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Abstract: Laccase belongs to the superfamily of multicopper oxidases and has been widely inves-
tigated in recent decades. Due to its mild and efficient oxidation of substrates, laccase has been
successfully applied in organic catalytic synthesis, the degradation of harmful substances, and other
green catalytic fields. Nevertheless, there are few reports on the green catalysis with laccase. This
review focuses on reporting and collating some of the latest interesting laccase-catalyzed bond forma-
tion and breakage research. This is discussed with a focus on the effects of the medium system on the
laccase-catalyzed reaction, as well as the formation and the breakage of C–N, C–C, and C–O bonds
catalyzed by laccase. It provides abundant references and novel insights for furthering the industrial
applications of laccase.

Keywords: laccase; laccase–mediator system; green catalysis; bond formation; bond breakage

1. Introduction

Laccase (EC 1.10.3.2) is a copper-containing polyphenol oxidase that belongs to the blue
copper oxidase (MCO) family [1,2]. It was first discovered in the Japanese lacquer tree Rhus
Vernicifera [3,4]. Subsequently, laccases were found in different plant species [5], microbes [6,7],
and animals [8]. There have been more investigations on microbial laccases than on
animal and plant laccases, for which there have been relatively few. Microbial laccases
are divided into fungal laccases and bacterial laccases. Bacterial laccase mainly plays a
role in melanin production, spore wall defense, morphological change, and copper ion
detoxification [9,10]. Fungal laccase is mainly related to pigment generation, plant disease,
and lignin degradation [11,12]. Plant laccase is closely related to lignin biosynthesis [13]. At
the same time, the primary function of animal laccase protein is to control the ossification
of the epidermis [14].

Laccase is a glycoprotein with a molecular mass ranging from 50 to 140 kDa. Their amino
acid sequence can span from 220 to 800 amino acids and may contain three cupredoxin-like
domains. These domains bind copper centers involved in intermolecular electron transfer
reactions and constitute the catalytic core of laccases (Figure 1) [15]. The active copper
center of laccase generally contains four copper ions: a type I copper ion (T1-Cu), a type II
copper ion (T2-Cu), and two type III copper ions (T3-Cu). T1-Cu is a mononuclear center
that can gain electrons from the substrate and then transfer them to the trinuclear cluster
(TNC), and the oxidation of the substrate occurs there. T2-Cu is a single-electron acceptor,
whereas T3-Cu forms coupled ion pairs and is a double-electron acceptor. T2-Cu and T3-Cu
together form a trinuclear cluster (TNC). Oxygen accepts four electrons and four protons to
form water, which joins the bulk solvent [16,17]. Laccases can perform the single-electron
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oxidation of the substrate without using hydrogen peroxide while reducing molecular
oxygen to water; therefore, they have a surprisingly broad substrate spectrum and can
oxidize simple diphenols, polyphenols, diamines, and aromatic amines. The optimum
temperature and pH of laccases depend on the enzyme source and substrate properties;
those ranges are, respectively, from 20 ◦C to 75 ◦C and 3 to 8 (Table 1).

Catalysts 2023, 13, x FOR PEER REVIEW 2 of 21 
 

 

electron acceptor, whereas T3-Cu forms coupled ion pairs and is a double-electron accep-
tor. T2-Cu and T3-Cu together form a trinuclear cluster (TNC). Oxygen accepts four elec-
trons and four protons to form water, which joins the bulk solvent [16,17]. Laccases can 
perform the single-electron oxidation of the substrate without using hydrogen peroxide 
while reducing molecular oxygen to water; therefore, they have a surprisingly broad sub-
strate spectrum and can oxidize simple diphenols, polyphenols, diamines, and aromatic 
amines. The optimum temperature and pH of laccases depend on the enzyme source and 
substrate properties; those ranges are, respectively, from 20 °C to 75 °C and 3 to 8 (Table 
1). 

  

Figure 1. Crystal structure of the laccase (LccI) (PDB code: 1GYC) in Trametes versicolor. (A) The 
overall structure of LccI; (B) structure of the schematic representation of the four copper sites in 
LccI. 

Table 1. Enzymatic properties of laccase from different sources. 

