
Citation: Chen, H.; Wang, J.; Liu, Y.;

Chen, Y.; Wang, C.; Zhu, L.; Lu, Y.;

Chen, X. Rational Design of

Cyclodextrin Glycosyltransferase

with Improved Hesperidin

Glycosylation Activity. Catalysts 2023,

13, 885. https://doi.org/10.3390/

catal13050885

Academic Editors: Kaili Nie, Yu Ji

and Chun Shen

Received: 17 April 2023

Revised: 9 May 2023

Accepted: 10 May 2023

Published: 14 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Article

Rational Design of Cyclodextrin Glycosyltransferase with
Improved Hesperidin Glycosylation Activity
Hanchi Chen 1,2, Jiajun Wang 1,2, Yi Liu 1,2, Yongfan Chen 1,2, Chunfeng Wang 1,2, Linjiang Zhu 1,2, Yuele Lu 1,2

and Xiaolong Chen 1,2,*

1 College of Biotechnology and Bioengineering, Zhejiang University of Technology, Huzhou 313200, China;
hchen23@zjut.edu.cn (H.C.); zhulinjiang@zjut.edu.cn (L.Z.); luyuele@zjut.edu.cn (Y.L.)

2 Institute of Fermentation Technology, Zhejiang University of Technology, Huzhou 313200, China
* Correspondence: richard_chen@zjut.edu.cn

Abstract: Cyclodextrin glycosyltransferase (CGTase) can catalyze the glycosylation of hesperidin,
resulting in α-glycosyl hesperidin with significantly improved water solubility. In this study, a
rational design of CGTase to improve its hesperidin glycosylation activity was investigated. The
strategy we employed involved docking hesperidin in its near-attack conformation and virtually
mutating the surrounding residues, followed by calculating the changes in binding energy using
Rosetta flex-ddG. The mutations with a stabilization effect were then subjected to an activity assay.
Starting from CGTase-Y217F, we obtained three double-point mutants, Y217F/M351F, Y217F/M351L,
and Y217F/D393H, with improved hesperidin glycosylation activities after screening twenty variants.
The best variant, Y217F/D393H, exhibited a catalytic activity of 1305 U/g, and its kcat/KmA is
2.36 times higher compared to CGTase-Y217F and 15.14 times higher compared to the wild-type
CGTase. Molecular dynamic simulations indicated that hesperidin was repulsed by CGTase-Y217F
when bound in a near-attack conformation. However, by introducing a second-point mutation with a
stabilization effect, the repulsion effect is weakened, resulting in a reduction in the distances between
the bond-forming atoms and, thus, favoring the reaction.

Keywords: cyclodextrin glycosyltransferase; rational design; flex-ddG; hesperidin; glycosylation

1. Introduction

Hesperidin is a natural bioflavonoid enriched in citrus peel. As a member of the vita-
min P family, hesperidin is functional in regulating the permeability of capillaries [1]. Other
activities, such as anti-oxidation [2], anti-inflammation [3], anticancer [4], and regulating
blood sugar and cholesterol levels, have also been reported [5,6]. Typical applications of
hesperidin include being used as a pharmaceutical to treat hemorrhoids, varicose veins, and
lymphedema, as well as in daily products such as cosmetics and functional foods [7–10].
Hesperidin is more bioavailable in its non-glycosylation state, hesperitin, which is formed
after oral intake and hydrolysis by gut microbiota [11]. Unfortunately, gut microbiota can
hardly process hesperidin as it is nearly insoluble in water [12]. Poor water solubility also
causes problems when trying to apply hesperidin in water-based formulations.

Glycosylation has a profound impact on the water solubility of hesperidin, with the
water solubility of monoglucosyl hesperidin reaching as high as 1970 g/L. The study of
hesperidin glycosylation was first reported by Kometani et al., who applied cyclodextrin
glycosyltransferase (CGTase) originated from an alkalophilic Bacillus sp. to catalyze the
transglycosylation from starch to hesperidin [13]. The final product involves a series of
hesperidin glycosides, including its monoglucosyl and oligoglucosyl forms. Following
studies have reported the use of a commercial glucoamylase that hydrolyzes hesperidin
oligoglucosides selectively to α-monoglucosyl hesperidin [14]. Currently, α-monoglucosyl
hesperidin has been applied in skincare products to protect tissues from cold shock and
promote skin rejuvenation [15,16].
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As an enzyme capable of catalyzing hesperidin glycosylation, CGTase belongs to
the glycoside hydrolase 13 (GH13) family, which is a group of carbohydrate-active en-
zymes that act on hydrolyzing and transferring α-glucoside linkages through a retaining
mechanism [17]. The GH13 family is the largest glycoside hydrolase family, with over
150,000 identified enzymes [18]. It is noteworthy that, in addition to hesperidin, enzymes in
the GH13 family have been extensively used to glycosylate a variety of aglycons, including
glycerol [19], L-ascorbic acid [20], hydroquinone [21], resveratrol [22], ginsenoside [23], etc.,
and are deemed industrially important enzymes to synthesize valuable glycosides.

