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Abstract: Photopolymerization offers a unique opportunity to convert liquid monomers to polymers
using light as the activation source. Recently, major efforts have been devoted to developing visible
light photo-initiating systems, and the search for new dyes that can be incorporated into photocurable
resins and polymerize a resin within a few seconds is still ongoing. With the aim of exploring a
maximum of structures to reach this goal, quinoxaline has been identified to be a promising scaffold
for the design of UV-centered and visible light photo-initiating systems. In this review, an overview
of the different quinoxaline-based dyes will be given. In order to evidence the interest in these
structures, comparisons with reference systems will be given.

Keywords: quinoxaline; photopolymerization; UV light; visible light; free radical polymerization;
acrylate; cationic polymerization; epoxide

1. Introduction

During the past decades, photopolymerization has been an active research field, mainly
supported by the development of 3D printing but also by the necessity to replace in the
near future the historical UV photo-initiating systems with visible light photo-initiating
systems in the industry [1–11]. Indeed, UV photopolymerization is more and more the
focus of safety concerns, originating from the numerous drawbacks of UV light. Notably,
UV light can cause eye damage and skin cancers [12–15]. Parallel to this, molecular oxygen
can be converted to ozone during the polymerization process, constituting an additional
drawback of this approach [15]. In addition, photopolymerization constitutes an appealing
polymerization technique, which exhibits numerous specificities and advantages com-
pared to traditional thermal polymerization. In order to illustrate this, the possibility
of polymerizing without solvents to obtain efficient spatial and temporal control during
the polymerization process can be cited as relevant examples [16–29]. Development of
photo-initiating systems is not new since the first report mentioning a photoinduced elec-
tron transfer between triethanolamine and electron-accepting dyes (xanthenes, acridines,
thiazines) was reported as soon as 1954 by Oster and coworkers [30]. Since 1954, photopoly-
merization has greatly evolved, enabling now polymerization in safer and energy-saving
conditions. As a breakthrough, visible light photopolymerization has emerged as a promis-
ing alternative to the historical UV photopolymerization. As the main advantage of visible
light photopolymerization, a higher light penetration within the photocurable resins can
be obtained than in the UV range (See Figure 1). Indeed, if the light penetration is limited
to a few hundred micrometers in the UV range, this value can increase up to 4 mm at
450 nm and even reach 5 cm at 800 nm [31]. In these conditions, photopolymerization
becomes capable of polymerizing thick samples and is not limited anymore to the poly-
merization of thin samples, as in the past when UV light was used [32]. However, light
penetration within the photocurable resins is an important issue of photopolymerization,
and some clarifications should be given. For instance, the light penetration is strongly
related to the molar extinction coefficient of the photoinitiator at the wavelength used
for irradiation and on the photoinitiator concentration in the system. Only in the case
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of photo-bleachable initiators can the light penetrate deeply. This concerns the light of
any wavelengths, with the exception that short-wavelength UV may also be absorbed by
monomers. Figure 1 depicts the light penetration only in the light-scattering system, which
cannot be generalized to all photocurable systems because most photocurable resins are
transparent and not light-scattering. Consequently, the statement that the main advantage
of visible light photopolymerization is the higher light penetration within the photocurable
resins than in the case of UV light is not applicable to all resins. In complement to this
first point, one of the main drawbacks of visible light photopolymerization remains the
difficulty of obtaining colorless coatings [33]. Indeed, UV photoinitiators are colorless
compounds, enabling the ability to obtain easily colorless polymers. Conversely, visible
light photopolymerization makes use of dyes absorbing in the visible range, and these
dyes are often responsible for the final color of the polymers. In order to address this issue,
major efforts have been devoted to developing photo-bleachable photo-initiating systems,
with more or less success [33].
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Figure 1. Light penetration in a polystyrene latex with an average particle diameter of 112 nm.
Reprinted with permission from Bonardi et al. [31].

This effort is also supported by the wide range of applications using photopolymer-
ization. Notably, 3D and 4D printing, microelectronics, dentistry, coatings, solvent-free
paints, adhesives and varnishes can be cited as the main applications of photopolymer-
ization [1–10]. Another drawback of visible light photopolymerization is that visible
light photons are less energetic than UV photons, so more reactive photo-initiating sys-
tems have to be developed in order to overcome this lower energy. In the search for
highly reactive photo-initiating systems, numerous structures have been examined as
potential candidates capable of addressing the reactivity issue and carbazoles [34–47],
dihydroanthraquinones [48], camphorquinone [49,50], chalcones [9,51–63], naphthalim-
ides [64–82], benzophenones [83–90], silyl glyoximides [91], phenothiazines [92–103], thiox-
anthones [28,104–116], curcumin [117–120], pyrenes [121–129], iodonium salts [64,130–136],
push-pull dyes [137–139], copper complexes [140–143], iron complexes [144,145] zinc com-
plexes [146] iridium complexes [147,148] and N-heterocyclic carbene boranes [29] can be
cited among the most extensively studied structures of the past decade. Beyond the simple
selection of the chromophore, the way how to generate initiating species is important.
Notably, photoinitiators can be divided into two main categories, namely, Type I and Type
II photoinitiators. In the case of Type I photoinitiators, these structures can generate reactive
species by homolytic cleavage of a specific bond (See Scheme 1) [149–158].
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is in the excited state).

In this first family, O-acyl-α-oximino ketones, acetophenones, acylgermanes, ben-
zoin ether derivatives, α-aminoketones benzyl ketals, acylphosphine oxides, aminoalkyl
phenones, α-hydroxyalkyl ketones, hydroxylalkylphenones and oxime esters can cleave
homolytically, generating initiating radicals [103,151,153,158–161]. As the main interest
of these structures, Type I photoinitiators can be used as mono-component systems. As
a drawback, the photodecomposition is irreversible, so the concentration continuously
decreases during the polymerization process. Conversely, Type II photoinitiators are un-
able to generate initiating species without additives. However, a few exceptions exist.
For instance, free radical polymerization of ether acrylates (such as poly(ethylene gly-
col) diacrylates) is possible with benzophenone, thioxanthone and different chalcones,
the monomer itself acting as a co-initiator because -CH2O- groups are good hydrogen
donors [162]. Type II photoinitiators are typically used for the sensitization of onium
salts [163–168]. A photoinduced electron transfer from the photosensitizer towards the
onium salts is the key step to generating initiating radicals. However, Type II photoinitia-
tors are also combined with hydrogen donors, leading to the formation of a ketyl radical
with hydrogen abstraction and an additional radical issued from the hydrogen donor
(See Scheme 1) [105,110,169–174]. Considering that Type II photoinitiators are bimolecular
photoinitiators, the introduction of a sacrificial amine can contribute to regenerating the
photosensitizer in its initial redox state during the polymerization process so that this latter
can be introduced in a catalytic amount. This point is important, considering that the
photosensitizer is responsible for the final color of the polymer. By decreasing its content,
less colored coatings can be obtained. The search for new structures is also motivated by
the recent interest in developing photo-initiating systems activable with sunlight [175–184]
or capable of initiating a polymerization process in water [22,60,116,185–200]. With the aim
of polymerizing in energy-saving conditions, the use of light-emitting diodes (LEDs) is
now generalized in photopolymerization due to their low costs, long operating lifetimes,
compactness and their precise emission wavelengths. In the search for photo-initiating
systems that can be activated under low light intensity, i.e., LEDs, quinoxalines have been
identified as potential candidates for visible light photopolymerization. Quinoxalines are
heterocyclic compounds in which two nitrogen atoms replace two carbons in the ring of
naphthalene. Quinoxalines have been extensively studied for their biological properties.
Indeed, quinoxalines are biologically active against bacteria, viruses, cancer, leishmania, tu-
berculosis, malaria, depression and fungi [201]. Nevertheless, quinoxalines were also used
for the design of light-emitting materials for OLEDs [202,203], semiconductors and charge
transport materials for solar cells [204–207], the design of building blocks for covalent
organic frameworks [208]. Recently, different quinoxaline derivatives were also proposed
as fluorescent probes for near-infrared II (NIR-II, 1000–1700 nm) fluorescent imaging [209].