Source Molecular Mass Optimal pH Optimal Temperature Ref. 
Fungal 46–80 kD 2.2–6 30–55 [18–21] 
Bacteria 43–114 kD 4.0–8.0 40–75 [22–26] 

Plant 59.2–140 kD 6.7 20 [27–29] 
Animal 73–110 kD 6.5–8.0 - [30–32] 

As an oxidase, the ability of laccase to oxidize the substrate is directly related to its 
redox potential (E0) [33,34]. E0 is an important characteristic of the catalytic oxidation ca-
pacity of laccase, which is the energy required for laccase to capture an electron from a 
reducing substrate. The E0 is critical to the reactivity of laccase and the overall reaction 
characteristics. Laccase can directly oxidize substrates with low E0, whereas some medi-
ators are needed to assist laccase in oxidizing substrates with high E0. Adding a mediator 
not only effectively improves the reaction efficiency of laccase but also expands the scope 
of the substrate. For instance, with the mediator’s help, laccase can oxidize nonphenolic 
structures with high E0 and is used in pulp bleaching [35]. Recently, laccase and the lac-
case–mediator system (LMS) have received extensive attention in green catalysis, such as 
synthesizing complex organic compounds, the selective modification of natural products, 
and the degradation of harmful substances [36–39]. For example, the C–N bond breakage 
of amines catalyzed by laccase is essential for synthesizing amino acids and nucleosides 
[40,41]. Existing research indicates that using Pleurotus ostreatus laccase and its natural 
mediator (syringaldehyde) to catalyze C–C bond breakage results in the removal of up to 
100% and 85% of BPA at concentrations of 0.44 and 0.88 mmol/L in wastewater within 1 h 
[42]. 

Furthermore, laccase-catalyzed C–N, C–C, and C–O bond formation can be widely 
employed in the green synthesis of some functional polymers, environmental 

Figure 1. Crystal structure of the laccase (LccI) (PDB code: 1GYC) in Trametes versicolor. (A) The
overall structure of LccI; (B) structure of the schematic representation of the four copper sites in LccI.

Table 1. Enzymatic properties of laccase from different sources.

Source Molecular Mass Optimal pH Optimal Temperature (◦C) Ref.

Fungal 46–80 kD 2.2–6 30–55 [18–21]
Bacteria 43–114 kD 4.0–8.0 40–75 [22–26]

Plant 59.2–140 kD 6.7 20 [27–29]
Animal 73–110 kD 6.5–8.0 - [30–32]

As an oxidase, the ability of laccase to oxidize the substrate is directly related to its
redox potential (E0) [33,34]. E0 is an important characteristic of the catalytic oxidation
capacity of laccase, which is the energy required for laccase to capture an electron from
a reducing substrate. The E0 is critical to the reactivity of laccase and the overall reac-
tion characteristics. Laccase can directly oxidize substrates with low E0, whereas some
mediators are needed to assist laccase in oxidizing substrates with high E0. Adding a
mediator not only effectively improves the reaction efficiency of laccase but also expands
the scope of the substrate. For instance, with the mediator’s help, laccase can oxidize
nonphenolic structures with high E0 and is used in pulp bleaching [35]. Recently, laccase
and the laccase–mediator system (LMS) have received extensive attention in green catalysis,
such as synthesizing complex organic compounds, the selective modification of natural
products, and the degradation of harmful substances [36–39]. For example, the C–N bond
breakage of amines catalyzed by laccase is essential for synthesizing amino acids and
nucleosides [40,41]. Existing research indicates that using Pleurotus ostreatus laccase and its
natural mediator (syringaldehyde) to catalyze C–C bond breakage results in the removal
of up to 100% and 85% of BPA at concentrations of 0.44 and 0.88 mmol/L in wastewater
within 1 h [42].

Furthermore, laccase-catalyzed C–N, C–C, and C–O bond formation can be widely em-
ployed in the green synthesis of some functional polymers, environmental remediation, and
other areas. In contrast, there are few reviews on laccase catalysis at present. This review
starts with the application of the laccase–mediator system; it also focuses on the analysis
of the laccase-catalyzed formation of small-molecule compounds through C–N, C–O, and
C–C bonds to obtain functional phenol polymers and important chemical pharmaceutical
skeletons, as well as the laccase-catalyzed breakage of the C–N, C–O, and C–C bonds of
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macromolecular refractory organic compounds to form organic molecules organics. Fur-
thermore, this review summarizes and forecasts the prospects of the laccase-catalyzed
formation and breakage of C–N, C–O, and C–C bonds, aiming to provide rich reference
value and novel ideas for expanding and developing the multifunctional applications of
laccase in the field of biotechnology.

