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Abstract: A theoretical study of the dynamic closed-loop behaviour of a reactor/feed-effluent heat
exchanger (FEHE) /furnace system for the catalytic combustion of volatile organic compounds (VOCs)
is presented. A 1D pseudohomogeneous plug-flow model is proposed to simulate the non-steady-
state operation of the monolith reactor and the FEHE, while the furnace behaviour is described
by means of a heterogeneous model of lumped parameters. Positive energy feedback is a source
of instability that leads to strong thermal oscillations (limit cycles) and may cause damage to the
equipment and sintering of the catalyst. The design of a robust and flexible control system and an
efficient control strategy are, therefore, required to ensure safe and stable operation. The response of
the system under three different control strategies to the most frequent disturbance variables—the
feed flowrate (Fyg) and feed concentration of VOCs (Cyg;)—was evaluated. One of the control
strategies consisted of a single-loop feedback system with servomechanism changes in the reactor
inlet temperature (Ty) that manipulated the bypass valve and, sequentially, the natural gas flowrate
in the furnace (Fng). This approach made it possible to meet the control objective (reducing VOCs)
without losing controllability and while minimizing the use of external fuel.

Keywords: VOC emissions; catalytic oxidation; heat-integrated system; control strategies; feedforward
control; advanced control system

1. Introduction

Volatile organic compounds (VOCs) are gases that are emitted into the air from
products or processes. Due to their properties, they are present in solvents, solvent-based
paints and varnishes, glues, dispersants, degreasing agents, lubricants, and liquid fuels,
and they are emitted from industries that synthesize them, generate them as by-products,
or use them in their processes.

Due to their negative effects and widespread use, there is a clear need to avoid /reduce
their emission into the environment. Worldwide, there are strict environmental regula-
tions [1,2] that establish limits on the maximum concentrations of VOCs allowed to be
vented into the air (the emission limit value (ELV)).

Catalytic oxidation is emerging as a promising technology for their reduction/elimination,
particularly when: (a) the concentration of VOCs is relatively low and, therefore, recovery
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is economically unfeasible and (b) the concentration or flowrate of pollutants is not constant
over time and, consequently, a versatile system capable of adapting to different temporal
emission patterns is required [3].

These end-of-pipe systems have a twofold objective: to keep the concentration below
the ELV and to use the recovered heat to reduce the amount of fuel necessary to preheat
large volumes of contaminated air up to the reaction temperature. This, in turn, serves a
dual purpose: (i) to reduce the energy demand and, thus, the associated operating costs
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and (ii) to reduce the CO; emissions resulting from the use of fossil fuels in the removal
process. Thus, the heat generated in the combustion of VOCs can be partially recovered
through a feed-effluent heat exchanger (FEHE) to preheat the feed stream using the hot
gases leaving the reactor. The heat needed to reach the reaction temperature can then be
generated in a furnace where natural gas is admitted [4].

Energy recovery introduces positive feedback structures into the system, which may
dramatically alter the time constants of the plant [5] and result in a variety of steady-
state and dynamic phenomena, such as the snowball effect, extremely sluggish responses,
oscillatory behaviour (limit cycles), and even instability [5-8].

Bildea et al. [9] studied a coupled reactor/separation/recycle system for toluene
hydrodealkylation (HDA) and found that the interaction between reaction and separation
through material recycling can lead to unfeasibility, steady-state multiplicity, and instability.

Morud and Skogestad [10] discussed the dynamics of an industrial multibed ammonia
reactor where positive feedback due to heat integration led to oscillatory behaviour in
the range from about 300 °C to 500 °C. The authors concluded that the physical cause
for this somewhat unusual instability was a combination of the positive heat feedback in
the preheater and the non-minimum phase behaviour (inverse response dynamics) of the
reactor temperature response.

Luyben [11] described the dynamic problems that occur in reactor-FEHE systems and
showed that the positive feedback of energy can produce an open-loop unstable process.
However, the system can be made closed-loop stable through the use of an inlet temperature
controller that bypasses cold material around the heat exchanger and mixes it with the
heated stream to achieve the desired inlet reactor temperature.

Additional units are usually included in heat-integrated designs as follows: (i) Heater
for the start-up. Since positive feedback due to heat integration may lead to state multi-
plicity, the heater duty can be manipulated in a temperature control loop to ensure stable
operation; (ii) Steam generator. The energy introduced by the heater has to be removed; for
example, by increasing the steam. Since the furnace is a heat source and the excess energy
is rejected to a heat sink (steam generator), the reactor can be viewed as a heat pump [12].

Bildea and Dimian [13] studied the steady-state and dynamic behaviour of a heat-
integrated PFR consisting of a feed-effluent heat exchanger (FEHE), a furnace, an adiabatic
tubular reactor, and a steam generator. The system exhibited oscillatory behaviour with
realistic values for the model parameters, and the selection of the FEHE efficiency was a
critical step to achieve the desired steady state and ensure stability. The research showed a
close relationship between design and controllability.