The first report mentioning the use of quinoxalines as photoinitiators of polymerization
was reported in 1999 by Pączkowski and coworkers. By using 3-benzoyl-7-diethylamino-5-
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methyl-1-phenyl-1H-quinoxalin-2-one (ChAD) as an electron acceptor and N-phenylglycine
derivatives (NPG) as electron donors, the free radical polymerization of trimethylolpropane
triacrylate (TMPTA) was carried out, using an argon ion laser (emission between 351 and
361 nm, 25.5 mW/cm2) or a He/Ne laser as the light sources (See Figure 2) [210,211]. The
best monomer conversion was obtained using (4-methoxyphenyl)glycine as the electron
donor. Noticeably, efficiencies of the different photo-initiating systems based on quinoxalines
were lower than that of a Rose Bengal derivative, namely RBAX, previously reported in
the literature.
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Figure 2. Chemical structures of the chromophore ChAD, the electron donors NPG, the monomer
TMPTA and the reference compound RBAX.

The same year, Aydin and coworkers proposed a series of quinoxalines (QNX-1-QNX-5)
that proved to be excellent photoinitiators in combination with electron donors such
as N-methyldiethanolamine (MDEA) and 2-(N-methyl-N-phenylamino)-1-phenylethanol
(MPAPE). By using these two co-initiators, the polymerization of methyl methacrylate
(MMA) was carried out upon irradiation with a UV light (λ = 350 nm) (See Figure 3) [212].
A few years later, this strategy was extended to an unusual co-initiator in photopolymeriza-
tion, namely benzaldehyde [213].
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Since these pioneering works, numerous quinoxaline derivatives have been proposed,
enabling the initiation of free radical polymerizations and cationic polymerizations in the
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UV and visible range. It has to be noticed that quinoxalines were also investigated as
chromophores for two-photon polymerization [214]. Triphenylamine-modified quinoxa-
lines were notably reported as exhibiting a two-photon value higher than 160 GM in the
780–820 nm range, greatly higher than the values reported for most of the benzil deriva-
tives investigated as photoinitiators for two-photon initiated polymerization. Recently, a
dipyrido[3,2-d:2′,3′-f]quinoxaline (dpq) ligand was also used for the design of an iridium
catalyst used for both the photogeneration of hydrogen from water and as a photocatalyst
for the polymerization of methyl methacrylate [215]. However, the drawback of this ap-
proach is the toxicity of iridium and the scarcity of this metal on Earth. Quinoxalines used
in two-photon polymerization and transition metal complexes comprising quinoxaline
units will not be further detailed in this review. In this work, an overview of the different
quinoxaline derivatives reported to date as one-photon initiators is given. Over the years,
numerous derivatives have been proposed for UV-induced or visible light-induced pho-
topolymerization. In order to evidence the polymerization efficiencies of these systems,
comparisons with reference compounds will be provided.

2. Quinoxalines as Photoinitiators of Polymerization

In 2000, Pączkowski and coworkers examined two dyes containing pyrazoloquinoxa-
line moieties, i.e., ZPG and ZPD, and investigated the photochemical mechanism involved
during the free radical polymerization (FRP) of TMPTA (See Figure 4) [216]. Noticeably, sim-
ilar absorption maxima were found for ZH (λmax = 409 nm in ethyl acetate) and ZPG/ZPD
(λmax = 415 nm in ethyl acetate). The photo-initiating abilities of these two dyes were
compared with that of the quinoxaline derivative ZH. While the FRP of TMPTA was carried
out upon irradiation with an argon ion laser, ZPG and ZPD greatly outperformed the
monomer conversion obtained with ZH. To support this, the authors evidenced that the
intersystem crossing between the singlet excited state and the triplet excited state was more
efficient for ZPG and ZPD than for ZH, enabling these dyes to interact more efficiently
with the electron donor N-phenylglycine (NPG) and facilitating the generation of radicals.
Application of the Rehm–Weller equation also revealed the free energy change to be more
positive for ZH than for ZPD and ZPG so that the rate constant of electron transfer between
ZH and NPG was expected to be slower than with ZPD and ZPG. However, the authors also
suggested a competitive back electron transfer between ZH and NPG, adversely affecting
the photo-initiating ability of this dye.
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The occurrence of a back electron transfer was confirmed with a series of ten pyrazolo-
quinoxalines, including the previously studied quinazoline dye ZH (See Figure 5) [217].
Examination of their UV-visible absorption spectra in ethyl acetate revealed that these
structures were relatively insensitive to the substitution pattern. Thus, absorption maxima
ranging between 404 nm for ZCD and 435 nm for ZND were determined. It has to be
noticed that the positions of the absorption maxima were affected by the substitution
pattern. Thus, for the nitro-substituted quinoxaline, positions of the absorption maxima
varied from 417 nm for ZNG and up to 435 nm for ZND, in which the nitro group was
in a conjugated position with the rest of the molecule (See Table 1). In this series of dyes,
the authors could establish a linear relationship between the monomer conversion and the
efficiency of singlet oxygen formation, evidencing that the electron transfer between NPG
and the different dyes was occurring via the triplet state. By introducing heavy atom in
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ZCl2, CI and CICl2, quantum yields of the triplet state formation were greatly improved,
enhancing the photo-initiating ability.
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Table 1. Absorption maxima of different quinoxaline dyes in ethyl acetate.

Compound ZH ZCG ZCD ZA ZB
λmax (nm) 409 413 404 416 408

Compound ZCl2 ZNG ZND CI CICl2
λmax (nm) 417 417 435 408 418

In benefiting from these elongated excited state lifetimes, interactions between the
dyes and NPG in the excited state were favored, improving the polymerization efficiency.
As shown in Figure 6, halogenated quinoxalines polymerized TMPTA within 50 s, contrarily
to the non-halogenated dyes for which a three-fold elongation of the polymerization time
was necessary. To monitor the polymerization process, photo-DSC was used. In this case,
access to the monomer conversion was not directly possible. Using photo-DSC, only the
heat flow can be determined. Heat flow is proportional to the polymerization rate, which is
the derivative of the conversion versus time function. In the present case, the highest heat
flows were obtained for CICl2 and CI, the two compounds bearing halogens.