2. The Effect of the Mediator System on Laccase Catalysis

Currently, some problems still need to be solved urgently to directly apply laccase
to industrial production. For instance: (1) Numerous substrates cannot directly bind to
laccase specifically. (2) With laccase, it is difficult to oxidize nonphenolic compounds with
high E0 (E0 > 1.3 V) due to its low E0 (E0 < 0.8 V). Thus, the development of laccase
in industries such as lignin degradation and bio-bleaching is limited [43,44]. In order to
reduce the oxidation potential of substrates and improve the oxidation efficiency, some
mediators can be used as an intermediate substrate for laccase to form new intermediate
states to transport electrons [41,45]. These mediators are compounds with low molecular
mass and low E0, such as 2,2′-Azino-bis-(3-ethylbenzothiazoline-sulphonate) (ABTS) and
2,2,6,6-Tetramethyl-1-piperidinylox (TEMPO), which can easily gain and lose electrons.
They can form highly active and stable intermediates under the action of laccase and act
on the substrate to is oxidized. In the LMS, laccase first oxidizes the mediator into a free
radical. The oxidized mediator rapidly applies to compounds above the E0 of laccase and
to those polymers that cannot directly access the laccase active center [46–48] (Figure 2).
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Figure 2. Oxidation of substrates by LMS.

Laccase mediators are usually divided into artificial and natural mediators (Figure 3) [49].
Due to their high efficiency and inexpensive availability, artificial mediators are widely
used in lignin degradation, polycyclic aromatic hydrocarbon (PAH) oxidation, and dye
decolorization. Common artificial mediators include ABTS, TEMPO, and 1-hydroxy-
benzotriazole (HBT) (Figure 3B) [50–52]. Three mechanisms have been proposed for the
function of mediators in the LMS: (1) hydrogen atom transfer (HAT), (2) electron transfer
(ET), and (3) the ionic mechanism (IM). ABTS was the first mediator found to promote
the laccase-catalyzed oxidation of nonphenolic lignin. The action mechanism of ABTS
belongs to the electron transfer mechanism (ET), which undergoes two stages (Figure 4):
forming an ABTS+· cationic radical and slowly oxidizing to ABTS2+. ABTS2+ with higher
reduction potential (but not ABTS+·) performs a more critical function in the laccase–ABTS
system, which mediates the oxidation of nonphenolic lignin substrates [53–55]. The HAT
mechanism, which is generally the oxidation mechanism mediated by the N-OH type
mediator, uses a form of nitryl (>N-O·) to perform oxidation, such as the HBT system.
Meanwhile, the purpose of the ion mechanism (IM) is mainly to form an ammonium
oxide ion (>N=O·) through the nitryl group (>N-O·) to carry out the oxidation, such as the
TEMPO system [39,56].
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Artificial mediators have potential applications in the areas of lignin degradation
and polycyclic aromatic hydrocarbon (PAH) oxidation for dye decolorization, but some
disadvantages limit their use. For instance: (1) poor stability, (2) potential toxicity [57],
and (3) difficulty in regeneration when the molar ratio of mediators to substrates is as
high as 40:1 [53,58]. Compared to artificial mediators, natural mediators have more eco-
nomic value because they are readily obtained, environmentally friendly, and reproducible
(Figure 3A) [35,53]. Some fungal metabolites and lignin derivatives could be used as natural
mediators of laccase, including but not limited to vanillin, acetyl vanillin, acetosyringone,
syringaldehyde, 2,4,6-trimethyl phenol, and p-coumaric acid [59]. Taking the laccase p-
coumaric acid system as an example, it can remove 95% anthracene (80% with HBT) and
benzoin anthracene within 24 h [57].