Several control structures have been proposed to control the reactor inlet temperature.
Silverstein and Shinnar [14] studied the effects of design parameters on the dynamic
stability of systems with an FEHE followed by a furnace before the adiabatic reactor. They
recommended controlling the reactor inlet temperature with the furnace duty. They also
explored bypassing cold material around the FEHE to provide an additional manipulated
variable. For the HDA process, Terrill and Douglas [15] examined the use of multiple
FEHE:s in series to preheat the reactor feed with hot reactor effluents. In the process, a
furnace is located before the reactor. Among the most common control structures, the
authors suggested the control of the temperature of the mixed stream after the FEHE
through the manipulation of the bypass flow together with the control of the reactor inlet
temperature through the manipulation of the fuel admitted to the furnace [16]. If, as in the
case of total closure of the bypass valve, the temperature rise in the FEHE is not sufficient,
the fuel flow to the furnace could be manipulated for additional energy supply.

Luyben (2012) [16] studied different control structure configurations for the production
of dimethyl ether (DME) from methanol, an exothermic and reversible vapour-phase
reaction. The author explored configurations without a furnace and with a furnace with
different percentages of bypass stream. Finally, he proposed a novel flowsheet and control
structure. Instead of mixing the cold bypass with the hot stream from the FEHE, the
bypass was mixed with the stream coming from the furnace, and this mixed stream was, in
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turn, fed into the reactor. The stream passing through the FEHE was fed directly into the
furnace. This setup permits tight control of the reactor inlet temperature, a key variable.
In addition, a nonlinear feedforward (FF) control structure was employed to reject feed
flowrate disturbances by manipulating the natural gas valve in order to reduce energy
consumption in the furnace.

In the present study, the response of a reactor/FEHE/furnace system for the catalytic
oxidation of VOCs under three different control system strategies to the two most frequent
disturbances—changes in the process gas flowrate (Fy) and the feed VOC concentration
(Cogt)—was evaluated.

Implementing an effective control strategy is crucial to (i) minimize out-of-specification
periods (ELV requirement not fulfilled), (ii) avoid oversizing of the main equipment and
reduce investment costs, (iii) minimize operating costs due to the external heat supply, and
(iv) avoid severe thermal oscillations that can damage the catalyst and cause considerable
stress on both the reactor and heat-exchanger materials.

2. Results and Discussion
2.1. Base Case

Figure 1 shows the axial temperature profiles along the monolithic reactor and the
counter-current plate heat exchanger as a base case under steady-state conditions. The
temperature downstream of the mixer (T}, see Figure 1) and the temperature rise caused
by the furnace (ATf) are also indicated. The reactor inlet temperature (T = 185 °C) is
reached by circulating 34% of the feed stream around the FEHE; that is, the selected value
for A is 0.66. The preheated feed (AFyy) is then mixed with the bypass stream (1 — A)Fyyg
at Tj, = 20 °C. At the mixer, the temperature reaches about 144 °C. Inside the furnace,
the mixed stream receives a constant external heat supply (Qr = 136 kW), which increases
the temperature of the process stream up to Ty = 185 °C. Figure 1 also shows the axial
concentration profiles of ethanol and acetaldehyde (intermediary VOC compound). It can
be observed that, for the base case, VOCs are completely consumed within around 70%
(35 cm) of the total reactor length.
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Figure 1. Axial temperature and concentration profiles within the reactor and temperature profiles
within the FEHE. Ty = 185 °C, Cog; = 600 mg C/Nm?, T}, =20 °C, Fyg = 10,000 Nm® /h, Qr ~ 136 kW
(AT~ 41 °C), A = 0.66.

A typical increasing axial temperature profile can be observed in the reactor, show-
ing a more pronounced slope in the zone where acetaldehyde is consumed, because the
second reaction is more exothermic than the first one (compare AH;, and AH,; in Tables
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of Section 3.2 Reactor, FEHE, and Furnace). When the VOCs are completely consumed
and both reactions are fully extinguished, the reactor temperature reaches a plateau. This
final temperature increase corresponds to the adiabatic temperature rise (AT,;), which is
proportional to the VOC concentration in the feed stream. In the base case, the catalytic
combustion of 600 mg C/Nm? of ethanol leads to a total temperature rise of ~27 °C.

In heat-integrated systems, recycling introduces positive feedback structures into
the system, which may dramatically alter the time constants of the plant [5], resulting in
a variety of steady-state and dynamic phenomena, such as oscillatory behaviour (limit
cycles) and even instability [5,7,8]. The possible existence of multiple steady states (stable,
metastable, and unstable) in this integrated system can be explained by the presence of
two necessary conditions: nonlinearity and process feedback [4]. The inverse response is
an additional phenomenon that impacts the system stability [10,17].