In 2004, quinoxaline derivatives were tested for the first time in lower light intensity
(no use of lasers as the light sources as in the previous works) since dental lamps were
used for the polymerization experiments [218]. A series of seven dyes were examined,
differing by the substitution pattern and the alkylation or not of the nitrogen groups (See
Figure 7). All dyes exhibited an absorption centered in the near UV-visible range, the
absorption maxima peaking between 386 nm for IQH and up to 409 nm for IQNO2Cl2 (See
Table 2). Noticeably, in this series of dyes, the lowest monomer conversions were obtained
for the nitro derivatives, namely IQNO2 and IQNO2Cl2. These counter-performances
were assigned to the photoreduction of the nitro groups to nitroso groups, constituting
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efficient free radical scavengers and good inhibitors of free radical polymerization [219].
Polymerization efficiency was also strongly related to the electron donors used. Among
the five electron donors tested, namely N-phenylglycine (NPG), N-(4-cyanophenyl)glycine
(CN-NPG), (phenylthio)acetic acid (TPAA), ethyl 4-dimethylaminobenzoate (EDAB) and
phenoxyacetic acid (PAA), the best monomer conversions were obtained with NPG and
CN-NPG while using IQCH3 as the dye (See Figure 8). Using the best electron donors (NPG
and CN-NPG), the highest monomer conversions were obtained with IQBr and IQCH3Cl2
bearing halogens. Here again, the beneficial effect of heavy atoms on quinoxalines was
demonstrated. Noticeably, no direct correlations could be established between the rates of
the electron transfer and the polymerization rates determined for the different dyes. This
unexpected result was assigned to differences in molar extinction coefficients between dyes
and the diffusion effects of radicals within the resins affecting the polymerization efficiency.

Catalysts 2023, 13, x FOR PEER REVIEW 8 of 55 
 

 

 
Figure 6. Polymerization profiles obtained by photo-DSC using (1) CICl2, (2) CI, (3) ZB, (4) ZH, (5) 
CNH2 in combination with NPG. Reproduced from Ref. [217] with permission from the Royal So-
ciety of Chemistry. 

In 2004, quinoxaline derivatives were tested for the first time in lower light intensity 
(no use of lasers as the light sources as in the previous works) since dental lamps were 
used for the polymerization experiments [218]. A series of seven dyes were examined, 
differing by the substitution pattern and the alkylation or not of the nitrogen groups (See 
Figure 7). All dyes exhibited an absorption centered in the near UV-visible range, the ab-
sorption maxima peaking between 386 nm for IQH and up to 409 nm for IQNO2Cl2 (See 
Table 2). Noticeably, in this series of dyes, the lowest monomer conversions were obtained 
for the nitro derivatives, namely IQNO2 and IQNO2Cl2. These counter-performances 
were assigned to the photoreduction of the nitro groups to nitroso groups, constituting 
efficient free radical scavengers and good inhibitors of free radical polymerization [219]. 
Polymerization efficiency was also strongly related to the electron donors used. Among 
the five electron donors tested, namely N-phenylglycine (NPG), N-(4-cyanophenyl)gly-
cine (CN-NPG), (phenylthio)acetic acid (TPAA), ethyl 4-dimethylaminobenzoate (EDAB) 
and phenoxyacetic acid (PAA), the best monomer conversions were obtained with NPG 
and CN-NPG while using IQCH3 as the dye (See Figure 8). Using the best electron donors 
(NPG and CN-NPG), the highest monomer conversions were obtained with IQBr and 
IQCH3Cl2 bearing halogens. Here again, the beneficial effect of heavy atoms on quinoxa-
lines was demonstrated. Noticeably, no direct correlations could be established between 
the rates of the electron transfer and the polymerization rates determined for the different 
dyes. This unexpected result was assigned to differences in molar extinction coefficients 
between dyes and the diffusion effects of radicals within the resins affecting the polymer-
ization efficiency. 

Table 2. Absorption maxima of different quinoxaline dyes in ethyl acetate. 

Compound IQH IQPh IQBr IQCH3 IQCH3Cl2 
λmax (nm) 386 396 390 405 409 
ε (M−1·cm−1) 4200 4100 5400 3400 4800 
Compound IQNO2 IQNO2Cl2    
λmax (nm) 399 409    
ε (M−1·cm−1) 10,500 11,000    

Figure 6. Polymerization profiles obtained by photo-DSC using (1) CICl2, (2) CI, (3) ZB, (4) ZH,
(5) CNH2 in combination with NPG. Reproduced from Ref. [217] with permission from the Royal
Society of Chemistry.

Catalysts 2023, 13, x FOR PEER REVIEW 9 of 55 
 

 

 
Figure 7. Chemical structures of different 6H-indolo[2,3-b]quinoxalines. 

  

Figure 7. Chemical structures of different 6H-indolo[2,3-b]quinoxalines.



Catalysts 2023, 13, 718 8 of 40

Table 2. Absorption maxima of different quinoxaline dyes in ethyl acetate.

Compound IQH IQPh IQBr IQCH3 IQCH3Cl2
λmax (nm) 386 396 390 405 409

ε (M−1·cm−1) 4200 4100 5400 3400 4800

Compound IQNO2 IQNO2Cl2
λmax (nm) 399 409

ε (M−1·cm−1) 10,500 11,000
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Finally, a comparison of the photo-initiating ability of IQBr with that of camphorquinone
(CQ) and 2,2-dimethoxy-2-phenylacetophenone (DMPA, Irgacure 651) revealed IQBr fur-
nished similar polymerization rates to these benchmark photoinitiators (See Figure 9).
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651 as the dyes and CN-NPG as the electron donor using a dental lamp as the light source. Reprinted
from Ref. [218]. Copyright (2004), with permission from Elsevier.
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In 2023, Jędrzejewska and coworkers revisited IQH in the context of a compara-
tive study between indenono- and indoloquinoxaline derivatives IN1-IN5, IQH, IN7 and
IN8 (See Figure 10) [220,221]. The different dyes were used as electron acceptors for
(phenylthio)acetic acid (PTAA) [222], and the resulting photoredox pairs were used as
photo-initiating systems for dental applications. The mechanism of radical generation is
presented in Scheme 2.
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Scheme 2. Mechanism of photoinitiation with dye/phenylthioacetic acid system.

From the absorption viewpoint, all dyes IN1-IN5, IQH, IN7 and IN8 showed an
intense absorption band centered in the near UV range (See Table 3). Only IN8 exhibited
an absorption peak located in the visible range, peaking at 417 nm and attributable to
the presence of the phenanthrene moiety extending the aromaticity of this dye. In fact,
IN4 and IN8 exhibited the most red-shifted absorption for the two series of dyes, namely
the indenono- and indoloquinoxaline series. This redshift was beneficial for the FRP
experiments. Indeed, when paired with PTAA, the highest polymerization rates were
obtained with these two dyes due to a better match between the emission of the dental lamp
emitting at 400 nm and the absorption maxima of these chromophores. In fact, the photo-
initiating abilities of these photoredox pairs were comparable to that of camphorquinone
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(CQ), a benchmark photoinitiator commonly used in dentistry. Interestingly, in the context
of dental fillings, an increase of the temperature lower than 5 ◦C was evidenced, which did
not exceed the temperature tolerance threshold for the tooth pulp.

Table 3. Optical characteristics of IN1-IN5, IQH, IN7, IN8 and camphorquinone (CQ) in ethanol.