Besides indirectly assisting laccase-catalyzing substrates, mediators show synergism
with each other, and the degradation efficiency increases with the increase in mediator
concentration [60]. For example, the complex mediator system composed of laccase, ABTS,
and HBT can oxidize phenanthrene with only one intermediary phase with a degradation
rate that can be increased by 30–40% compared with a single-mediator system (such as the
ABTS system or HBT system) [61]. Therefore, with intensive research on and development
of the LMS, the biocatalytic substrates of laccase can be further expanded.
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3. Laccase-Catalyzed C–N, C–C, and C–O Bond Breakage

Laccase-catalyzed C–N, C–C, and C–O bond breakage has been used in preparing
multifunctional polymer materials, the purification of water pollution, organic synthesis,
and other fields. It is similar to the catabolic process in vivo, in which laccase mediates the
oxidative degradation of large organic compounds to form small molecules [62–65]. The
laccase-TEMPO system can catalyze C–N bond breakage to deprotect and provide amino
donors for organic synthesis. In this chapter, the breakage of the C–N, C–C, and C–O bonds
will be introduced from three perspectives.

3.1. C–N Bond Breakage

Due to the abundance of amines in organic molecules, the employment of amino-
protecting groups is commonplace in many synthetic schemes, such as carbamates, amides,
and sulfonamides [66]. The chemical method is generally used to remove the amino-
protecting groups and has the disadvantages of high price, harsh reaction conditions, and
severe pollution [66–69]. The N-para-methoxyphenyl (N-PMP) and N-benzyl group could
be removed in an aqueous solution with the oxidative fracture of the C–N bond catalysis
by laccase [41].

3.1.1. N-PMP Removal

The para-methoxyphenyl (PMP) group is being increasingly used as a nitrogen-
protecting group for amines [70]. In most cases, ceric ammonium nitrate (CAN) has
been used for deprotection, which is expensive and highly toxic. It requires increasingly
cost-effective, environmentally friendly, and scalable deprotection procedures to make
these processes commercially viable. Recently, a novel enzymatic method for the oxidative
deprotection of p-methoxyphenyl (PMP)-protected amines has been reported [71]. Using
laccase AB (laccase from Agaricus bisporus) under mildly acidic conditions results in the
highest efficiency (with the highest yield reaching 89%) when the cosolvent is DMSO and
pH = 3 is used. Further screening of the substrate showed that laccase had activity on
substrates 1–7 (Scheme 1, Table 2). Due to the reaction conditions being green and mild with
a high catalytic efficiency, laccase has excellent potential as a conventional PMP removal
biocatalyst in organic synthesis.
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Product 7
30%
47%

AB: laccase from Agaricus bisporus, T: laccase from Trametes versicolor.

3.1.2. N-Benzyl Removal

N-Benzyl groups are typically cleaved using reductive methods, often employing
palladium-catalyzed hydrogenolysis [72], which is accompanied by high cost, poor reac-
tion conditions, and severe pollution. Reports have indicated that laccase from Trametes
versicolor and TEMPO catalyzes the debenzylation of n-benzyl-1-phenylethylamine to α-
phenylethylamine at 30 ◦C, pH 5, and O2 (Scheme 2, Table 3) [40]. This methodology could
be successfully applied over different aliphatic, cyclic, and aromatic amines affording de-
protected derivatives of 1a–7a smoothly and immaculately, with no undesired by-products
or oxidative transformations (Conversion > 97%). In contrast to the high cost, poor reaction
conditions, and severe pollution of palladium-catalyzed hydrogenolysis, laccase-catalyzed
N-benzyl removal is accompanied by mild reaction conditions, pollution-free, and easy
extraction of the final derivatives.
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Although this reaction occurred efficiently for N-benzylated secondary amines (Scheme 2,
Table 3), it did not modify O-benzylated alcohols or N-protected tertiary amines (Scheme 3,
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Table 4). It is speculated that laccase has a particular selectivity for N-benzyl, which effec-
tively removes N-benzyl from the secondary amine and has no activity for O-benzylated
amine. Compared to the secondary amine, the steric hindrance of the tertiary amine of the
N-benzyl group is more significant, which results in the low efficiency in the benzyl removal
of tertiary amines by laccase. In addition, the laccases that catalyze secondary N-benzyl
removal are the fungal laccases with the highest E0. Tertiary amines and o-benzylated
amines with higher dissociation energies are not catalyzed because the E0 of laccases is
insufficient. Modifying laccase to magnify the binding pocket of laccase and increase the E0
of laccase is necessary to catalyze N-benzylated tertiary amines and O-benzylated alcohols
with laccase [73–75].
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Table 4. Laccase-catalyzed tertiary amine benzyl removal of substrate.