Figure 2 shows an S-shaped curve that relates the inlet reactor temperature (Ty) to the
variable A under steady-state conditions. Steady-state multiplicity can be observed; that is,
within a certain range of values for A, the system can be operated at different of inlet reactor
temperatures, as well as VOC conversion levels. Depending on the selected reactor inlet
temperatures, the system can show qualitatively different open-loop dynamic behaviours;
i.e., stable steady states at high and low conversion levels, sustained oscillations, or limit
cycles and open-loop instability can be observed [18].
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Figure 2. Inlet reactor temperature as a function of the fraction of the feed flowrate through the FEHE.
Base-case operating conditions are those shown in Figure 1.

The operating condition for the chosen base case is located at the upper branch of
the S-shaped curve at an inlet reactor temperature near the extinction point. The selection
of this particular value for T leads to total VOC abatement without excessive energy
expenditure for the preheating of the process stream, avoiding excessively high reactor
temperatures that could cause thermal stress in the catalyst and reactor materials.

Figure 3 shows the temporary evolution of the inlet (T) and outlet (T,) reactor tem-
peratures for the base case. No control action takes place; i.e., the system is operated under
open-loop conditions. Although no disturbances occur, after 3000 s, a strong sustained
oscillatory behaviour can be found in Ty and T.. Analogous behaviour can be observed for
the temperatures inside the FEHE (results not shown in Figure 3). Notice that the reactor
outlet temperature reaches a maximum of 270 °C cyclically every 200 s. This phenomenon
has been analysed in previous work [18].



Catalysts 2023, 13, 897 50f 19

280
260 —
240
220
2004
180-

160 . . . . . . .
0 1000 2000 3000 4000 5000 6000 7000

t[s]

m\| Q\|

7; [°Cl

Figure 3. Open-loop temporal profiles for the reactor inlet temperature (Ty) and reactor outlet
temperature (T,) under the operating conditions for the base case shown in Figure 1.

In this situation, it is necessary to design a robust and flexible control system to ensure
the abatement of the VOCs under safe and stable conditions, avoiding the detected strong
limit cycles, which could certainly cause damage to the equipment and sintering of the
catalyst. In any case, an appropriate design for the control strategy should minimize the
external fuel requirements at the furnace and enable operation far from the saturation of
the final control elements.

2.2. Control Strategy Results
2.2.1. Control Strategy One: Single-Loop Feedback Control

In a previous article, the authors explored the closed-loop operation of a reactor/ FEHE
system for VOC abatement [19]. It was demonstrated that a single-loop feedback control
structure (control strategy one) would be able to prevent the limit-cycle scenario by means
of the manipulation of a bypass flow for the feed stream around the FEHE. When VOC
concentration disturbances occurred, the control system proved to be successful in main-
taining the reactor inlet temperature at its set point, thus enabling stable operation and
respecting the emission limits (ELV).

The discharge of industrial gases contaminated with VOCs is characterized by variable
emission patterns that can fluctuate within wide ranges. In this section, the response of
the single-loop feedback control structure to the most frequent disturbance variables—Cyg;
and Fyy—is evaluated

The initial operating condition for the base case is shown in Figure 4a,b:
Cort = 600 mg C/Nm?, Fy = 10,000 Nm?/h, and T, = 185 °C. At t = 1000 s, a nega-
tive step change occurs in Cog; (from 600 down to 400 mg C/Nm?). After 1 h (3600 s)
of operation, a second positive step change occurs in the feed flowrate (from 10,000 to
15,000 Nm? /h).

Figure 4b—d show the response of the system to these disturbances when control strat-
egy one is implemented. Once the Cyg; concentration drops from 600 to 400 mg C/Nm?, the
heat generation inside the reactor decreases, leading to a lower outlet reactor temperature,
T, (Figure 4b). A higher fraction of the feed stream passes through the heat exchanger; i.e.,
A increases from 0.66 to 0.712 (Figure 4c) to maintain Ty at its reference value, T, = 185 °C.
After this first disturbance, the process still remains within the emission limit (Cyocs < ELV;
ie, Cp+Cac <20mg C/ Nm? at the reactor outlet), as demonstrated in Figure 4d.

This state is maintained until the second disturbance in the feed flowrate occurs. The
sudden increase in Fy leads to a further increase in the value of A (= 0.87) to maintain the
temperature set point. However, the VOC conversion decreases due to the lower residence
time of the gas stream inside the reactor and the system cannot satisfy the ELV requirement
for the VOCs (Figure 4d).
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Figure 4. (a) Successive step disturbances in the inlet ethanol concentration, Cyr;, and the feed
flowrate, Fyg. (b) Temporary profiles for inlet and outlet reactor temperatures. (c) Temporary
profile for the fraction of the feed flowrate through the FEHE, A. (d) Temporary profiles for VOC
concentration at the reactor outlet (Cyocs = Cgt + C4.). Control strategy one.

Although no loss of controllability is observed in this case, the process operates close
to the upper limit of the final control element (A = 0.9). Further disturbances forcing the
closing off of the bypass valve would unavoidably lead to controllability loss.