Compound IN1 IN2 IN3 IN4 IN5
λmax (nm) 390 381 394 394 352

ε (M−1·cm−1) 1600 3500 7800 49,200 18,800

Compound IQH IN7 IN8 CQ
λmax (nm) 386 393 417 472

ε (M−1·cm−1) 5100 23,600 31,500 40

The same performances were also obtained with another series of photoredox pairs
based on acenaphthoquinoxalines and 2-mercaptobenzoxazole (MBX) used as the co-
initiator (See Figure 11) [223]. In this series of dyes (QNX5, AN1, AN3-AN-8) and during the
FRP of TMPTA, the lowest heat increase was obtained with the AN6/MBX combination. In
addition, the temperature increase with the other dyes remained in the tolerance threshold
for dental applications. Due to their strong absorption located in the UV range (See Table 4),
colorless dental fillings could be obtained with these different acenaphthoquinoxalines,
making these dyes suitable candidates for dental applications.
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Figure 11. Chemical structures of various acenaphthoquinoxalines AN1, AN3-AN8 and
2-mercaptobenzoxazole used as the hydrogen donor.

Table 4. Optical characteristics of various acenaphthoquinoxalines in ethanol.

Compound AN1 QNX5 AN3 AN4 AN5
λmax (nm) 316 347 327 321 319

ε (M−1·cm−1) 27,200 14,600 82,400 92,000 110,100

Compound AN6 AN7 AN8
λmax (nm) 335 363 339

ε (M−1·cm−1) 145,800 189,900 146,200
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While NPG was extensively used as an electron donor for quinoxaline derivatives, other
compounds were also examined, as exemplified with N-methyldiethanolamine (MDEA) that
was used as an electron donor for UV photopolymerization experiments (See Figure 12) [224].
2,3-Diphenylquinoxaline (QNX-1), quinoxaline (QNX-3), 2,3-dimethylquinoxaline (QNX-4)
and acenaphthoquinoxaline (QNX-5) were tested as UV photoinitiators.

Catalysts 2023, 13, x FOR PEER REVIEW 14 of 55 
 

 

 
Figure 12. Quinoxalines investigated in combination with MDEA as the electron donor. 

Interestingly, by using a polychromatic light, very fast polymerization processes were 
evidenced since a full curing of TMPTA was obtained within 4 s of irradiation (See Figure 
13). The highest final monomer conversion was obtained for QNX-1, with a conversion of 
60% after 4 s. Noticeably, the highest monomer conversions were obtained for the most 
polyaromatic structures (QNX-1, QNX-5), certainly attributable to higher molar extinction 
coefficients in the visible range. Contrarily to the different work previously mentioned in 
this review, the TMPTA conversion could be monitored by Real-Time Fourier Transform 
Infrared (RT-FTIR) spectroscopy, giving direct access to the monomer conversion. To con-
duct this, modification of the IR peak at ca 6120 cm−1 was monitored, corresponding to a 
characteristic peak of TMPTA. The polymerization profiles were established from the dif-
ference between the initial peak area before irradiation and the peak area after irradiation 
for a given time t [225,226]. 

  

Figure 12. Quinoxalines investigated in combination with MDEA as the electron donor.

Interestingly, by using a polychromatic light, very fast polymerization processes
were evidenced since a full curing of TMPTA was obtained within 4 s of irradiation
(See Figure 13). The highest final monomer conversion was obtained for QNX-1, with a
conversion of 60% after 4 s. Noticeably, the highest monomer conversions were obtained for
the most polyaromatic structures (QNX-1, QNX-5), certainly attributable to higher molar
extinction coefficients in the visible range. Contrarily to the different work previously
mentioned in this review, the TMPTA conversion could be monitored by Real-Time Fourier
Transform Infrared (RT-FTIR) spectroscopy, giving direct access to the monomer conversion.
To conduct this, modification of the IR peak at ca 6120 cm−1 was monitored, corresponding
to a characteristic peak of TMPTA. The polymerization profiles were established from the
difference between the initial peak area before irradiation and the peak area after irradiation
for a given time t [225,226].
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Figure 13. Polymerization profiles obtained during the FRP of TMPTA under air and using the
two-component dyes/MDEA (1%/10% w/w), Reprinted from Ref. [224] Copyright 2007, Elsevier.

This trend of reactivity was confirmed during the FRP of other monomers, such as a
75% P-3038 epoxyacrylate (EA) and 25% tripropyleneglycol diacrylate (TPGDA) (3/1 v/v)
blend (See Figure 14). However, by elongating the irradiation time to 180 s, QNX-5 furnished
a similar monomer conversion to QNX-1. Clearly, the difference in monomer conversions is
directly related to differences in polymerization rates at early irradiation time.
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In the case of 5,12-dihydroquinoxalino[2,3b]quinoxalines (i.e., fluoflavins), these dyes
were interesting candidates to induce the reductive decomposition of alkoxypyridinium
salts (See Figure 15) [227]. The fluoflavin dyes/alkoxypyridinium salts combinations
proved to be excellent two-component systems to initiate the FRP of TMPTA under visible
light. It has to be noticed that previously to this work, cyanines [228], ketocoumarins [229]
and acridinedione dyes [230] were also used as sensitizers capable of inducing the decom-
position of alkoxypyridinium salts by photoinduced electron transfer. From the mechanistic
viewpoint, upon excitation of the dye, a photoinduced electron transfer from fluoflavins
towards the alkoxypyridinium salt can occur, generating an alkoxypyridinium radical
that immediately decomposes, generating initiating alkoxy radicals (RO•) (See Scheme 3).
Fluoflavin dyes were relatively insensitive to the substitution pattern since absorption
maxima located at 420 nm were determined for all dyes in 1-methyl-2-pyrrolidone as the
solvent (See Table 5).

Examination of their photo-initiating abilities during the FRP of TMPTA upon irradia-
tion with a visible light revealed QNX-7 and QNX-8 furnished the best polymerization rates
(See Figure 16). More precisely, QNX-7 was determined as outperforming all the other dyes,
irrespective of the alkoxypyridinium salt. Experiments carried out with Py2 also furnish
higher monomer conversion than Py1, once again evidencing the necessity to screen both
the electron donors and acceptors in order to obtain the best combination. Interestingly,
an efficient photobleaching of the TMPTA resins was observed during polymerization,
assigned to the addition of alkoxy radicals on fluoflavins, according to the mechanism
depicted in Scheme 4. Precisely, a reaction between the fluoflavin radical cation and the
ethoxyl radicals at the 9-position of the phenyl ring was proposed by analogy to previous
works performed on anthracene [231,232]. After proton release, an ethoxy derivative of the
fluoflavin dyes can be formed, enabling the ability to obtain an efficient bleaching of the
final polymers.
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Table 5. Optical characteristics of QNX-6-QNX-10 in 1-methyl-2-pyrrolidone.