On the other hand, hesperdin glycosylation catalyzed by wild-type CGTase has poor
efficiency, with a kcat/Km value of 0.07 g/L·min, as investigated in our previous study [24].
To improve the synthetic rate, we applied a size/polarity-guided triple-code strategy
to engineer the +1 and +2 subsites, as such areas closely interact with aglycon during
transglycosylation. Three residues, F205, Y217, and G283, were identified to significantly
impact the catalytic rate, and the change in binding energy of hesperidin in its near-attack
conformation in the catalytic pocket appears to be the key reason [24].

Binding energy refers to the energy required to bring and stabilize a ligand molecule
into an active site. Ignoring inactive binding states, the energy required for a ligand to
bind in its near-attack conformation contributes significantly to the overall energy barrier
and can, therefore, serve as a valuable reference during enzyme design [25]. In this work,
we started with our previous mutant CGTase-Y217F and attempted to identify more key
residues rationally by calculating the change in binding energy after virtual mutations
using flex-ddG, a Rosetta-based modeling suit [26]. After screening 20 mutants, 3 positive
mutants were obtained, and M351 and D393 were identified as two new key residues.

2. Results
2.1. Selection of Mutagenesis Sites and Rational Design

The crystal structure of CGTase studied in this research (NCBI accession number:
BAA31539.1) has not yet been resolved. However, the crystal structure of CGTase from
Bacillus circulans strain 251, which shares 73.6% sequence similarity, is available (PDB: 1CXL)
in a covalent complex with a glycosyl donor [27]. Using this as a reference, a theoretical
model of CGTase was constructed, and molecular docking was performed to obtain the
structure model of CGTase-Y217F in a complex with hesperidin, as shown in Figure 1a.
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Figure 1. (a) Hesperidin docked with the enzyme–glycosyl covalent complex. The structure model
of CGTase-Y217F was constructed by SWISS-MODEL using a crystal structure (PDB: 1CXL) as a
template. (b) 10 residues within a 4 Å radius of hesperidin were selected for rational design.

The catalytic process is driven by a double-displacement mechanism that is catalyzed
by a catalytic triad consisting of D251, E279, and D350. In this process, D251 and E279
play the roles of electron donors and acceptors, respectively. D350, on the other hand, does
not participate in the reaction but instead serves to accurately position the glucose unit at
the −1 position [27]. In this case, in addition to the catalytic triad and the first-generation
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mutagenesis (Y217F), ten residues within a 4 Å radius of the docked hesperidin were
selected for rational design, which include F205, S211, A252, K254, H255, F281, M351, N392,
D393, and R397 (Figure 1b). A saturated virtual mutation was applied to these selected
residues, and the change in binding energies before and after the mutation was calculated
using Rosetta flex-ddG. Figure 2 shows the results that are considered to stabilize hesperidin
in its near-attack binding conformation (∆∆G ≤ −1.0 kal/mol), which are subjected to
mutagenesis and an assay. The entire calculation results are given in the Supplementary
Materials Section (Figure S1).
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2.2. Library Construction and Screening

A mutagenesis library was constructed using pET-22b(+)/CGTase-Y217F-6×His as
the template and corresponding primers for each of the 20 designed mutants. The resulting
plasmids were confirmed to carry the CGTase-expressing gene through gel electrophoresis
(Figure S2), and the target mutations were confirmed by DNA sequencing.