Notice that the instantaneous step change in Fy causes a very short negative pulse in
Ty. As a direct consequence, the reactor outlet temperature (T,) shows an inverse response
typical of the dynamics of fixed-bed and monolith catalytic reactors.

Figure 5 shows the axial profiles for the VOC concentration corresponding to the
initial and final steady states shown in Figure 4. Successive stepwise disturbances in the
feed ethanol concentration (Cyr;) and feed flowrate (Fy) lead to an undesirable VOC
leakage, which is unavoidable with the proposed control strategy. A more advanced
control strategy appears to be necessary in order to prevent scenarios where the system
reactor/FEHE /furnace is unable to fulfil its main goal: eliminating the organic pollutants
before venting the air stream.

2.2.2. Control Strategy Two: Single-Loop Feedback System with Servomechanism Changes
in TO

In this control structure, the regulator scheme of the bypass valve (previously shown)
is combined with servomechanism changes in T, calculated by means of a mathemat-
ical model as a function of Cyr; and Fy (see Equation (6)) with the aim of achieving
total VOC conversion. The servomechanism changes in T take place 10 min after the
disturbance occurs.
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Figure 5. Axial profiles for VOC concentration in the reactor corresponding to the ini-
tial (Cogs =600 mg C/Nm? and Fy = 10,000 Nm3/h) and final (Cor; = 400 mg C/Nm?® and
Fyo = 15,000 Nm3/h) steady states indicated in Figure 4. Control strategy one.

To test control strategy two, the same disturbances as those applied in control strategy
one were analysed (see Figure 6a). The temporary response of the system is shown in
Figure 6b—d. As in control strategy one, when the Cyg; drops from 600 to 400 mg C/Nm?,
heat generation inside the reactor decreases, leading to a lower outlet reactor temperature
(Figure 6b) and a higher value for A, which increases from 0.66 to 0.712 (Figure 6c) to
maintain Ty at its first reference value, Tos, = 185 °C. Ten minutes after the occurrence of
the disturbance, the model calculates a new reference value, Tosp =187 °C, and A shows a
slight increase to keep T at its new set-point value. The positive step change in T causes
the expected inverse (negative) response in T, after 200 s (Figure 6b).

When the second disturbance occurs (the step increase in Fyy), the value of A tends
to increase. After 10 min of evolution of A, the servomechanism model calculates a new
value for Ty, which leads to a further additional increase in A. As can be observed in
Figure 6¢, A remains at its upper limit value for 500 s. The temporary controllability loss
leads to oscillatory behaviour in Ty and T, (analogous to that shown in Figure 3). Finally,
the system stabilizes at a new, higher thermal level (T, = 190 °C). Once this occurs, the
controllability of the bypass valve recovers and it sets a value for A slightly lower than the
upper limit value. It is clear that further disturbances causing additional closings of the
bypass valve would unavoidably lead to controllability loss.

The axial profiles for the VOC concentration presented in Figure 7 show how, with the
same successive stepwise perturbations in the inlet ethanol concentration, Cors, and the
feed flowrate, Fy, control strategy two avoids VOC leakages once the final steady state is
reached, demonstrating an improvement with respect to control strategy one. This result
can also be confirmed from Figure 6d; that is, Cyoc is always below the ELV at the expense
of A reaching a final value close to its maximum. To prevent this, it seems necessary for the
furnace to supply additional amounts of heat.
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Figure 6. (a) Successive step disturbances in the inlet ethanol concentration, Cyr;, and the feed
flowrate, Fyg. (b) Temporal profiles for inlet and outlet reactor temperatures. (c) Temporal profile for
the fraction of the feed flowrate through the FEHE, A. (d) Temporal profiles for VOC concentration at

the outlet (Cypcs = Cgt + Cac). Control strategy two.
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Figure 7. Axial profiles for VOC concentration corresponding to the initial steady state
(Cos = 600 mg C/Nm? and Fyq = 10,000 Nm3/h) and final steady state (Cog; = 400 mg C/Nm?

and Fyq = 15,000 Nm? /h) indicated in Figure 6a for control strategy two.
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2.2.3. Control Strategy Three: Sequential Control System

In this control strategy, the previous control structure is combined with a secondary
manipulated variable, the natural gas flowrate in the furnace (Fng), to reject long-term
disturbances and keep the position of the bypass valve (V1) away from saturation positions
(closing or full opening) that may lead to controllability loss. The safety margin for A
comprises values between 0.6 and 0.7. In cases where the bypass valve (V1) exceeds (over-
or underruns) these allowable values for A over 1200 s, a new value for the natural gas
flowrate will be set according to a mathematical model (see Equation (7)).

As before, control strategy three was analysed facing the same successive step distur-
bances (Figure 8a). The temporary responses of the system are shown in Figure 8b—d.
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Figure 8. (a) Successive step disturbances in the inlet ethanol concentration, Cyr;, and the feed
flowrate, Fyg. (b) Temporary profiles for inlet and outlet reactor temperatures. (c¢) Temporary profile
for the fraction of the feed flowrate through the FEHE, A. (d) Temporary profiles for the natural gas
flowrate (right ordinate axis) and furnace wall temperature (left ordinate axis).