Compound QNX-6 QNX-7 QNX-8 QNX-9 QNX-10

λmax (nm) 417 419 419 420 422

The possibility to initiate free-radical/cationic hybrid polymerizations (concomitant
polymerization of TMPTA and 3,4-epoxycyclohexylmethyl 3′,4′-epoxycyclohexanecarboxylate
(EPOX)) with fluoflavin derivatives was also examined. Using QNX-6-QNX-8 as the photosen-
sitizers for triarylsulfonium hexafluoroantimonates, epoxide conversions higher than that of
acrylates were observed with all photo-initiating systems [233]. The lower acrylate conversion
determined during hybrid photopolymerization was assigned to oxygen inhibition favoring
the cationic polymerization of epoxides. Indeed, contrarily to the cationic polymerization,
which is insensitive to oxygen inhibition, free radicals can react with molecular oxygen, gen-
erating unreactive peroxyl radicals. In 2009, the same authors examined a series of dyes
analogues to fluoflavins, namely QNX-11-QNX-19, that were used as electron donors for the
reductive photosensitization of N-methoxy-4-phenylpyridinium tetrafluoroborate (Py1) and
N-ethoxy-2-methylpyridinium hexafluorophosphate (Py2) examined in the previous work
and for diphenyliodonium hexafluorophosphate (Ph2I+PF6

−) (See Figure 17) [234]. These
photoinitiators were advantageously used for the FRP of acrylates under visible light and the
cationic polymerization (CP) of cyclohexene oxide (CHO).
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Noticeably, the QNX-11-QNX-19 series exhibited similar absorption properties irre-
spective of the substitution pattern. An intense absorption band was notably detected in
the visible region and located at approximately 415 nm (see Table 6). Absorption maxima
ranging from 409 nm for QNX-14 and QNX-17 and up to 421 nm for QNX-16 and QNX-19
were determined in 1-methyl-2-pyrrolidinone.

Table 6. Optical properties of the QNX-11-QNX-19 series in 1-methyl-2-pyrrolidone.

Compound QNX-11 QNX-12 QNX-13 QNX-14 QNX-15
λmax (nm) 411 413 420 409 414

Compound QNX-16 QNX-17 QNX-18 QNX-19
λmax (nm) 421 409 414 421
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gen dissolved in the photocurable resins. Oxygen can quench the triplet states of the dyes, 
adversely affecting the polymerization process. Finally, the QNX-11-QNX-19/Ph2I+PF6− 
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slow since 30 min. of irradiation was required to obtain a full curing of the resin. Similarly, 
as in the case of FRP of TMPTA, the best performances during the CP of CHO were also 
obtained with QNX-14-QNX-16, i.e., for all dyes substituted with a bromine atom. The 
higher polymerization efficiency of these dyes is thus related to the heavy atom effect, 
elongating the excited state lifetimes of the dyes by favoring the triplet state pathway and 
thus improving the intermolecular interactions of the dyes with the different additives. 
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The most red-shifted absorptions were determined for the dyes bearing chlorine
atoms, except for QNX-17, which exhibited the lowest absorption wavelength listed in
Table 6. Compared to the previous series of 5,12-dihydroquinoxalino[2,3-b]quinoxalines, the
presence of an additional nitrogen atom in 5,12-dihydroquinoxalino[2,3-b]pyridopyrazines
resulted in a slight blue shift of their absorption maxima (See Table 5). Once again, faster
polymerization processes and higher monomer conversions were obtained with Py2 and
the different dyes during the FRP of TMPTA. The fastest polymerization process was
obtained with QNX-11, irrespective of the electron acceptors. In all cases, relatively long
inhibition times were determined. This is directly related to the inhibition effects of oxygen
dissolved in the photocurable resins. Oxygen can quench the triplet states of the dyes,
adversely affecting the polymerization process. Finally, the QNX-11-QNX-19/Ph2I+PF6

−

combinations also initiated the CP of CHO. However, the polymerization process was
slow since 30 min of irradiation was required to obtain a full curing of the resin. Similarly,
as in the case of FRP of TMPTA, the best performances during the CP of CHO were also
obtained with QNX-14-QNX-16, i.e., for all dyes substituted with a bromine atom. The
higher polymerization efficiency of these dyes is thus related to the heavy atom effect,
elongating the excited state lifetimes of the dyes by favoring the triplet state pathway and
thus improving the intermolecular interactions of the dyes with the different additives.

In order to investigate the heavy atom effects, a series of 8-halogeno-5,12-dihydro
quinoxalino[2,3-b]quinoxalines QNX-20-QNX-26 was examined by the same group (See
Figure 18) [234]. As interesting features, all dyes absorb around 420 nm (See Table 7), i.e., at
the same position as the previous series (i.e., the QNX-11-QNX-19 series). Noticeably, in this
series of dyes, QNX-20-QNX-22 bearing bromine atoms clearly outperformed the other dyes,
irrespective of the electron acceptor. Notably, during the FRP of TMPTA, similar monomer
conversions were obtained using N-methoxy-4-phenylpyridinium tetrafluoroborate (Py1)
or N-ethoxy-2-methylpyridinium hexafluorophosphate (Py2) as the electron acceptors (See
Table 7). Thus, while conversions ranging between 21 and 24% were determined with QNX-
20-QNX-22 as the photosensitizers and Py2 as the co-initiator, these values decreased to 1–18%
for the non-brominated quinoxalines QNX24-WNX-26. No significant modification of the
monomer conversion was obtained by replacing Py2 with Py1 as the co-initiator. During the
CP of cyclohexene oxide (CHO), higher monomer conversions could be obtained with regards
to the monomer conversions determined during the FRP of TMPTA. By combining QNX-20-
QNX-22 with Ph2I+PF6

−, a CHO conversion of 97% was obtained with the two-component
QNX-20/Ph2I+PF6

− combination, greatly higher than that obtained with QNX-23-QNX-26 as
the photosensitizers (CHO conversions ranging between 29 and 63% after 240 s of irradiation
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with a visible light) (See Table 8). These monomer conversions perfectly fit with the quantum
yield of acid release determined upon photolysis. Indeed, the QNX-20/Ph2I+PF6

− system
was determined as the photo-initiating system furnishing the highest quantum yield of acid
release of the series.
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Figure 18. Chemical structures of 8-halogeno-5,12-dihydroquinoxalino[2,3-b]quinoxalines
QNX-20-QNX-26.

Table 7. Optical characteristics of the QNX-20-QNX-26 series in 1-methyl-2-pyrrolidone.

Compound QNX-20 QNX-21 QNX-22 QNX-23 QNX-24
λmax (nm) 418 417 420 418 417

ε (M−1·cm−1) 24,059 21,200 23,170 25,910 25,670

Compound QNX-25 QNX-26
λmax (nm) 420 421

ε (M−1·cm−1) 24,100 26,600

Table 8. Monomer conversions (%) obtained during the FRP of TMPTA with the two-component
dye/Py1 and dye/Py2 combinations and during the CP of CHO using the two-component
dye/Ph2I+PF6

− combination.

Compounds TMPTA CHO

dye/Py1 dye/Py2 dye/Ph2I+PF6
−

QNX-20 26 24 97
QNX-21 28 21 73
QNX-22 25 21 85
QNX-23 11 13 63
QNX-24 15 16 39
QNX-25 21 18 62
QNX-26 2 1 29

The design of quinoxaline derivatives absorbing in the 450–550 nm range is a real chal-
lenge, as these chromophores naturally absorb in the 350–420 nm range. In 2009, Toppare
and coworkers succeeded in addressing this issue by developing an original strategy in or-
der to redshift the absorption of a quinoxaline derivative (See Figure 19) [235]. Toppare and
coworkers notably proposed 2,3-bis(3,4-bis(decyloxy)phenyl)-5,8-bis(2,3-dihydrothieno[3,4-
b][1,4]dioxin-5-yl)quinoxaline (DOPEQ) exhibiting two ethylenedioxythiophene (EDOT)
groups introduced in lateral positions of the quinoxaline core to extend the conjugation.
Four decyloxy groups were also introduced for solubility. Due to its extended conjugation,
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a broad absorption was found for DOPEQ, extending between 300 and 550 nm, with an
absorption maximum located at 420 nm (See Figure 20).
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Figure 20. UV-visible absorption spectrum of DOPEQ in chloroform. Reprinted from Ref. [235]
Copyright 2010, Wiley.

