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Abstract: Transition metal and heteroatom co-doped carbon nanomaterials (TM-H-C) are considered
to be the most promising candidates to replace the expensive platinum-based catalysts for oxygen
reduction reactions (ORR). Herein, we report a semi-closed molten salt-assisted one-step strategy for
fabricating N-P-Fe-tridoped porous carbon nanotube (CNT) catalysts by using the evaporation of
ZnCl2 and the catalysis of iron ions to control the heteroatoms doping process and CNT formation.
The resultant densely packed porous CNT structure imparts final catalysts with an enhanced mass
transfer ability for electron and ORR-involved species, ensuring a high performance in catalyz-
ing the ORR. Significantly, the optimal catalysts show a half-wave potential of 0.89 V (vs. RHE),
which is better than commercial platinum-based catalysts and most reported TM-H-C ORR catalysts.
Impressively, when applied to a primary inc-oxygen (Zn–O2) battery, the synthesized catalyst com-
prehensively outperforms the state-of-the-art platinum-based catalyst in both its maximum power
density and specific capacity.

Keywords: fuel cells; oxygen reduction reaction; non-noble metal catalysts; carbon nanotube

1. Introduction

As clean and pollution-free power generation devices with a high energy conversion
efficiency, fuel cells and metal–air batteries are of great significance for solving environ-
mental pollution and energy problems [1–12]. However, the cathode ORR catalyst is highly
dependent on the precious metal catalyst represented by platinum, which seriously restricts
its large-scale commercial applications [13,14].

Transition metals (e.g., Fe, Co, and Ni) and heteroatoms (e.g., B, N, S, and P) co-
doped carbon catalysts are regarded as very promising non-precious-metal-based catalysts
(NPMCs) and electrocatalysts for the ORR [15–22], where transition metal and heteroatoms
can change the charge distribution and introduce abundant active sites, thus enhancing the
adsorption and reduction of oxygen. In addition to their doping properties, a large surface
area, well-designed porosity, and excellent electrical conductivity are also important factors
for improving the activity of these carbon-based catalysts.

Among the many NPMCs, heteroatom-doped CNTs have excellent electron conduc-
tion and matter transport capabilities [23]; hence, they are often used as catalysts for
efficient oxygen reduction reactions. However, their low specific surface areas and complex
preparation methods still limit their wide application. Recently, the template method has
been regarded as an effective approach for fabricating efficient heteroatom-doped CNT
catalysts, benefitted by its extendibility and ability to adjust aperture characteristics. CNTs
with a porous structure and heteroatoms can be obtained by direct high temperatures to
carbonize the mixture of carbon/heteroatom precursors with additive templates (e.g., silica
and block copolymers) [24–26]. However, due to the weak wrapping property between the
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CNT/templates and heteroatom precursors, the nano-sized precursors are easily aggre-
gated, resulting in a limited specific surface area and unavailable active sites, leading to
a poor catalytic performance. Furthermore, such a template-assisted pathway invariably
needs complex processes to synthesize and remove templates, during which, it is easy to
introduce toxic substances and poison the catalysts. Therefore, it is highly desired that a
simple method for synthesizing heteratomic-doped CNT catalysts with excellent doping
properties and porous structures for oxygen reduction electrocatalysis is developed.

Herein, N-P-Fe-tridoped CNT catalysts with a large surface area, considerable porosity,
and heteroatomic doping characteristics were fabricated through an ingenious semi-closed
molten salt-assisted one-step strategy. As shown in Scheme 1, the precursor mixture was
adequately coated with excess ZnCl2 through a 200 ◦C low-temperature pre-carbonization.
In the subsequent high-temperature carbonization process, the precursor could be induced
to form a porous CNT structure. These porous CNT structures not only greatly increased
the specific surface area of the catalyst and enabled the active sites to be fully exposed to
the three interfaces, but also provided fast channels for electron conduction and material
transport. Benefitting from its well-designed porous CNT structure and excellent doping
properties, the N-P-Fe-tridoped catalyst exhibited superior oxygen reduction catalytic
activity and stability compared to commercial Pt/C, making it a strong contender for
applications in Zn–O2 battery and fuel cells.
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Scheme 1. Schematic illustration of the synthetic procedure for P-FeNC/CNT catalyst.