Due to the first disturbance (negative step change in Cor;) and the servomechanism
adjustment in T (positive step change in Ty ) that takes place after the disturbance, the
value of A increases from 0.66 to almost 0.73 (Figure 8c). Once the safety margin for A has
been overpassed over a lapse of time of 1200 s, the sequential control strategy leads to an
increase in Fy¢ (from 15 to 17 Nm?3/h; Figure 8d, right ordinate axis) in order to restore A’s
initial value of 0.65.

The second disturbance (positive step change in Fy) causes a new increase in A
from 0.65 to around 0.8. As in the previous case, after 10 min of evolution of A, the
servomechanism model calculates a new value for Tp 5, (190 °C), which leads to a further
increase in A. After A has been above the upper margin of the band for 20 min, the sequential
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control strategy sets a new Fyg increase (from 17 to 30 Nm3/h; Figure 8d) to restore the
desired value of A = 0.65 (Figure 8c).

Notice that, in order to return A to the desired value of 0.65, the furnace wall tempera-
ture, Ty, increases from an initial value of Ty, = 505 °C to a final value of 675 °C (Figure 8d).
This is a consequence of two facts: first, the need to process a more diluted feed stream
with a flowrate 50% higher than that of the base case and, second, the two consecutive
increases in the set point to fulfil the process requirements.

Transient profiles for the VOC outlet concentration are not included here. However, as
in the case shown in Figure 6d, Cyoc is always below the ELV.

The proposed control strategy ensures safe and stable operation, avoiding both tem-
porary emissions of VOCs and controllability loss and keeping the position of the bypass
valve (V1) away from saturation positions (closing or full opening).

2.3. Comparison of Control Strategies: Energy Savings

Control strategy three also has the potential to minimize the external energy con-
sumption. To demonstrate this, control strategies one and three were compared with step
changes in the opposite direction to the previous ones in Cor; and Fyg. These successive
step disturbances lead to an excess of heat in the system and generate the opportunity for
energy savings.

The initial steady state is shown in Figure 9a and corresponds to the operative condi-
tion for the base case: Cog; = 600 mg C/Nm?, Fyo= 10,000 Nm?/h, and Tosp =185 °C. At
t = 1000 s, a positive step change occurs in Cog; (from 600 to 800 mg C/Nm?). After 60 min
(3600 s) of operation, a successive negative step change occurs in the feed flowrate (from
10,000 to 5000 Nm? /h).
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Figure 9. (a) Successive step disturbances in the inlet ethanol concentration, Cor; (from 600 to
800 mg C/ Nm?), and in the feed flowrate, Fyq (from 10,000 to 5000 Nm?3 /h). (b) Temporal profiles
for the inlet and outlet reactor temperatures. (c¢) Temporal profile for the fraction of the feed flowrate
through the FEHE, A. Control strategy one.

Figure 9b,c show the response of the system to these disturbances when control strat-
egy one is implemented. Once the Cpg; concentration rises from 600 to 800 mg C/ Nm?,
heat generation inside the reactor increases, leading to an increase in the outlet reactor tem-
perature, T,, from 212 °C to 222 °C (Figure 9b) and a lower fraction of the feed stream being
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required through the heat exchanger to maintain T at its reference value, Tos, = 185 °C; A
decreases from 0.66 to 0.62 (Figure 9c¢).

When the second disturbance (negative step change in Fy) takes place, a further
decrease in the value of A (~0.4) is required to achieve the set point in Tj. Using this
simple control strategy, the outlet VOC concentration is maintained below the ELV (results
not shown) without any loss of controllability. However, a final value of A ~ 0.4 means
that around 60% of the feed stream is bypassing the FEHE; that is, the heat exchanger
is operating far below its maximum heat-recovery capacity. As a consequence, the air
stream is vented to the atmosphere at a higher temperature (an increase in the variable T5,,
indicated in Figure 1, occurs).

Control strategy three was studied for the same successive step disturbances (Figure 10a).
The temporary response of the system is shown in Figure 10b—d.
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Figure 10. (a) Successive step disturbances in the inlet ethanol concentration, Cor; (from 600 to
800 mg C/ Nm?), and in the feed flowrate, Fy (from 10,000 to 5000 Nm? /h). (b) Temporary profiles
for the inlet and outlet reactor temperatures. (c) Temporary profile for the fraction of the feed flowrate
through the FEHE, A. (d) Control strategy three.