Cationic photopolymerization of CHO conducted with the two-component DOPEQ/
Ph2I+PF6

− (0.1%/1% w/w) system using a UV light of low intensity (10 mW/cm2) revealed
the polymerization process to be very fast, the polymerization ended within 5 s. By using
EPOX as a difunctional monomer, the polymerization ended after 20 s. In light of this
remarkable reactivity, polymerization tests were carried out under sunlight because the
absorption spectrum of DOPEQ was relatively broad. Using sunlight, polymerization of
EPOX occurred within 5 min, evidencing the high reactivity of this two-component system
(See Figure 21).
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Following this work, other long wavelength photosensitizers were designed by the
same authors on the basis of the DOPEQ scaffold, as exemplified with 2,3,5,8-tetra(2,3-
dihydrobenzo[b][1,4]dioxin-6-yl)quinoxaline (DBQEd) and 2,3,5,8-tetra(thiophen-2-yl)
quinoxaline (TTQ) (See Figure 22) [236].
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Here again, highly efficient photo-initiating systems were obtained using Ph2I+PF6
−

as the cationic initiator. Especially compared to DOPEQ, a reduction of the polymer-
ization time under sunlight was obtained; EPOX was polymerized within 30 s using
the two-component DBQEd/Ph2I+PF6

− (0.1%/1% w/w) system and 2 min with the two-
component TTQ/Ph2I+PF6

− (0.1%/1% w/w) system. The higher reactivity of DBQEd and
TTQ compared to DOPEQ was assigned to the presence of electron-rich groups, reducing
the oxidation potential of these two dyes and thus favoring the intermolecular electron
transfer with the iodonium salt.

The introduction of metallocene, such as ferrocene, as peripheral groups for quinox-
alines was also examined, as exemplified with PS1 and PS2 (See Figure 22) [237]. Due to
the presence of ferrocene, broad absorption spectra extending between 400 and 600 nm
were determined for the two dyes in dichloromethane. Especially, while similar extinction
coefficients were determined for PS1 and PS2 comprising a ferrocene unit, a lower molar
extinction coefficient was measured for PS3 bearing naphthalene groups (See Figure 23).
Excellent photo-initiating abilities were also demonstrated upon sunlight irradiation for
PS1-PS3. During the CP of CHO, a full curing of the resin was obtained within 5 min by
using the two-component dye/Ph2I+PF6

− (0.1%/1% w/w) systems. For comparison, a full
curing of CHO was obtained upon irradiation of the samples with a mercury lamp, with
reaction times ranging between 10 and 30 s depending on the dyes.

In 2013, Lalevée and coworkers investigated another thiophene derivative, i.e., QXTP
and the polymeric PQXTP (See Figure 24) [238]. By extending the π-conjugation in PQXTP,
a redshift of the absorption was obtained (See Figure 25).
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from Ref. [238], Copyright 2013 American Chemical Society.

Interestingly, due to the broad absorptions of QXTP and PQXTP, polymerization
experiments could be carried out with laser diodes emitting at 405, 457, 473, 532 and
625 nm and with a halogen lamp (See Table 9). In order to perform the polymerization
experiments, three component dye/Ph2I+PF6

−/NVK photo-initiating systems were used
(where NVK stands for N-vinylcarbazole). During the CP of EPOX, the direct correlation
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existing between the molar extinction coefficient at the irradiation wavelength and the
monomer conversion was clearly evidenced. Thus, by irradiating at long wavelengths
(532 and 635 nm), a severe reduction of the monomer conversions was observed with
PQXTP. The polymerization of interpenetrated polymer networks (IPNs) by concomitantly
polymerizing TMPTA and EPOX was also investigated.

Table 9. Monomer conversions obtained during the CP of EPOX using the three-component
QXTP/Ph2I+PF6

−/NVK (0.5%/2%/3% w/w/w) and PQXTP/Ph2I+PF6
−/NVK (0.5%/2%/3%

w/w/w) systems.

Irradiation Sources
EPOX

QXTP/Ph2I+PF6
−/NVK

556677(0.5%/2%/3%, w/w/w)
PQXTP/Ph2I+PF6

−/NVK
556677(0.5%/2%/3%, w/w/w)

Laser diode at 405 nm 34% 21%
Laser diode at 457 nm 62% 48%
Laser diode at 473 nm 61% 49%
Laser diode at 532 nm 53% 30%
Laser diode at 635 nm 0 35%

Halogen lamp 61% 41%

The extractability of photosensitizers from the polymer films is a major issue, especially
for applications such as food packaging and biomedical applications. Due to its high
molecular weight, PTXQT was not extracted from the polymer network due to its polymeric
structure. The same experiments performed with QXTP revealed that the extractability was
lower than 0.01% for IPNs prepared under an inert atmosphere and 0.5% for IPNs prepared
under air. The extractability issue was also addressed with another structure derived from
quinoxalines, namely tris(aza)pentacene T_2 [129].

All the previous photoinitiators detailed in this review and absorbing at long wave-
lengths have been designed with thiophene units. In 2021, Yagci and coworkers introduced
carbazole units as peripheral groups for TPDC6 (See Figure 26) [239]. From the electro-
chemical viewpoint, carbazole and thiophene exhibit similar electron-donating properties,
so an excellent electron-donating chromophore could be prepared with carbazoles.
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The absorption of TPDC6 was broad, extending between 400 and 550 nm. An absorp-
tion maximum peaking at 438 nm was also determined in dichloromethane. Due to the
strong electron-donating properties of the carbazole groups, an efficient photoinduced
electron transfer could occur with Ph2I+PF6

−, so that the resulting photo-initiating system
efficiently promoted the cationic polymerization of the epoxy resin (bisphenol A Epoxy
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resin) upon sunlight irradiation. Noticeably, while a monomer conversion of 83% could be
obtained after 120 min of irradiation, an inhibition time as long as 30 min was evidenced.

Still based on the diphenylquinoxaline scaffold, a series of methoxyphenylquinoxalines
(MOPQs) was investigated for the polymerization of 2,2-bis(4-(acryloxypolyethoxy)phenyl)
propane (A-BPE-10) (See Figure 27) [240]. Contrarily to DOPEQ, which exhibited an
absorption spectrum in the visible range, absorption spectra of MOPQs remained strongly
UV-centered, with absorption maxima ranging between 349 nm for D3MOP-Q and up to
402 nm for D4MOP-BenQ (See Figure 28). Among the four co-initiators examined in this
work, namely leucocrystal violet (LCV), 2-mercaptobenzoxazole (MBO), NPG and MDEA,
MBO proved to be the best co-initiator for the different MOPQ derivatives. In this series of
dyes, the highest monomer conversion was obtained with D3MOP-BenQ when used as a
photosensitizer for MBO and upon irradiation at 365 nm (See Table 10 and Figure 29).
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Table 10. Optical characteristics of the different MOPQs in chloroform.

