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The thermogravimetric analysis (TGA) of the Cr-Se red and Cr-Se green clusters de-
scribes the stepwise decomposition of each sample (Figure S1). The TGA of Cr-Se red in 
argon showed a gradual decrease in weight in three steps; at the first step between 0°C 
and 180 °C, 13.3 % weight loss was observed, due to the loss of lattice water.[1] The second 
weight loss from 180–240 °C corresponds to 38.7% (calcd. 30.5%) which can be attributed 
to the decomposition of tetraethyl amine.[2] Finally, in the range of 240–900 °C a weight 
loss of 21.52% (calcd. 22.9%) is attributable to the loss of seven coordinated CO molecules. 
Similarly, Cr-Se green showed three weight loss steps; where 10.7 % weight loss was ob-
served between 0°C and 180 °C at the first step, confined to loss of lattice water. A to 34.4% 
(calcd. 30.5%) weight loss from 180–240 °C corresponds to the decomposition of tetraethyl 
amine. And a weight loss of 16.0% (calcd. 16.7%) in the range of 240–600 °C, attributed to 
the loss of seven coordinated water molecules. The percentage weight loss in the com-
plexes is in agreement with the calculated values. 

 
Figure S1. The thermogravimetric (TGA) analysis of (a) Cr-Se red; (b) Cr-Se green. 
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Table S1. Parameters of Equivalent Circuit Obtained from Fitting of EIS Experimental Data. 

Parameters Cr-Se red Cr-Se green 
R1/ohm 1.38 2.0 
R2/ohm 10.10 12.02 
R3/ohm 19.84 16.65 

C1/F 2.24 x10-2 3.9 x10-3  
W/s(1/2)/ohm 6.61 x 10-2 2.36 x 10-2  

 
Figure S2. Electrochemical characterization of Cr-Se red catalyst; (a) Cyclic voltammograms meas-
ured at different scan rates. (b) The plots of anodic and cathodic currents measured as a function of 
scan rate. 

 
Figure S3. Electrochemical characterization of Cr-Se green catalyst; (a) Cyclic voltammograms 
measured at different scan rates. (b) The plots of anodic and cathodic currents measured as a func-
tion of scan rate. 
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Figure S4. The high-resolution XPS spectra of the Cr-Se red complex after long term chronoam-
perometry showing (a) Cr 2p peak; (b) Se 3d peak; (c) surface O 1s peak; (d) C s1 peak. 

 
Figure S5. The high-resolution XPS spectra of the Cr-Se green complex after chronoamperometry 
showing (a) Cr 2p peak; (b) Se 3d peak; (c) surface O 1s peak; (d) C s1 peak. 
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Table S2. Comparison of the OER performances in an alkaline electrolyte (overpotential at 10 mA 
cm-2 current density, and Tafel slope) of published recently chromium-based catalysts with our 
work. 

Catalysts Electrolyte 
Overpotential 

(η@ 10 mA.cm-2) 
Tafel slope 
(mV dec-1) Substrate References 

*CoCr2O4 1.0 M NaOH 400 mV 87 mV dec-1 
Glassy car-

bon [3] 

*CoFeCr 1.0 M KOH 330 mV 61 mV dec-1 Ni foam [4] 

*NiCrFeO4 1.0 M KOH 298 mV 
44.47mV 

dec-1 PAN [5] 

*Cr2S3 1.0 M KOH 230 mV 162 mV dec-1 Carbon Fibre [6] 

#Cr(salen)Cl 3.0 M NaOH 426 mV - Glassy car-
bon [7] 

#$Cr(H-byp)(bis-bpymd) OH 390 mV - - [8] 
#$Cr(tpy)(py)(isoquin) OH 380 mV - - [8] 

#$Cr(DPA)(2,2’-bpymd) OH 320 mV - - [8] 

*γ-CrOOH 1.0 KOH 334 mV 
41.4 mV dec-

1 NF [9] 

*CrON 1.0 KOH 409 mV 157 mV dec-1 
Carbon paper 

 [10] 

Cr-Se red 1.0 M KOH 310.0 mV 82 mV dec-1 Carbon paper This work 
Cr-Se green 1.0 M KOH 350.0 mV 107 mV dec-1 Carbon paper This work 

* Bulk solid samples, # Complexes, $ Computational study. 
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