The activities of heterogeneously expressed CGTases were assayed through two con-
secutive rounds of screening, either using whole cells or purified enzymes. SDS-PAGE was
applied to characterize the purified enzymes (Figure S3). The screening results are shown
in Table 1. The mutations at M351 and D393 were found to favor the target reaction. The
specific transglycosylation activities of the positive mutants Y217F/M351F, Y217F/M351L,
and Y217F/D393H were assayed to be 1171 U/g, 1126 U/g, and 1305 U/g, which are 1.25,
1.20, and 1.39 times higher compared to the first-generation mutant Y217F and significantly
superior than the wild-type CGTase (134 U/g). The disproportion kinetics of the three positive
variants were analyzed, as shown in Table 2, based on a ping-pong mechanism. In the case
of kcat/KmA, representing the enzymes’ hesperidin glycosylation ability in abundance of
maltodextrin, the best variant Y217F/D393H is 2.36 times higher than Y217F and 15.14 times
higher compared to the wild type. The original kinetic data are displayed in Figure S4.
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Table 1. Activities of CGTase variants assayed with whole cells (relative activity) and purified
enzymes (specific activity).

Enzyme Relative Activity (%) Specific Transglycosylation Activity (U/g)

WT 100 134.4 ± 7.0
Y217F 671.6 916.6 ± 22.2

S211T/Y217F 574.2 -
Y217F/K254V 458.1 -
Y217F/K254L 684.1 478.3 ± 20.7
Y217F/K254H 575.6 -
Y217F/H255S 16.3 -
Y217F/H255L 89.4 -
Y217F/H255F 41.4 -
Y217F/F281M 333.1 -
Y217F/F281Y 743.3 805.6 ± 6.3
Y217F/F281R 68.2 -
Y217F/F281H 157.9 -
Y217F/M351T 402.5 -
Y217F/M351F 774.5 1194.7 ± 12.5
Y217F/M351L 791.8 1126.1 ± 6.4
Y217F/M351A 287.5 -
Y217F/M351Y 547.0 -
Y217F/M351H 238.0 -
Y217F/N392V 533.8 -
Y217F/N392M 474.4 -
Y217F/D393H 716.4 1306.4 ± 21.6

Table 2. Disproportion kinetics of the wild-type CGTase and its variants.

Enzyme kcat (min−1) KmA (Hesperidin) (g/L) KmB (Maltodextrin) (g/L) kcat/KmA (L/g·min)

WT 0.47 6.52 0.92 0.07
Y217F 4.85 10.86 2.11 0.45

Y217F/M351F 11.58 16.43 6.48 0.71
Y217F/M351L 16.31 26.42 4.87 0.62
Y217F/D393H 14.74 13.87 2.84 1.06

3. Discussions

The primary application of CGTases is to produce cyclodextrins, which are macrocyclic
molecules used to encapsulate other molecules, resulting in the formation of inclusion com-
plexes with improved water solubility and stability [28]. Recently, the use of CGTase to
catalyze intermolecular transglycosylation has attracted wide attention as the reaction uses
cheap glycosyl donors, such as starch and maltodextrin, to produce valuable glycosides.
Besides hesperidin, the glycosylation of its aglycon, hesperitin, using CGTase has also been
reported [29]. Several studies have reported the engineering of CGTase to improve its ability to
catalyze intermolecular glycosylation reactions. For example, Han et al. applied site-saturation
mutagenesis to K47 of CGTase from Paenibacillus macerans and improved the yield of AA-2G,
a glycosylation product of L-ascorbic acid, by 64.2% [30]. Tao et al. engineered the residues
near the catalytic site, and the enzyme’s kcat/Km in synthesizing AA-2G was increased by
2.69-fold [31]. Han et al. engineered the nonconservative site of CGTase and improved its
selectivity for synthesizing long-chain glycosylated sophoricosides [32]. Ara et al. engineered
three residues near the acceptor subsites and obtained variants with improved coupling
activities for synthesizing alkyl glycosides with elongated carbohydrate chains [33].

Although previous studies have been successful in regulating intermolecular glyco-
sylation abilities, rational engineering of a CGTase based on a target transglycosylation
reaction has not yet been achieved. It is worth noting that several methods have been
proposed to rationally design an enzyme, which are based on the principle of reducing
activation energy by minimizing the energy of the enzyme–ligand complex along the



Catalysts 2023, 13, 885 5 of 11

reaction pathway but with different algorithms. For instance, a fixed-backbone design
only permits side-chain rotamers to be varied during enzyme design while keeping the
backbone conformation fixed [34]. In contrast, a backrub design allows for backbone con-
formational variations before designing for each member of the ensemble [35]. Although
fixed-backbone design is computationally efficient, backrub design samples the flexibility
in enzyme structure that is closer to the real case of enzymatic catalysis and theoretically
provides more accurate results.