Compound D3MOP-Q D4MOP-Q D3MOP-DQ D4MOP-DQ D3MOP-BenQ D4MOP-BenQ

λmax (nm) 349 369 384 400 389 402
ε (M−1·cm−1) 10,200 14,000 45,000 51,000 10,600 18,000
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Figure 29. Photopolymerization profiles obtained with the two-component D3MOP-Q/MBO,
D4MOP-Q/MBO, T3MOP-DQ/MBO, T4MOP-DQ/MBO, D3MOPBenQ/MBO and D4MOP-
BenQ/MBO systems, upon irradiation at 365 nm (I = 50 mW/cm2) during the FRP of A-BPE-10.
Reprinted from Ref. [240], Copyright 2010, Elsevier.

Although T3MOP-DQ and T4MOP-DQ exhibited excellent absorption properties, only
low monomer conversions were obtained with these two dyes, attributable to their low
solubilities in the monomer, which may be caused by their extended and planar conjugated
structures. To support the polymerization initiated by the different quinoxaline derivatives,
a mechanism based on a hydrogen abstraction process was suggested by the authors, as
depicted in Scheme 5.

Catalysts 2023, 13, x FOR PEER REVIEW 32 of 55 
 

 

 

 
Scheme 5. Mechanism involved in the polymerization process using quinoxalines as the photosen-
sitizers. (* corresponds to the excited state). 

Several attempts were carried out to introduce heteroatoms into the structure of 
quinoxalines. Among these structures, several sulfur-containing dyes such as dithiino-
quinoxalines QNX-27-QNX-34 [234] and 12H-quinoxalino-[2,3-b][1,4]-benzothiazines 
QNX-35-QNX-37 [241–243] were proposed (See Figure 30). 

 
Figure 30. Chemical structures of different sulfur-containing quinoxalines. 

From the absorption viewpoint, the presence of these sulfur atoms in the quinoxaline 
derivatives did not significantly modify their absorptions compared to the parent struc-
tures since absorption maxima ranging between 386 nm for QNX-27 and 406 nm for QNX-
34 were determined. A higher influence was evidenced for 12H-quinoxalino-[2,3-b][1,4]-

Scheme 5. Mechanism involved in the polymerization process using quinoxalines as the photosensi-
tizers. (* corresponds to the excited state).

Several attempts were carried out to introduce heteroatoms into the structure of quinox-
alines. Among these structures, several sulfur-containing dyes such as dithiinoquinoxalines
QNX-27-QNX-34 [234] and 12H-quinoxalino-[2,3-b][1,4]-benzothiazines QNX-35-QNX-
37 [241–243] were proposed (See Figure 30).

From the absorption viewpoint, the presence of these sulfur atoms in the quinoxa-
line derivatives did not significantly modify their absorptions compared to the parent
structures since absorption maxima ranging between 386 nm for QNX-27 and 406 nm for
QNX-34 were determined. A higher influence was evidenced for 12H-quinoxalino-[2,3-
b][1,4]-benzothiazines QNX-35-QNX-37 since an absorption maximum located at 442 nm
was determined for QNX-37. Noticeably, upon substitution at the nitrogen atom of 12H-
quinoxalino-[2,3-b][1,4]-benzothiazines QNX-38-QNX-40 with various groups, a blue shift
of the absorption maximum was detected, as shown in Table 11.
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Table 11. Optical properties of the different dyes in 1-methyl-2 pyrrolidone.

Compound QNX-27 QNX-28 QNX-29 QNX-30 QNX-31 QNX-32
λmax (nm) 386 388 380 400 403 395

ε (M−1·cm−1) 20,100 19,800 20,400 24,000 22,200 17,200

Compound QNX-33 QNX-34 QNX-35 QNX-36 QNX-37 QNX-38
λmax (nm) 402 406 425 424 442 416
ε (M−1·cm−1) 17,700 26,400 7400 - - 9400

Compound QNX-39 QNX-40
λmax (nm) 373 371
ε (M−1·cm−1) 9200 9400

Interestingly, a good photobleaching of the polymer films was obtained with the
different 12-substituted 12H-quinoxalino-[2,3-b][1,4]-benzothiazines, in combination with
Ph2I+PF6

− during the FRP of acrylates [243]. In 2017, a series of quinoxalines bearing pho-
tocleavable groups and hydrogen-abstracting groups was proposed by Jiang and coworkers
(See Figure 31) [244]. In depending on the reaction conditions, these photoinitiators can act
as Type I photoinitiators and Type II photoinitiators in the presence of a hydrogen donor.
The mechanism of photoinitiation in the two cases is depicted in Scheme 6.
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Scheme 6. Mechanism of photoinitiation with diphenylquinoxaline derivatives (SQs) comprising
phenyl-thioether units (* corresponds to the excited state).

In this series of dyes, the most red-shifted absorptions were found for SQ2 and SQ3,
exhibiting the most extended π-conjugation (See Figure 32 and Table 12). Absorption
maxima peaking at 402 and 410 nm were, respectively, determined for SQ2 and SQ3. Con-
sidering that all dyes absorb in the 320–400 nm range, photopolymerization experiments
were carried out at 350 nm.
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Table 12. Optical characteristics of SQ1–SQ4 in chloroform.

Compound SQ1 SQ2 SQ3 SQ4

λmax (nm) 370 413 410 350
ε (M−1·cm−1) 17,790 54,113 18,868 7334

Photopolymerization of 1,6-hexanediol diacrylate (HDDA) using SQ1–SQ4 as Type I
photoinitiators revealed all dyes furnished monomer conversions higher than 80% upon
irradiation at 350 nm for 3 min Despite a long inhibition time, SQ2 furnished the highest
monomer conversion, around 90% (See Figure 33). Examination of their photo-initiating
abilities as Type II photoinitiators revealed that the HDDA conversion was greatly improved
by using the two-component dye/EDB systems (See Figure 34). In this case, monomer
conversions higher than 90% were determined.
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Figure 34. Photopolymerization profiles of HDDA using the SQ1–SQ4 as Type II photoinitiators in
combination with EDB under inert atmosphere. Reproduced with permission of Ref. [244].

The higher monomer conversions obtained by using the two-component dye/EDB sys-
tems were assigned to synergistic effects resulting from the photocleavage of the thioether
groups and the hydrogen abstraction mechanism of the quinoxaline groups, producing,
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in turn, more free radicals due to the concomitant occurrence of the Type I and Type II
mechanism. Among the three hydrogen donors examined, i.e., EDB, MBO and MDEA,
EDB proved to be the best co-initiator irrespective of the dye.

In 2014, a benzyl quinoxalinium hexafluoroantimonate (BQH) was reported for the
first time as a Type I photo-latent initiator (See Figure 35) [245]. Upon irradiation with a
UV light, the salt cleaved, generating a benzyl cation acting as the initiation species.
However, due to the lack of absorption of the quinoxalinium salt in the visible range, this
approach remained limited to UV photopolymerization.
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Figure 35. Chemical structure of BQH.

Quinoxaline derivatives were also extensively used as electron acceptors in photore-
dox pairs. In order to improve the electron-withdrawing ability of quinoxalines, naphtho-
quinone was incorporated in the structures of QNX-41 and QNX-42 (See Figure 36) [246].
Using phenylthiolacetic acid, with phenoxyacetic acid and N-phenylglycine as the electron
donors, the FRP of TMPTA was efficiently promoted. Among the most interesting results,
QNX-41 and QNX-42 were used as electron donors despite the presence of the naphtho-
quinone moiety, and these dyes also induced the cationic polymerization of CHO using Py1,
Py2 and Ph2I+PF6

− as the electron acceptors. A strong influence of the electron acceptor
used was evidenced since a two-fold increase in the CHO conversion was obtained with
Py1, compared to Py2 and Ph2I+PF6

− (See Table 13).
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Table 13. Monomer conversions obtained during the CP of CHO using Py1, Py2 and Ph2I+PF6
− as

the electron acceptors for QNX-41 and QNX-42 after 40 min of irradiation.