After the first disturbance (positive step change in Cyr;), the increase in the outlet
reactor temperature, T,, causes a decrease in the fraction of the feed flowrate that passes
through the FEHE. Within 10 min after the disturbance, the servomechanism adjusts T
through a slight negative step change in Tp sy, which leads to a new decrease in A. Despite
this, A is maintained within the safety margin imposed, and the sequential control on
the natural gas valve does not turn on. The second negative step disturbance in the feed
flowrate causes a new servomechanism change in T (after 10 min), and as a result of
both changes, A decreases twice consecutively and leaves the band of admissible values
for 1200 s (20 min). After that, the sequential control strategy sets an Fy decrease (from
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its initial value of 15 to 6 Nm?3/h; Figure 10d) to restore A to the desired value of 0.65
(Figure 10c), and a significant reduction in the external energy consumption is achieved.

The furnace wall temperature, T, increases as a result of the decrease in Fyg and
decreases once Fy¢ has dropped due to the sequential action (Figure 10d). This is another
advantage of control strategy three, allowing it to prevent unnecessary overheating of the
tubes in the furnace.

Finally, Figure 11 shows the axial VOC concentration profiles for the common initial
steady state and the two final steady states achieved with both control strategies. These
strategies achieve total VOC conversion but, in control structure three, the servomechanism
changes in T enable more distributed use of the catalyst along the reactor length. In
contrast to CS1 (red curve), in the case of CS3 (green curve), the reaction does not proceed
only in a narrow zone close to the entrance of the monolithic reactor.

Initial Steady State (before disturbances)
Final Steady State (after disturbances) CS1
Final Steady State (after disturbances) CS3

Cocs[MgC/N m3]
N

o N NN
O 10 20 30 40 50

Z[cm]

Figure 11. Axial profiles of outlet VOC concentration in the initial steady state (Cor; = 600 mg C/Nm?
and Fyq = 10,000 Nm?/h) and final steady state (Cor; = 800 mg C/ Nm? and Fyq = 5000 Nm? /h) for
control strategies one and three.

3. Mathematical Model
3.1. Description of the Process and Control Strategies

For the closed-loop analysis, three different control system strategies were analysed
with a dual purpose: ensuring safe and stable operation and avoiding temporary emissions
of VOCs.

3.1.1. Single-Loop Feedback Control

Figure 12 shows the schematic representation of the process under study. A monolithic
reactor is coupled with an upstream feed-effluent heat exchanger and a natural gas furnace.
The energy of the hot reactor effluent is recycled back to the reactor through the FEHE,
where a fraction A of the feed stream (the VOC-contaminated gas stream at room conditions)
is preheated. The other fraction of the feed (1 — A) is bypassed around the FEHE and mixed
with the stream leaving the FEHE. Downstream of the mixer, the feed stream is sent to the
furnace, where it receives the additional heat needed to reach the reactor inlet temperature,
Tp. In this case, a single-loop feedback control system is used to maintain the temperature
at the set point (T¢s,) by handling the bypass valve. Since the reactor inlet temperature
is controlled by manipulating the bypass flow, a constant value for the heat duty in the
furnace is assumed. Two split-range valves (V1 and V2) are used to manipulate the bypass
flowrate and the flowrate through the FEHE with the aim of achieving the required fluid
mechanics [20]. In this closed-loop structure, T s, remains constant.
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Figure 12.
tor/FEHE/furnace process.

3.1.2. Single-Loop Feedback System with Servomechanism Changes in Ty,

Schematic representation of a single-loop feedback control system for the reac-

Figure 13 schematizes a single-loop feedback system that allows servomechanism
changes in Tqs,. The Tpg, values set by the model are obtained through steady-state
simulations of the monolithic reactor in order to achieve total VOC conversion in 70% of
the reactor length with wide operating ranges for two measurable variables: Fy (an inlet
variable) and AT in the reactor (an output variable). AT = T, — Ty becomes AT,; under
conditions of total conversion of VOCs. Since AT,; is proportional to the inlet concentration
of ethanol (Cyg;), AT can be considered as an indirect measurement of Cog;. Although
the changes in AT are delayed with respect to the corresponding changes in Cog, this
approach avoids the need to set a continuous measurement of the VOC concentration in

the feed stream.

| T Te FEHE Decotaminated Gas
i - E—— - > TZe

i r*@——‘ | Tre A Feed
o 1 | | ~ T

i . 2. Furnace i vz iz N 1-A

B T ‘ | ¥
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i i_ TO,sp i

L ¥ AT Fyo :
B R |

Figure 13. Schematic representation of a single-loop feedback control system with servomechanism

changes in T.

The Ty s, stated by the model guarantees total VOC conversion inside the reactor. The
proposed control system enables servomechanism changes in T (output variable) with
the aim of avoiding situations involving temporary emissions of VOCs due to high feed
flowrates (short residence times in the reactor) and/or low inlet VOC concentrations for
which the value of Ty, would need to be increased [18,21]. In this control structure, the
regulatory scheme of the bypass valve (previously shown) maintains the T required to

face any other disturbance.
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3.1.3. Sequential Control System

Figure 14 shows the structure of an advanced control strategy (a sequential control
system) that consists of a single-loop feedback system with servomechanism changes in
Ty to reject short-term disturbances followed by a secondary manipulated variable, the
natural gas flowrate in the furnace (Fyg), to reject long-term disturbances. The objective of
this secondary manipulated variable is to keep the position of the bypass valve (V1) within
a convenient band, away from saturation positions (closing or full opening) that may lead
to controllability loss. This valve position is represented here by the variable A; i.e., the
fraction of the feed flow that passes through the FEHE.