Entry Amine Product and Yield

1
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3.2. C–C Bond Breakage 
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3.2. C–C Bond Breakage

As an important organic chemical raw material, bisphenol A (BPA) is extensively
involved in manufacturing polycarbonate and epoxy resin plastics [76,77]. It causes im-
balances and disturbances in the endocrine system of organisms and even induces a risk
of cancer when it accumulates in wild organisms and humans [78]. BPA can be effec-
tively removed from wastewater using adsorption, Fenton oxidation, electrochemistry,
photodegradation, and biofilm filtration [79–81]. However, these conventional methods
struggle to eliminate trace BPA and easily cause secondary damage to the ecological envi-
ronment. The degradation rates of BPA can be up to 100% catalyzed by laccase-hydroxy
benzotriazole (HBT) within 4 h, which can cause the effective removal of BPA from indus-
trial wastewater [82].

The intermediate products of BPA catalyzed by laccase include macromolecular poly-
merization and small-molecule oxidative decomposition, which are mainly affected by the
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source of laccase and the type of media [37,83]. Laccase can catalyze BPA to form phenoxy
radical intermediates and covalently couple outside the enzymatic reaction site to form BPA
oligomers and polymers [84,85]. Although in the LMS, the mediator as an electron shuttle
prompts laccase to catalyze the cleavage of the C–C bond of oxidized BPA, forming a variety
of small-molecule oxidative decomposition products [42,86,87] (Scheme 4). Furthermore,
the LMS can also catalyze the breakage of C–C bonds of estrogen, antibiotics, polycyclic aro-
matic hydrocarbons, and so on to effectively degrade organic pollutants [88]. For instance,
the LMS with HBT can effectively degrade polyethylene and nylon-66 by catalyzing the
breakage of C–C bonds. In previous experiments, after 3 days of treatment with the LMS,
the weight average molecular mass (Mw) of polyethylene decreased from 242,000 to 28,300,
and that of nylon-66 from 79,300 to 14,700. LMS also decreased the polydispersity (weight
average molecular mass/number average molecular mass, Mw/Mn) of polyethylene and
nylon-66. Furthermore, these reductions in elongation, tensile strength, and molecular
mass were accompanied with the morphological disintegration of the polyethylene and
nylon-66 membranes [89–91].

Catalysts 2023, 13, x FOR PEER REVIEW 9 of 21 
 

 

3 

N
Bn

NHBn

 
11a 

H
N

NHBn

 
11b 
<1% 

3.2. C–C Bond Breakage 
As an important organic chemical raw material, bisphenol A (BPA) is extensively in-

volved in manufacturing polycarbonate and epoxy resin plastics [76,77]. It causes imbal-
ances and disturbances in the endocrine system of organisms and even induces a risk of 
cancer when it accumulates in wild organisms and humans [78]. BPA can be effectively 
removed from wastewater using adsorption, Fenton oxidation, electrochemistry, photo-
degradation, and biofilm filtration [79–81]. However, these conventional methods strug-
gle to eliminate trace BPA and easily cause secondary damage to the ecological environ-
ment. The degradation rates of BPA can be up to 100% catalyzed by laccase-hydroxy ben-
zotriazole (HBT) within 4 h, which can cause the effective removal of BPA from industrial 
wastewater [82]. 