2. Results and Discussion
2.1. Morphology Analysis

The formation of porous carbon nanotubes induced by ZnCl2 and Fe3+ was analyzed
using scanning electron microscopy (SEM) and transmission electron microscopy (TEM).
The final catalyst fabricated by carbonizing phen and phytic acid (PA) precursors with both
ZnCl2 and FeCl3 was named as P-FeNC/CNT. The catalysts with only carbon precursors
and ZnCl2 or FeCl3 were defined as P-NC and P-FeNC. Figure 1a shows the SEM image of
the P-FeNC/CNT catalyst, which indicates that the P-FeNC/CNT is a densely arranged,
open-ended CNT structure with a diameter of approximately 300 nm. During the reaction,
these carbon nanotubes (CNTs) can provide a fast path for electrons, increasing the rate of
the electron conduction inside the catalyst. The open structure allows for fast mass transfer
channels both inside and outside of the CNTs for the ORR. In contrast, the P-FeNC catalysts
without ZnCl2 (Figure 1b) were heavily sintered and had a lumpy structure; the P-NC
catalysts without the addition of Fe Cl3 (Figure 1c) showed a stacked lamellar structure.
This contrast illustrates that the formation of carbon nanotubes can only be induced by the
combined effect of Fe and ZnCl2. During the high-temperature carbonization process, the
molten ZnCl2 will form a semi-closed nanoreactor and the precursor can be induced to form
porous CNTs under the combined effect of iron catalysis and the volatilization of ZnCl2.
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Figure 1. SEM images of (a) P-FeNC/CNT, (b) P-FeNC, and (c) P-NC catalysts. (d) TEM image and
(e) HRTEM image of P-FeNC/CNT. (f) Raman spectra of P-FeNC/CNT, P-NC, and P-FeNC catalysts.

The TEM image (Figure 1d) shows that P-FeNC/CNT has a cross-linked porous CNT
structure and the high-resolution TEM (HRTEM) image (Figure 1e) reveals that CNT walls
have a highly crystalline graphite structure, again indicating its excellent mass transport
properties and electrical conductivity. The Raman spectroscopy analysis (Figure 1f) displays
that the D-band (1327 cm−1) and G-band (1579 cm−1) ratios (ID:IG) of P-FeNC/CNT and
P-FeNC are 1.02 and 1.06, respectively, which are smaller than that of P-NC at 1.09, indi-
cating that iron doping can not only catalyze the formation of CNT structures, but also
enhance the degree of the graphitization of catalysts. The X-ray diffraction (XRD) pattern
(Figure S1) also confirms this conclusion. Compared to P-NC, P-FeNC/CNT and P-FeNC
have strong peaks at 25.2◦ and 43.7◦, respectively, corresponding to the (002) and (101)
peaks of graphitic carbon, indicating that the iron-doped catalyst has a higher degree
of graphitization.

2.2. Pore Structure and Surface Area Analysis

For further studying the effect of ZnCl2 and iron on the BET surface area (SBET), N2
adsorption–desorption isotherms were measured (Figure 2a). The type I curve and obvious
hysteresis loop of P-FeNC/CNT indicate its micropores and mesoporous pores struc-
ture. Both the specific surface areas (Figure 2b) of P-FeNC/CNT (1849 m2g−1) and P-NC
(1420 m2g−1) are higher than that of P-FeNC (829 m2g−1), revealing that the volatilization
of ZnCl2 can lead to the formation of a large number of pore structures during high-
temperature annealing. The pore size distribution diagram (Figure 2c) demonstrates that
P-FeNC/CNT has a large number of micropores (Figure 2c inset) and mesoporous pores
with pore sizes smaller than 10 nm, which further indicates the pore-making ability of
ZnCl2. The large surface areas and excellent pore structures of P-FeNC/CNT catalysts can
host plentiful active sites and facilitate their full exposure. In addition, the well-constructed
porous structures of CNTs can supply fast mass transfer channels for the substances associ-
ated with the ORR, thus enhancing the electrocatalytic activity.
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distribution of P-FeNC/CNT, P-NC, and P-FeNC catalysts.

2.3. Chemical States and Surface Element Analysis

The surface elemental composition and chemical valence of P-Fe-NC/CNT were inves-
tigated using X-ray photoelectron spectroscopy (XPS). The full spectrum of P-FeNC/CNT
(Figure 3a) shows that N, P, and Fe were successfully doped into P-Fe-NC at 1.88 at%,
1.76 at%, and 0.30 at%, respectively (Table S1).
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(d) Fe2p spectrum of P-FeNC/CNT.