Te FEHE Decotaminated Gas
7777777 > > T2e
Tre A Feed
| | ) T
Z. Furnace i v2. .z . 1-A
Tnix | < :
************ | > ; ; V1

Figure 14. Schematic representation of a sequential control system (advanced control system).

The model used to calculate the natural gas flowrate in the furnace (Fyg) is obtained
by using steady-state simulations from measurable variables, such as the feed flowrate
(Fyo), the adiabatic temperature rise in the reactor (AT = T, — Tj), and the set-point inlet
temperature (T s,), making it possible to determine the desired value for the opening of
the valve V1 that would lead to a value of A =~ 0.65.

In cases where the bypass valve (V1) exceeds (over- or underruns) a convenient band
of admissible values for A over a sufficiently long period of time (1200 s), the red connection
in Figure 14 will switch on, activating the feedforward loop.

3.2. Reactor, FEHE, and Furnace

To simulate the non-steady-state operation of the adiabatic monolithic reactor, a 1D
pseudohomogeneous plug-flow model was developed. Table 1 shows the reaction system
considered, which included the partial oxidation of ethanol to acetaldehyde (reaction one)
and the total oxidation of acetaldehyde (reaction two). The kinetic expressions developed
by Campesi et al. (2011) [22] for the Mn-Cu catalyst were adopted. Table 2 shows the
kinetic parameters that were adjusted to obtain observable expressions for the reaction rate,
considering internal and external resistances to mass transfer and external resistances to
heat transfer [23].



Catalysts 2023, 13, 897 15 of 19

Table 1. Reaction system and kinetic expressions [22].

Reaction System Kinetic Expression
_ keeprexp[—(E1/R)(1/T—1/T,f)|Cri
C2H6O + (1/2) 0, - C,H40 + H,O r = 17K, Cry FRenC (1)
CoH40 + (5/2)0, — 2CO, + 2H,0 py = K2 &P~ (E2/R) (/T 1/ Ty ) [KencCac ©)

1+Kcg: Cpr+KeacCac

Table 2. Effective kinetic parameters and standard heats of reaction [23].

Parameter Value

Kref 1 1.71 x 103 s~ 1

Kref 2 1.8 x 107 mols 1 m—3
E; 1.1124 x 10° J mol !
E, 1.62 x 10° J mol~1

Kcae 6.75 x 102 m3 mol !
KCEt ~0

AHyn —1.73 x 10° J/mol

AHy —1.10 x 10° J/mol

Tables 3 and 4 show the operating conditions and geometric parameters for the system.

The mass balances in the reactor, as well as the energy balances in the reactor and FEHE,
are expressed through partial differential equations. The axial coordinate is discretized
in both devices by means of backward first-order finite differences. The resulting set of
ordinary differential equations, together with the global energy balances in the furnace (for
the gas phase and tube wall), are solved simultaneously by integration over time using a
Gear algorithm [24]. The details of the models can be found in Miranda et al. (2023) [18].

Table 3. Process operating conditions.

Parameter Value
Feed VOC concentration, Cg; 400-800 mgC/ Nm?
Volumetric feed flowrate, Fyq 5000-15,000 Nm? /h
Pressure, P 101.325 kPa
Feed temperature, Ty, 20 °C
Reactor gas hourly space velocity, GHSV 5.93 x 103-1.798 x 10* 1/h
Flow fraction through FEHE, A 0.1-0.9
Furnace heat, Qf 50-300 kW

3.3. Controller

A proportional-integral (PI) controller was selected for the manipulation of the bypass
valve in the three control strategies under consideration:

t
(1=A) = (T=A) +K. e,—i—%/erdt 3)

1
0
The tuned parameters of the PI controller are listed in Table 5 [19]. Strong integral
action is required for efficient control over this kind of process with positive heat feed-
back [16].
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Table 4. Geometrical parameters.