The intermediate products of BPA catalyzed by laccase include macromolecular 
polymerization and small-molecule oxidative decomposition, which are mainly affected 
by the source of laccase and the type of media [37,83]. Laccase can catalyze BPA to form 
phenoxy radical intermediates and covalently couple outside the enzymatic reaction site 
to form BPA oligomers and polymers [84,85]. Although in the LMS, the mediator as an 
electron shuttle prompts laccase to catalyze the cleavage of the C–C bond of oxidized BPA, 
forming a variety of small-molecule oxidative decomposition products [42,86,87] (Scheme 
4). Furthermore, the LMS can also catalyze the breakage of C–C bonds of estrogen, antibi-
otics, polycyclic aromatic hydrocarbons, and so on to effectively degrade organic pollu-
tants [88]. For instance, the LMS with HBT can effectively degrade polyethylene and ny-
lon-66 by catalyzing the breakage of C–C bonds. In previous experiments, after 3 days of 
treatment with the LMS, the weight average molecular mass (Mw)of polyethylene de-
creased from 242,000 to 28,300, and that of nylon-66 from 79,300 to 14,700. LMS also de-
creased the polydispersity (weight average molecular mass/number average molecular 
mass, Mw/Mn) of polyethylene and nylon-66. Furthermore, these reductions in elonga-
tion, tensile strength, and molecular mass were accompanied with the morphological dis-
integration of the polyethylene and nylon-66 membranes [89–91]. 

 
Scheme 4. Free radical coupling and oxidative decomposition of BPA catalyzed by fungal laccase. Scheme 4. Free radical coupling and oxidative decomposition of BPA catalyzed by fungal laccase.

Although laccase is effective in wastewater treatment, it is challenging to separate,
purify, and recover free laccase due to its high price, which limits its practical application in
wastewater treatment [92,93]. The recovery and reuse of laccase benefits from immobilized
enzyme technology, which can significantly improve laccase’s stability and catalytic effi-
ciency [94–96]. In one study, amino-functionalized magnetic nanoparticles were attached
to laccase nanoflowers, and it was found that the degradation rate of BPA was up to 100%
within 5 min, with a prolonged storage period and excellent recycling performance [97].
Therefore, this technology is expected to improve the removal efficiency of bisphenol A by
laccase and guarantee the mass implementation of this enzyme in sewage treatment [98].

3.3. C–O Bond Breakage

Triclosan has been widely used in detergents, skin creams, and other dairy products
as a broad-spectrum antibacterial agent. However, when the concentration of triclosan in
water is higher than a specific range, it will lead to the death of fish and other organisms [99].
Triclosan can be effectively removed from wastewater using photochemical degradation
and oxidation. Nevertheless, secondary damage to the ecological environment is caused
by these conventional methods. Reports have shown that laccase can effectively remove
and convert triclosan in water by catalyzing its C–O bond break to produce small-molecule
chemicals. In these reports, the removal efficiency of triclosan catalyzed by the laccase–HBT
system was about 80% (the HBT concentration was 1.0 mmol/L) [100,101].

In the laccase catalytic system, the triclosan removal efficiency can be improved by
adding HBT. Without HBT, the primary mechanism of laccase-catalyzed oxidation of
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triclosan is the formation of oligomers, such as a dimer, trimer, and tetramer, through a
free-radical-mediated coupling reaction. In the laccase–HBT system, triclosan conversion
primarily involves generating 2,4-dichlorophenol and 3-chlorophenol through ether bond
cleavage [102,103] (Scheme 5).
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The mechanism of laccase-catalyzed C–N, C–C, and C–O bond breakage is similar to
that of anabolic metabolism in vivo. First, the mediators are oxidized into an ionic type
with high redox potential and oxygen is reduced to water by laccase in the presence of
the mediators [104]. Then, the ionic mediators attack the substrate’s C–N, C–C, and C–O
bonds, generating an unstable oxidation intermediate containing double bonds. Finally, the
oxidation state intermediates are oxidized to the product in the presence of H+, reducing
oxygen to water (Figure 5). The laccase-catalyzed breakage of C–N, C–C, and C–O bonds
can be used in preparing multifunctional polymeric materials, water pollution purification,
and organic synthesis. Among these, laccase-catalyzed C–N bond breakage can be applied
to remove the amino-protecting group in chemical synthesis. This type of bond breakage
as well as that of C–O can be harnessed in sewage treatment, environmental remediation,
and other fields [105,106]. In conclusion, the laccase-catalyzed breakage of C–N, C–C, and
C–O bonds has essential applications in preparing multifunctional polymeric materials,
water pollution purification, and organic synthesis [102].
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4. Laccase-Catalyzed C–N, C–C, C–O Bond Formation

The formation of C–C, C–N, and C–O bonds catalyzed by laccase has crucial applica-
tion potential for preparing multifunctional polymer materials and the organic synthesis of
amino acid derivatives [107]. It is similar to the anabolic process in vivo, which catalyzes
the homologous/heterologous oxidative coupling of low-molecular-weight organic com-
pounds from polymeric products [108]. For example, laccase from Trametes versicolor can
catalyze the C–C homologous coupling of free radicals to prepare biaryl compounds, with
the highest yield of the product being 85% [109]. In this chapter, the formation of the C–N,
C–C, and C–O bonds will be introduced from three perspectives.