The N 1s peaks (Figure 3b) can be divided into pyridine N (398.3 eV), Fe-Nx (399.1 eV),
pyrrole N (400.4 eV), graphite N (401.6 eV), and oxidized N (402.9 eV) [22,23,27]. Of these,
pyridine N, Fe-Nx, and graphite N, which are considered to be favorable for the ORR,
account for 74% of the total nitrogen content, indicating that the majority of the doped N
atoms are capable of acting as active sites for the ORR and enhancing the electrochemical
activity of the catalyst.

The high-resolution P 2p spectrum of P-FeNC/CNT contains two characteristic peaks
(Figure 3c), P-C (133.1 eV) and P-O (133.8 eV), respectively [28]. Most of the doped P is
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present as P-C. As P has an electronegativity of 2.19, weaker than C’s 2.55, the P atom
attached to C is positively charged and can act as an oxygen reduction active site in
alkaline media [29]. At the same time, P atoms existing in the P–O phase can enhance the
electronegativity of the oxygen atom, thus increasing the electron-leaving domain of the
carbon atom around the oxygen atom, which, in turn, facilitates its adsorption to oxygen
molecules. In addition, P doping into the carbon lattice can cause the carbon skeleton to
distort and deform [28], forming a large number of folded structures and allowing for the
active site to be fully exposed to the three-phase interface, which will significantly improve
the activity of the catalyst.

Figure 3d shows the high-resolution Fe 2p spectrum in P-FeNC/CNT, in which two
peaks at 725.2 eV and 723.9 eV correspond to Fe(III) and Fe(II) in the Fe 2p1/2 peak and the
peaks at 713.2 and 710.6 eV correspond to Fe(III) and Fe(II) in the Fe 2p3/2 peak, while the
peaks at 716.9 eV are satellite peaks [30]. The iron content of the catalyst was calculated to
be 1.31 wt% based on the XPS measurements, which is close to the 1.21 wt% analyzed using
ICP-MS. It was demonstrated that the presence of Fe facilitates the adsorption of oxygen
and oxygen-containing intermediate species, thus promoting the oxygen reduction activity
of the catalyst. The elemental mapping of P-FeNC/CNT (Figure 4a–f) displays that the N,
P, and Fe elements are uniformly distributed in the carbon nanotube skeleton. Thanks to
the excellent porous CNT structure of the P-FeNC/CNT catalyst, these heteroatoms are
fully exposed to the three-phase interface as active sites for the ORR.
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2.4. Electrocatalytic Activity Analysis

The oxygen reduction activity of the catalysts was investigated using rotating disc
electrode tests in alkaline medium. The CV curves (Figure S2) show that P-FeNC/CNT
has the largest bilayer capacitance in comparison to P-NC and P-FeNC, which is consistent
with the specific surface area analysis. P-FeNC/CNT presents the highest oxygen reduction
activity (Figure 5a) with a half-wave potential of 0.89 V (vs. RHE), which is significantly
higher than that of P-FeNC at 0.87 V (vs. RHE), indicating that the porous CNT catalysts
fabricated by the semi-closed molten salt-assisted one-step strategy are superior to the
bulk catalysts prepared in the conventional open system. The absence of a limiting current
plateau in the linear sweep voltammetry (LSV) curve of P-NC suggests that its catalytic
reaction may be a two-electron process with an incomplete ORR, suggesting that iron
doping plays an important role in enhancing the catalyst activity. Encouragingly, under
the same conditions, P-FeNC/CNT outperforms the commercial Pt/C catalysts in terms
of both half-wave potential and ultimate current plateau, classifying it as one of the most
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active NPMC catalysts (Table S2). To further study the electron transfer process of the
P-FeNC/CNT catalyst, we recorded the LSV lines (Figure 5b inset) at different rotation
speeds in an O2-saturated 0.1 M KOH solution. The almost coincident K-L curves (Figure 5b)
indicate that the catalytic process of the P-FeNC/CNT catalyst is a primary reaction kinetic
with a high selectivity for complete four-electron oxygen reduction reactions (Figure S3).
As shown in Figure S4, The fast ORR kinetics for P-FeNC/CNT are further confirmed by
its Tafel slope (95 mV dec−1), which is only a little larger than that of the Pt/C catalyst
(71.8 mV dec−1).
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curves of the Zn–O2 battery.

The methanol cross-effect was evaluated using the potentiostatic method in oxygen-
saturated 0.1 M KOH (Figure S5). After the addition of methanol, the current quickly
returned to the initial state after a transient perturbation, indicating that the P-FeNC/CNT
catalyst has a strong resistance to methanol poisoning. The stability of the catalyst was
further investigated using an accelerated durability test (ADT). After 10,000 CV cycles,
the negative half-wave potential shift of P-FeNC/CNT was less than 10 mV (Figure S6a),
while the performance of the commercial Pt/C catalyst decreased significantly, with a
negative half-wave potential shift of up to 50 mV (Figure S6b). These results indicate that
P-FeNC/CNT has a high stability in alkaline media and shows potential for replacing
high-cost Pt-based ORR catalysts.

