues between the input light en-
ergy and the enhanced output activity need to be considered. Although the introduction of
light energy can reduce the overpotential of the water decomposition process and compen-
sate for power consumption, additional light energy will also increase the economic cost of
the energy input. Therefore, to reduce the cost of optical assistant strategies, it is important
to enhance the efficiency of light utilization and optimize the intrinsic electrocatalytic activ-
ity of photogenerated carrier-assisted electrocatalysts in order to reduce the overpotential
of redox reactions. The rational design of photogenerated carrier-assisted electrocatalysts
with an optimized electronic structure to promote the adsorption of electrochemical inter-
mediates and the separation of photogenerated carriers is very promising and conducive
to the practical application of photogenerated carrier-assisted electrocatalysis. On the
other hand, the design of a large-scale photogenerated carrier-assisted electrolytic cell is
essential, but the research on photoelectric devices is still relatively scarce. Industrial-scale
electrolytic water splitting technology has been relatively well-researched; embedding light-
transmitting windows makes the practical application of photogenerated carrier-assisted
technology possible.
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