4.1. C–N Bond Formation

A single low-molecular-weight organic compound can be catalyzed by laccase to form
multiple homologous isomers through a mild, green, and efficient process that can be
widely used in the green synthesis of some essential antibacterial drugs [110]. It has been
reported that 2-amino-4,6-dimethyl-3-oxo-phenoxazine-1,9-dicarboxylic acid (actinocin)
was prepared with the oxidative coupling of 4-methyl-3-hydroxy-2-aminobenzoic acid
catalyzed by laccase (from Trametes versicolor) with a yield of 53% (Scheme 6). Actinocin
is a kind of actinomycin which can effectively block the transcription of cancer cell DNA,
so it has a good anticancer ability [111]. Moreover, 2-amino-3H-phenoxazine-3-ketone has
been synthesized by using laccase catalysis under similar conditions [112].
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Furthermore, the amination of hydroquinone catalyzed by laccase has excellent advantages
in synthesizing novel antibiotics and amino acid derivatives. For instance, eight new penicillin
can be synthesized through the coupling of ampicillin or amoxicillin-2,5-dihydroxybenzoic acid
derivatives catalyzed by laccase (Scheme 7) [112]. L-phenylalanine and L-tryptophan derivatives
are synthesized by laccase catalysis (Schemes 8 and 9) [113–115].
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Multifunctional dimers materials are synthesized through the C–N formation of low-
molecular-weight organic compounds catalyzed by laccase. The process is mild, green,
and efficient and can be widely utilized in the green synthesis of some drugs and amino
acids [111,114]. However, its practical applications in the synthesis of some critical antibac-
terial drugs and acid derivatives are limited because the efficiency of laccase-catalyzed
C–N formation is low, and laccase is expensive and not easy to separate, purify, or recycle.
The stability of laccase can be improved through immobilization, achieving recyclability
and reducing costs, which will help promote the popularization and application of this
enzyme in green synthesis [116].

4.2. C–C Bond Formation

Biaryl compounds are essential components of many natural organic compounds,
and are becoming increasingly widely used in the chemical industry, medicine, food, and
other fields. In recent years, biaryl compounds have generally been synthesized using
reductive coupling and oxidative coupling, with the problems of low atomic utilization
rates, high cost, and severe environmental pollution. Consequently, the mild catalytic
synthesis of biaryl compounds is one of the most studied areas in organic chemistry [117].
In 2005, a small library of biaryl compounds was prepared using the laccase-catalyzed C–C
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homologous coupling of free radicals (Table 5), with the highest yield of the product being
85% [109].

Table 5. Overview of the oxidative homocoupling of salicylic esters conducted by Ciecholewski.
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In order to highlight the potential of laccase-mediated biaryl synthesis, Beifuss and 
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tains biaryl compounds using the bio-oxidation of catechol, which obtained a very high 
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R1 R2 R3 R4 Yield% Number of
Products

H H H H 0 0
Me H H H 0 0
Me Me Me Me 84 1
Me Me (CH2)2Cl Me 85 1
Me Me (CH2)2Cl Me 85 5
Et Me (CH2)2Cl Me 74 5
Et Me (CH2)2Cl H 0 >7
Me H Me H 78 3
Me Me H Me 0 >7

In order to highlight the potential of laccase-mediated biaryl synthesis, Beifuss and
coworkers provided an elegant approach for 3-tert-butyl-1H-pyrazole-5(4H)-one that con-
tains biaryl compounds using the bio-oxidation of catechol, which obtained a very high
biaryl compound yield of 98% when isolated (Table 6) [118].