In a previous study, we engineered the aglycon-attacking site of CGTase from the al-
kalophilic Bacillus sp. A2-5a and obtained eight positive mutants at three sites [24]. Upon
characterizing the positive effects, it became apparent that the stabilization of hesperidin in
its near-attack conformation was the major contributing factor. In this case, we started with
the best first-generation mutant Y217F and further applied a flex-ddG design inoculated with
the backrub algorithm in this study, aiming to identify additional residues whose mutations
could potentially contribute to the energy profile along the glycosylation pathway.

The CGTase-catalyzed glycosylation of hesperidin proceeds through a double-displacement
mechanism, where hesperidin attacks the enzyme–glycosyl intermediate from the reducing end
in the second displacement step, ultimately leading to the formation of an α-1,4-glucosidic bond
(Figure 3) [27]. In the docked structure shown in Figure 1a, the glucose unit of hesperidin is
positioned beneath the glycosyl intermediate chain, with the nucleophile O4 2.3 Å away from
Cα, and the distance between the electron donor, OE2 in E279, and H4 in hesperidin is 2.4 Å.
These distances fall within the average van der Waals distance between carbon and oxygen
(3.35 Å) and oxygen and hydrogen (2.6 Å), indicating that the bond-forming atoms are within
near-attack distance to form an α-1,4-glucosidic bond. Based on this observation, the selected
docked structure has the potential to be developed for the target reaction, and a rational design
aimed at promoting the formation of this structure could potentially benefit the reaction.
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Figure 3. The mechanism of hesperidin glycosylation catalyzed by CGTase.

Based on the design and screening results, when using the near-attack conformation
as the starting structure, a total of twenty designs demonstrated stabilization effects, and
three were screened to be positive. It is important to note that rational design at the current
stage may not achieve 100% accuracy due to several reasons. For instance, Lodola et al.
demonstrated that amide hydrolysis by an amide hydrolase occurs more readily in a
high-energy conformation than in the ground state [36]. Additionally, Romero-Téllez et al.
suggested that, due to the flexibility of the enzyme–ligand complex, the energy barrier
of an enzyme-catalyzed reaction is not determined by a single reaction pathway [37].
The different precatalytic structures may result in a dispersion of energy barriers that
combine statistically to determine the reaction kinetics. Thus, due to the conformational
effect, rational design from a static Michaelis complex structure, which is usually used
as the starting point for rational design, may not capture the full picture of the catalytic
mechanism. Wijma et al. investigated the rational design of the enantioselectivity of an
epoxide hydrolase [38]. They propose to further evaluate the designed mutant by high-
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throughput molecular dynamic simulation to further confirm the frequency of forming
near-attack conformations.

To gain a deeper understanding of the positive effect, we conducted molecular dy-
namic simulations on CGTase-Y217F and the three identified positive mutants. The relative
positions of the atoms involved in bond formation play a crucial role in determining the like-
lihood of their effective collision, which is critical for the success of the reaction. By fixing
the relative positions of Cα and OD2 in Asp251, we determined the distances between the
bond-forming atoms, as shown in Figure 4. During the 10 ns simulation, the distances be-
tween the bond-forming atoms increased, suggesting repulsion between the two molecules.
Our previous study showed that although the Y217F point mutation removes the bump at
the pocket entrance and facilitates hesperidin transportation, it has a destabilizing effect
on hesperidin binding. In this case, introducing mutations with stabilization effects, as
performed in this study, can potentially overcome the Y217F mutation’s defect and further
improve the enzyme’s catalytic performance. By introducing mutations at M351 and D393,
the repulsion effect is weakened and the average distances between the bond-forming
atoms are reduced, as shown in Table 3, which explains the positive effect observed.
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Table 3. Average distances between bond-forming atoms during 10 ns simulation.