The ORR activity of P-FeNC/CNT was further evaluated under real operating condi-
tions using a homemade Zn-O2 cell. As shown in Figure 5c, the maximum power density
of the Zn-O2 cell with P-FeNC/CNT as a catalyst was 240 mWcm−2, which is much higher
than that of Pt/C at 190 mWcm−2. The constant current discharge curves (Figure 5d) reveal
that the voltage gap between the P-FeNC/CNT and Pt/C catalysts broadened with an
increase in the current, indicating that the porous CNT structure of the P-FeNC/CNT cata-
lyst has a higher mass transfer rate and can achieve the rapid transport of reaction-related
substances at high current densities. This comparison substantiates that the Zn-O2 cell
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using P-FeNC/CNT as a catalyst has a better discharge performance, confirming its high
oxygen reduction activity and revealing its application value in practical battery systems.

3. Materials and Methods

Typically, 1.8 g of a 50% phytic acid (PA) solution and 5 g of ZnCl2 were successively
added to 3 mL of deionized water. Then, 300 mg of 1,10-phenanthroline (Phen) was
dissolved in 2 mL of ethanol and added to the above mixed solution. In total, 500 mg
of Fe(NO3)3 was dissolved in 2 mL of water, added to the above mixture, and stirred
continuously at room temperature for 2 h. Then, the above mixture was put into a Petri
dish, which was put into a muffle furnace at a heating rate of 5 ◦C/min to 200 ◦C for 5 h.
The cooled sample was transferred to a 25 mL porcelain crucible and carbonized in a tube
furnace at 900 ◦C for 2 h under a nitrogen atmosphere, with a heating rate of 5 ◦C/min.
After this carbonization, the sample was acid-treated with 0.5 M H2SO4 at 80 ◦C for 8 h.
The product was filtered, washed, dried, ground, and then carbonized again for one hour
at 900 ◦C in a nitrogen atmosphere.

In comparison, P-NC is prepared without the addition of iron nitrate precursors and
P-FeNC is prepared the same way as P-FeNC/CNT, except that ZnCl2 is not included.

4. Conclusions

In summary, a semi-closed molten salt-assisted one-step method has been applied to
prepare N-P-Fe tridoped porous CNT catalysts. Due to the catalytic effect of Fe and the
pore-building effect of ZnCl2, the prepared catalysts exhibited a tightly packed porous
carbon nanotube structure and a very large specific surface area, providing a fast channel
for electron conduction and mass transport. Electrochemical tests demonstrated that the
P-FeNC/CNT catalysts outperformed commercial Pt/C catalysts in terms of their oxygen
reduction activity and electrochemical stability. They also demonstrated a higher maximum
power density than commercial Pt/C in zinc–oxygen cell tests, revealing excellent promise
for application. In addition, this semi-closed molten salt-assisted one-step strategy provides
a simple, convenient, and practical way to prepare other types of heteroatom-doped carbon
nanotube catalysts.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal13050824/s1, Figure S1: XRD patterns of P-NC, P-FeNC and
P-FeNC/CNT; Figure S2: CV cures of the as prepared catalysts in O2-saturated 0.1M KOH at a
sweep rate of 50 mVs−1; Figure S3: The electron transfer numbers (n) of P-FeNC/CNT; Figure S4:
Tafel slopes of P-FeNC/CNT and Pt/C; Figure S5: Current-time curve of P-FeNC/CNT catalysts in
O2-saturated 0.1 M KOH, before and after the addition of 0.5 M CH3OH; Figure S6: Polarization
cures of the P-FeNC/CNT and commercial Pt/C catalysts in O2-saturated 0.1MKOH at 1600 rpm
with a sweep rate of 10 mV s−1 before and after the accelerated durability test; Table S1: The element
content of P-FeNC/CNT catalyst obtained from XPS and the Fe content obtained form ICP-MS; Table
S2: Comparison of the ORR activity of P-FeNC/CNT catalyst with other reported electrocatalysts in
alkaline electrolytes with a rotation rate of 1600 rpm; Table S3: Comparison of the power density of
Zn-O2 batteries in this work with other reported electrocatalysts [22,23,26,28,31–45].
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