Compound Py1 Py2 Ph2I+PF6
−

QNX-41 69% 47% 39%
QNX-42 64% 37% 31%

The ability of dyes to act indifferently as electron donors or electron acceptors was
also demonstrated for a series of 6-pyridinium benzo[a]phenazine-5-oxide derivatives
QNX-43-QNX-46 (See Figure 37) [247]. Here again, the different two-component systems
initiated the FRP of TMPTA or the CP of CHO.

As shown in Figure 38 and in Table 14, the absorption of these dyes was broad,
extending in the visible range between 400 and 600 nm. A xenon lamp could thus be
used for the polymerization experiments. Once again, the presence of halogens and
especially of a bromine atom on QNX-46 was beneficial for the polymerization rate. Notably,
during the FRP of TMPTA and using the two-component dye/NPG systems, the highest
polymerization rate was determined for QNX-46 (See Figure 39). Following QNX-46, the
second-best TMPTA polymerization rate was obtained with QNX-45 bearing chlorine
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atoms. Comparisons performed with camphorquinone used as a reference compound
revealed that the new photo-initiating systems outperformed this reference compound.
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Figure 38. UV-visible absorption spectra of QNX-43-QNX-46 in 1-methyl-2-pyrrolidone. Reprinted
from Ref. [247], Copyright 2014, Wiley.

Table 14. Optical characteristics of QNX-43-QNX-46 in 1-methylpyrrolidone.

Compound QNX-43 QNX-44 QNX-45 QNX-46

λmax (nm) 487 487 472 475
ε (M−1·cm−1) 11,700 13,200 11,500 12,800
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with a dental lamp (I = 30 mW/cm2). In the presence of glass ionomer, a filler classically 
used for dental fillings, composites prepared with AN6 exhibited the natural color of den-
tal fillings, evidencing the pertinence of the approach (See Figure 41). Similar polymeriza-
tion abilities were also demonstrated with IN1–IN4 (See Figure 9). 

Figure 39. Polymerization profiles obtained during the FRP of TMPTA using the two-component
dye/NPG photo-initiating systems upon irradiation with a Xe lamp. Reprinted from Ref. [247]
Copyright 2014, Wiley.



Catalysts 2023, 13, 718 28 of 40

3. Current Research Situation

A rapid survey of the literature published since 2021 clearly indicates new research
trends to be developed with quinoxalines. In this field, the most dynamic research field is
undoubtedly the design of photoinitiators for dental applications.

3.1. Dental Applications

Acenaphthoquinoxalines AN1–AN8 proved to be suitable candidates in combination
with 2-mercaptobenzoxazole as the co-initiator (See Figure 11) [223]. Among the most in-
teresting finding, the heat released during photopolymerization was comparable to that
observed for photoinitiators traditionally used in dentistry, such as camphorquinone. As
shown in Figure 40, a similar exothermicity can be evidenced using (3,4-dimethoxyphenylthio)
acetic acid (diMPhTAA) as the co-initiator and upon irradiation at 400 nm with a dental
lamp (I = 30 mW/cm2). In the presence of glass ionomer, a filler classically used for dental
fillings, composites prepared with AN6 exhibited the natural color of dental fillings, evi-
dencing the pertinence of the approach (See Figure 41). Similar polymerization abilities
were also demonstrated with IN1–IN4 (See Figure 9).
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3.2. Photopolymerization under Sunlight

Another emerging research topic concerns the design of sunlight photoinitiators [248].
Indeed, Sun is the cheapest light source available on Earth. Sun exhibits a broad emission
spectrum. This resource is also free and unlimited on Earth and can allow the polymer-
ization process to be carried out in energy-saving conditions. In 2021, the first photosen-
sitizer based on quinoxaline dyes (TPDC6) was proposed by Zafer and coworkers (See
Figure 26) [239]. In this study, Sun was not directly used as the light source but as a
sunlight solar simulator. In order to monitor the polymerization of the epoxide resin, the
polymerization process was monitored by RT-FTIR, by following the peak at 914 cm−1,
which is a peak characteristic of the oxirane ring. Additionally, during polymerization,
a new peak appeared at 1108 cm−1, indicative of the ring-opening polymerization. By
using the solar simulator (100 mW/cm2), the beginning of the polymerization process was
detected 30 min. after the light was switched on, enabling the ability to obtain an excellent
conversion of 83% after 120 min of irradiation using bisphenol-A-diglycidyl ether as the
monomer. In this case, a two-component dye/Ph2I+PF6

− photo-initiating system was used
to initiate the CP of the epoxide resin.

3.3. The Different Families of Dyes Designed with Quinoxalines

Over the years, numerous quinoxaline derivatives have been designed and synthe-
sized. Among the most interesting features, dyes exhibiting the broadest absorption
spectra were 6-pyridinium benzo[a]phenazine-5-oxides, PQXTP and DOPEQ. By extend-
ing the π-conjugation, dyes absorbing between 300 and 700 nm could be obtained (See
Figure 42). However, for most of the families, the absorption range remained located in the
300–500 nm region, as exemplified with acenaphthoquinoxalines, pyrazoloquinoxalines or
12H-quinoxalino-[2,3-b][1,4]-benzothiazines.
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4. Conclusions and Future Prospects

Photopolymerization based on quinoxaline derivatives has been an active research
field. Since the pioneering works performed in 1999, numerous structures have been ex-
amined. Over the years, chemical engineering has enabled to redshift the absorption of
quinoxaline from the UV range towards the visible region. Among the most interesting
results, several quinoxaline derivatives were found effective as photoinitiators for sunlight
polymerization. This certainly constitutes the future of quinoxalines by enabling polymer-
ization in energy-saving conditions. A few Type I photoinitiators also have been proposed.
Considering the significant simplification of the photocurable resins Type I photoinitia-
tors propose, the development of quinoxaline-based Type I photoinitiators constitute the
second research topic. In this field, some structures are easily accessible such as oxime
esters of phenyl glyoxylate derivatives, and it is surprising that such structures have not
been proposed yet. Noticeably, no water-soluble photoinitiator based on quinoxalines has
been reported in the literature to date. In addition, it could greatly help to develop more
environmentally friendly polymerization conditions. This issue will certainly be addressed
in the coming years. Nowadays, the recyclability of polymers is a major concern of our
society, and a few examples of photoinitiators of depolymerization have been proposed
in the literature [249,250]. The design of photoinitiators/photosensitizers that could be
used both for the polymerization of acrylates and after polymer use could contribute to
depolymerize acrylates is a real challenge that should be overcome to address the recycling
of the ever-growing production of plastics.

Funding: Aix Marseille University and the Centre National de la Recherche Scientifique are greatly
acknowledged for financial support.
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217. Kucybała, Z.; Pyszka, I.; Pączkowski, J. Development of New Dyeing Photoinitiators for Free Radical Polymerization Based on
the 1H-Pyrazolo[3,4-b]Quinoxaline Skeleton. Part 2. J. Chem. Soc. Perkin Trans. 2 2000, 7, 1559–1567. [CrossRef]
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