Mutants
Average Distances during 10 ns Simulation (Å)

O4 and Cα H4 and OE2 in E279

Y217F 0.832 0.686
Y217F/M351F 0.540 0.645
Y217F/M351L 0.531 0.444
Y217F/D393H 0.729 0.634

4. Materials and Methods
4.1. Materials, Plasmids, and Strains

The nucleotide sequence encoding CGTase (NCBI accession number: BAA31539.1)
was synthesized with a polyhistidine tag attached on the C-terminus [39]. Recombinant
vectors and strains were obtained following previously reported protocols [24]. Hesperidin,
dextrin, and other chemicals were purchased from Sinopharm Chemical Reagent Co., Ltd.
(Shanghai, China). His60 Ni Superflow resin and gravity columns were purchased from
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SunResin Co. (Xi’an, China). Genetic engineering reagents, including a Super-Fidelity DNA
Polymerase Kit, Dpn I digesting enzyme, and a One Step Cloning Kit, were purchased from
Vazyme Biotech (Nanjing, China).

4.2. Structure Modeling and Rational Design

The theoretical structure of CGTase-Y217F in a complex with hesperidin was obtained
in our previous study [24]. Residues within the 4 Å radius of the docked ligand were virtu-
ally mutated to the other 19 common amino acids, and changes in the ligand binding energy
after mutation were calculated using Rosetta flex-ddG. Results with ∆∆G ≤ −1.0 kal/mol
were employed for mutagenesis and an activity assay. The user-defined options in Rosetta
flex-ddG include the following: repetitive computation: “nstruct = 15”; max minimization
gradient descent steps: “max_minimization_iter” = 5000; maximum allowed score change
threshold of minimization: “abs_score_convergence_thresh” = 1.0; number of backrub
sampling steps: “number_backrub_trials” = 35000; steps of ddG calculation during back-
rub: “backrub_trajectory_stride” = 35000; residue to mutate: “residue_to_mutate = (‘pro-
tein chain name’, ‘residue number‘)”; target mutation: “mut_aa in ‘ACDEFGHIKLMN-
PQRSTVWY’”. A “chain_to_move.txt” file was written to define the ligand molecule.

4.3. Preparation of Mutant Libraries

Primers were synthesized as listed in Table 4. The target mutation was constructed
by amplifying the entire plasmid pET-22b(+)/CGTase-6×His using the corresponding
primers. The PCR conditions were followed according to the instructions of the Phanta®

Max Super-Fidelity DNA Polymerase Kit (Vazyme Biotech, Nanjing, China). The PCR
product was then digested with Dpn I (Vazyme Biotech, Nanjing, China) and circulated
with the One Step Cloning Kit (Vazyme Biotech, Nanjing, China), leading to a plasmid with
the target mutation. The plasmid was then transformed into competent E. coli BL21 (DE3)
cells. The above procedures were repeated with different primers to create libraries with
CGTase mutants for screening.

Table 4. Primers used for point mutations.

Primers Sequence (5′−3′ Direction)
xxx: Mutation Site

Target Mutation
(Codon)

S211-R aatctgtttgatctggcggattacgatctg T

S211-F cgccagatcaaacagattgcggtaaatxxxatcctcata ggt

K254-R ttgatggcattcgcgtggatgcggttxxxcacatgagcgaag V L H
K254-F tccacgcgaatgccatcaatgcctttgtcca gtg cat ctg

H255-R gaaggctggcagactagcctgatgagcgatatt S L F
H255-F gctagtctgccagccttcgctcatxxxtttaac gct cag gaa

F281-R agcggcgaagttgatccgcagaaccatcat M Y R H
F281-F cggatcaacttcgccgctgcccagxxxccattc cat ata gcg atg

M351-R agcggcgaagttgatccgcagaaccatcat T F L A Y H
M351-F gctctgttcaaagctaaagcggctxxxgtcatggtt cgt gaa cag cgc ata atg

N392-R gaaaaccgcaaaccgatgagcgattttgat V M
N392-F tcatcggtttgcggttttccggatcxxxgccgcccgtcagat cac cat

D393-R gaaaaccgcaaaccgatgagcgattttgat H
D393-F atcggtttgcggttttccggxxxattgccgcccgtcagata atg