Table 6. The 3-tert-butyl-1H-pyrazol-5(4H)-one containing biaryl compounds obtained by laccase-
catalyzed oxidation of catechol.
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Me a,b 91:9 98
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F a,b 60:40 98
Br b - 96

Although laccase-catalyzed C–C bond formation can be used to obtain biaryl com-
pounds mildly and efficiently, using laccases to prepare biaryl compounds is still a challeng-
ing synthetic application which appears difficult to generalize as it is entirely rationalized.
As exemplified by Constantin and coworkers, laccase-mediated bio-oxidations are prone
to forming unexpected and unpredicted products because subtle differences in the struc-
ture of the oxidized substrates can largely influence the outcome of a reaction [119]. The
application of laccase in biaryl compound synthesis could be improved by enhancing the
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substrate specificity of laccase catalysis by modifying laccase [120]. For instance, bacterial
laccase with single or multiple mutations more efficiently oxidizes benzo[α]pyrene than
the wild-type enzyme (the mutant exhibits about seven fold higher activity than wild-type
CueO) [121].

4.3. C–O Bond Formation

Moreover, laccase-catalyzed coupling reactions can add hydroxyl groups from water
or fatty alcohol nucleophiles to p-dihydroxy aromatic substrates to form new C–O binding
products [109]. Due to their mild conditions (air, room temperature, atmospheric pressure,
and lack of toxic substances), these laccase-catalyzed reactions provide a cost-effective,
environmentally friendly method for the simple and rapid cross-coupling of hydroxylated
substances to the C–O binding of alcohols (Scheme 10) [122,123].
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Scheme 10. Carbon–oxygen bond formation by fungal laccases: cross-coupling of 2, 5-dihydroxy-N-
(2-hydroxyethyl)-benzamide with the solvents water, methanol, and other alcohols.

Moreover, laccase from different sources has been used for the selective oxidation
of diphenyl phytotoxin trans-resveratrol (3,5,4-trihydroxystilbene) [108,124]: specifically,
the laccases from Myceliophthora Thermophila and Chrysophyceae catalyze the production
of homologous dimers from trans-resveratrol (3,5,4-trihydroxystilbene) (Scheme 11) [125]
and homodimers that synthesize trans-resveratrol for the removal of ROS, respectively. In
addition, the formation of actinomycin and hexazinone can be involved in antimicrobials,
which are synthesized by laccase-catalyzed aminophenol C–C and C–O bond formation
(Scheme 12) [111].
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The laccase-catalyzed mechanism of forming C–N, C–C, and C–O bonds is similar
to anabolism in vivo. First, unstable phenoxy active radical intermediates are formed
by the loss of electrons from the hydroxyl phenol functional group and aromatic ring
structure while reducing oxygen to water. Subsequently, oligomers are spontaneously
formed by free radical intermediates; then, polymer self- or cross-polymerization products
are formed with long-term repeated coupling. Laccase-catalyzed C–N, C–C, and C–O
bond formation in single low-molecular-weight organic compounds can be used to obtain
various functional polymer materials, for example, some critical antibacterial drugs and
amino acid derivatives. In summary, the laccase-catalyzed formation of C–N, C–C, and
C–O bonds has crucial application potential in preparing multifunctional polymer materials
and in the organic synthesis of amino acid derivatives [67,114].

5. Conclusions and Perspectives

With the development of molecular biology and bioengineering, more laccase protein
structures and mechanisms of action have been clarified. The laccase-catalyzed formation
and breakage of C–C, C–N, and C–O bonds have also been increasingly involved in
multifunctional polymer materials, water pollution purification, and organic synthesis.
Moreover, promising theoretical breakthroughs in formation and breakage these bonds in
organic compounds have been made since the development of the LMS. For example, the
conversion rate for LMS-catalyzed secondary amine C–N breakage can reach up to 99%.
Thus, as a green catalyst, laccase has great potential in industrial applications.

Although laccase has been widely used, the further promotion and application of
this enzyme are limited by the problems of its primary source being direct extraction, its
high price, and its poor stability. Therefore, research on laccase can be strengthened in the
following aspects: (1) improving the efficiency of autonomous expression and reducing
costs, (2) immobilizing laccase to improve stability and realize recovery, and (3) modifying
the selectivity to improve the oxidation activity and increase pocket size. These studies will
create a solid foundation for the further application of laccase.
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