Parameter Value
Reactor
Channel length, L 0.5m
Channel width = height, b 1115 um
Cell density 400 cpsi

Channel number
Monolithic material
Catalytic material
Average washcoat thickness
Washcoat density, pw

Reactor weight (washcoat + cordierite)

13,924 x 102
Cordierite (2MgO-2A1,03-55i0,)
Mn-Cu
20 pm
4030 kg/m3
682 kg

Heat exchanger [25]

Type Plate fin heat exchanger (PFHE)
Flow configuration Counter-current
Plate length, L’ 0.7 m
Plate width 0.7m
Channel height 6.35 mm
Plate thickness 0.4 mm
Plates number 220
Fin thickness 0.154 mm
Fin density 437 fins/m
FEHE weight 903 kg
Heat exchanger material Stainless steel (AISI 316)
Furnace
Type Indirect fired
Tube arrangement Horizontal
Tube number 98 + chamber
Tube length 1000 mm
Tube/chamber diameters 25.4 mm /400 mm
Fuel Natural gas
Furnace weight 260 kg
Efficiency, & 0.9
Table 5. Parameters of the PI controller [19].
Controller Parameter Value
Proportional action parameter, K, 0.003
Integral action parameter, T; 0.5

3.3.1. Control Strategy One: Single-Loop Feedback System

The error for the controlled variable used in Equation (3) is calculated as follows:

where T sy is a constant value.

er =To— TO,sp

)

3.3.2. Control Strategy Two: Single-Loop Feedback System with Servomechanism Changes

in TO

In this case, the value of Ty s, is predicted from measurable variables—the feed flowrate
(Fyo) and the temperature rise in the reactor (AT = T, — Ty)—in order to maintain the total
VOC consumption across 70% of the reactor length.

er =To— TO,sp

Tosp = f(Fvo, AT) to satisfy that: Xyocs = 1atz ~ 0.70L

©)
(6)
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3.3.3. Control Strategy Three: Advanced Control System

As mentioned above, the proposed advanced control system employs sequential
control. It consists of a single-loop feedback system with a main manipulated variable
followed by a secondary manipulated variable, the natural gas flowrate in the furnace (Fyg).
Fne is predicted from measurable variables—the feed flowrate (Fyy), the temperature rise
in the reactor (AT = T, — Ty), and the set-point inlet temperature (T sy)—to obtain a desired
value for the opening of the valve V1 that leads to a value of A ~ 0.65.

FnG|a~065 = f(AT, Fyo, Tosp) @)

In Equation (7), To sy is not a fixed value but is calculated using Equation (6).

4. Conclusions

A novel control structure was proposed consisting of a single-loop feedback system
with servomechanism changes in the inlet reactor temperature that manipulates the bypass
valve around the FEHE and, sequentially, the natural gas flowrate in the furnace whenever
the bypass value is outside the imposed operating limits for extended periods of time.

The control strategy makes it possible to satisfy the main control objective (VOC abate-
ment) by avoiding situations involving loss of controllability due to saturation (closure) of
the bypass valve when almost all the feed has to be redirected to the FEHE. In addition, it
minimizes the consumption of natural gas when the feed stream is more concentrated in
VOCs or the feed flowrate decreases. This prevents excessive overheating of the tube wall
in the furnace.
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Nomenclature

b Channel width=height, mm

G Concentration of component j, mol;/ m? or mg C/Nm?
ey Error, dimensionless

E; Activation energy of reaction i, ] /mol

Emission limit value, 20 mg C/ Nm? (total VOC emissions under

ELV
normal conditions)
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Fne Natural gas flow under normal conditions, Nm?/h
Fyo Volumetric feed flowrate, Nm3/h

Fair Volumetric air flowrate, Nm3 /h

GHSV Gas hourly space velocity, 1/h

kmfll Kinetic constant for reaction one, 1/s

kyer,2 Kinetic constant for reaction two, mol/(m? s)

Ke; Adsorption constant for component j, m3/mol

K. Proportional action parameter

L Reactor channel length, m

L Heat exchanger length, m

P Pressure, kPa

Qr Furnace heat supply, kW

7 Reaction rate for reaction 7, mol/ (mgBS)

t Time, s

T Reactor temperature, °C

T, Reactor outlet temperature = hot stream inlet temperature (heat exchanger), °C
Ty Temperature of stream k in the heat exchanger, °C
Tw Temperature of furnace tube wall

V1 Split-range valve to manipulate the bypass flowrate
V2 Split-range valve to manipulate the flowrate through the heat exchanger
X Conversion of component j, dimensionless

Xvocs VOC conversion

Z Reactor axial coordinate, m

4 Heat exchanger axial coordinate, m
Compounds/acronyms

vOC Volatile organic compound

Greek letters

AH,; Heat of reaction i under standard conditions, J/mol
AT Temperature difference between the reactor outlet and the reactor inlet
AT,y Adiabatic temperature gradient, °C

ATy Temperature rise caused by the furnace, °C

ACor; Concentration disturbance, mg C/ Nm?

€ Degree of advancement of reaction one

& Degree of advancement of reaction two

& Furnace thermal efficiency

A Fraction of stream through the heat exchanger
1-A Fraction of stream through bypass

T Integral action parameter

Subscripts

Ac Acetaldehyde

e Exit

Et Ethanol

f Furnace

w Furnace tube wall

HE Heat exchanger

i Reaction

j Component

mix Mixing point

R Reactor

sp Set point (reference value)

VOCs Volatile Organic Compounds (ethanol + acetaldehyde)
T Total

1 Heat exchanger cold stream

2 Heat exchanger hot stream
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