4.4. Screening of Positive Mutants

Two rounds of screening were performed to assay the enzyme activities using whole
cells and purified enzymes. In the first round of screening, recombinant E. coli BL21 (DE3)
cells were inoculated into 50 mL aliquots of LB medium with 10 g/L glycerol and 100 mg/L
ampicillin in shake flasks. After culturing at 37 ◦C for 6 h, 50 µL of IPTG (500 mM)
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was supplemented, and the incubation temperature was reduced to 22 ◦C for enzyme
expression. After another 4 h of culturing, the cells were harvested, and the OD600 of each
culture was determined. Whole-cell catalysis was performed for 60 min with the culture
at 40 ◦C and pH = 10.0, adjusted by 1M NaOH. Dextrin (100 g/L; DE = 13.31, determined
by the DNS method) and hesperidin (10 g/L) were supplemented as glycosyl donors and
acceptors, respectively. The samples were added to 1M NaOH to quench the reaction.
The concentration of hesperdin and its glycosylation products were determined by HPLC
with an InertSustain C18 (GL Sciences, Tokyo, Japan) column. One unit of whole-cell
transglycosylation activity (WCTA) was defined as 1 µmol of substrate converted per
minute by a unit concentration of cells. The mutants with WCTA larger than CGTase-Y217F
were subjected to a second round of screening.

In the second round of screening, the purified CGTases were obtained using His60 Ni
Superflow resin and gravity columns. The purity of the obtained CGTases was confirmed by
SDS-PAGE, and the protein concentrations were determined by the Bradford method. The
enzyme activities were assayed by adding 20 µL of enzyme to a 2 mL solution containing
dextrin (100 g/L; DE = 13.31) and hesperidin (10 g/L). The reactions were conducted at 40 ◦C
for 15 min at pH = 10.0, adjusted by 1M NaOH. The samples were added to 1 M NaOH to
quench the reaction and then analyzed by HPLC. One unit of specific enzyme activity was
defined as 1 µmol of substrate converted per minute by a unit concentration of enzyme.

4.5. Kinetic Analysis

The glycosylation kinetics were investigated with the purified CGTases. The reaction
was initiated by adding 20 µL of enzyme to a 2 mL solution containing hesperdin and
maltodextrin in various concentrations. Catalysis was performed at 40 ◦C and pH = 10.0 for
15 min to determine the initial rates. The obtained experimental data were fit to Equation (1)
on behalf of a ping-pong mechanism, where v (g/L·min) stands for the disproportion rate,
E0 is the enzyme concentration, and [A] and [B] stand for the hesperidin and maltodextrin
concentrations (g/L), respectively.

v =
kcE0[A][B]

KmB[A] + KmA[B] + [A][b]
(1)

4.6. Molecular Dynamic Analysis

Gromacs was employed for a molecular dynamic analysis. The theoretical structure
of CGTase-Y217F with hesperdin docked in its near-attack conformation was used as the
starting structure. The theoretical structures of the mutants were generated with FoldX.
The starting structure was solvated in a dodecahedron box with a TIP3P water model. Na+

and Cl- ions were used for system neutralization. A CHARMM36 forcefield was applied
for protein topology generation and ligand parameterization [40]. The starting structure
was first minimized with the steepest descent algorithm until a maximum force lower than
10 kJ/mol·nm was reached. The system was then equilibrated in an NVT ensemble at
300 K for 50,000 steps, 2 fs for each step. The non-bonded interactions were cut off at 12 Å
and updated every 20 steps. Another equilibration was performed in an NPT ensemble
with the same parameters. A dynamic simulation was then conducted for 10 ns, with the
coordinates saved every 10 ps.

5. Conclusions

Rational enzyme design typically involves the steps of docking a ligand in its near-
attack conformation, selecting surrounding residues, and calculating binding energies
after virtual mutations. Although achieving absolute design accuracy is difficult, this
protocol usually generates an operable and referable library. In this study, we aimed to
further improve the hesperidin glycosylation activity of our previously obtained single-
point mutant CGTase-Y217F by rationally designing the enzyme using Rosetta flex-ddG. A
library of twenty variants was designed, and three were found to have improved activity.
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A molecular dynamic simulation showed that introducing a second-point mutation with a
stabilization effect kept the bond-forming atoms closer together and significantly reduced
repulsion between the enzyme and hesperidin.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/catal13050885/s1, Figure S1: Using CGTase-Y217F as template, change of
hesperidin binding energy calculated after saturated virtual mutation of selected residues; Figure S2:
Agarose gel electrophoresis of the designed 20 mutants; Figure S3: SDS-PAGE of purified CGTase variants;
Figure S4: Linearly regressed Lineweaver-Burk plot based on ping-pong mechanism.
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