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Abstract: Biorefineries have been profiled as potential alternatives to increase biomass use at the
industrial level. However, more efforts are required to improve the sustainability of these facilities
through process improvement and product portfolio increase. The catalytic conversion of biomass to
chemicals and energy vectors is one of the most studied research lines today. The open literature has
described catalytic pathways for producing biofuels and platform molecules using this renewable re-
source. Nevertheless, few literature reviews have aimed to analyze the role of the catalytic conversion
of biomass in biorefineries while considering the following items: (i) biocatalysis, (ii) carbon dioxide
conversion, (iii) design based on catalytic biomass upgrading, and (iv) sustainability metrics. This
paper reviews several processes where catalysis has been applied to improve yields and conversion to
elucidate the potential of this research field to boost biomass implementation in different productive
sectors. This paper provides an overview of the catalytic conversion of biomass into a series of
biofuels and high-value-added products, involving key topics related to catalyst performance, use,
applications, and recent trends. In addition, several research gaps and ideas are highlighted based
on previous studies. In conclusion, the catalytic conversion of biomass has the potential to increase
biorefineries’ sustainability. Nevertheless, more studies focused on (i) the production of new catalysts
using renewable resources, (ii) the techno-economic and environmental assessment of processes in-
volving catalysis, and (iii) the influence of involving biomass valorization via heterogeneous catalysis
in existing facilities are required to obtain a real understanding of catalytic upgrades’ benefits.

Keywords: biocatalysis; catalysts recycling and re-use; sustainability; process design; biofuels;
platform molecules

1. Introduction

Energy matrix diversification has been categorized as the most reliable approach to
guarantee energy security in different world regions [1]. Currently, most countries depend
highly on non-renewable energy sources (i.e., crude oil, natural gas, coal). Price fluctuations
and geopolitical conflicts can affect the power, electricity, building, industry, agriculture,
and transport sectors [2]. This dependence is not convenient because any change in the
global context can affect the economic and environmental goals proposed and discussed by
international organizations (e.g., the UN). For instance, the Russian Federation’s invasion
of Ukraine has affected the energy transition goals and discourse of different European
countries (e.g., Germany) [3]. Fossil fuel prices, especially coal, increased for heating and
power generation in late 2021 [4]. This increased demand caused a domino effect in coal-
exporting countries (e.g., Colombia), because the increase in coal prices reduced the profit
margin of coal-dependent industries (e.g., brick-making industries). Therefore, energy
matrix diversification is mandatory to guarantee a reliable, affordable, and efficient service
for the world population.
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Bioenergy has become one of the most important pillars in energy transition topics, as
biomass can reduce greenhouse gas emissions (GHG) and environmental damages caused
by the excessive use of fossil fuels [5]. Biomass is an alternative for energy production, as
this renewable resource can contribute to accomplishing the requirements of the transport
sector, especially in the aviation and marine sectors [4,6]. On the other hand, sustainable
production and consumption patterns have awakened consumers’ interest in bio-based
products instead of synthetic ones. Therefore, biomass has been studied as a potential
feedstock for producing biomaterials (e.g., bioplastics, biocomposites), bulk chemicals
(organic acids, alcohols), nutraceutical products (e.g., antioxidants), biosurfactants (e.g.,
rhamnolipids, surfactin), and food additives (e.g., sweeteners and preservatives) [7,8].

Second-generation biomass has been profiled as a potential raw material to replace
crude oil, as different research efforts have demonstrated the possibility of obtaining the
same products with a lower environmental impact (e.g., olefins, paraffin) while avoiding
food security issues [9]. Most studies involve lignocellulosic biomass fractionation and
upgrading by implementing biotechnological, thermochemical, physical, and chemical
processes [10]. Several reactions with specific activation energies and reaction pathways can
occur when disrupting biomass, providing a complex mixture of degradation products as
described for the evolution pathways of herbal tea waste when implementing hydrothermal
conversion [11] (see Figure 1). Moreover, different process configurations have been
proposed for the integral use of all lignocellulosic biomass fractions [12]. Nevertheless, the
range of products derived from these processes is restricted, as more complex molecules
require specific reaction conditions (i.e., temperature, pressure). Therefore, catalysis plays
a key role in biomass conversion, as “new products” with a high yield, selectivity, and
conversion are achieved at milder operating conditions [13].
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Catalysis occurs in almost all biomass-processing stages (i.e., pretreatment and con-
version) [2]. Recent trends have promoted heterogeneous catalysis, considering possible
catalyst recovery and re-use. Instead, homogenous catalysis has also been studied for
most lignocellulosic biomass-upgrading processes (e.g., acid hydrolysis) [14]. Biomass-to-
biofuels conversion through catalytic processes has been one of the most studied issues due
to the low global implementation of bioenergy in the industrial and transport sectors for
heat and power requirements [15]. In addition, high-value-added compounds produced via
heterogeneous catalysis have been studied for the cosmetic, pharmaceutical, and chemical
sectors. Thus, the integral processing of lignocellulosic biomass by implementing catalytic
processes can help reach the proposed decarbonization and climate change mitigation
goals. Furthermore, lignocellulosic biomass upgrading through catalytic processes avoids
a structural and technological shift in the industry and transport sectors [16]. Advantages
related to the catalytic upgrading of biomass are (i) improvement of different processes’
sustainability by reducing energy requirements, (ii) production of platform molecules as a
strong option to diversify the list of bio-based products derived from biomass, and (iii) re-
duction in waste streams [17]. Thus, lignocellulosic biomass conversion involving catalytic
processes can contribute to reaching energy transition and fossil fuel independence goals
faster.

Several reviews are devoted to describing catalytic pathways for biomass upgrading.
Nevertheless, few literature reviews have aimed to analyze the catalytic upgrading of
biomass while considering the following items: (i) biocatalysis’ role in the production of
specialty and fine chemicals, (ii) carbon dioxide conversion, (iii) biorefinery design based
on catalytic biomass conversion, and (iv) sustainability metrics of biomass-upgrading
processes involving homogeneous and heterogeneous catalysis. The novelty of this paper
lies in highlighting the role of catalysis in boosting biomass use at the industrial level.
Therefore, this paper provides an overview of the catalytic upgrading of biomass into a
series of biofuels and high-value-added products, involving key topics related to catalysts’
performance, use, applications, and recent trends. Furthermore, a comparison of technical,
economic, and environmental metrics of different biomass-upgrading processes is presented
to elucidate the influence of involving catalytic processes on biorefineries’ sustainability.

2. Biorefineries and Catalytic Biomass Upgrading

Lignocellulosic biomass conversion in biorefineries has been analyzed based on the
main biomass constituents. These facilities are complex systems where biomass is integrally
processed or fractioned to obtain more than one product, including bioenergy, biofuels,
chemicals, and high-value-added compounds [18]. Biorefineries are designed while consid-
ering a comprehensive study of the raw materials and promising technologies [19]. These
facilities have been proposed as the starting point for developing and implementing a
consolidated bioeconomy [20]. Thus, biorefineries can help to accomplish the Sustainable
Development Goals (SDGs) proposed by the UN.

Biorefineries’ implementation has been slowed, as current technologies upgrade non-
renewable resources at the industrial level. Therefore, the transition from crude-oil refiner-
ies to biorefineries remains slow compared to the research on biomass upgrading at a lab
scale [21]. A path towards easier industrial biomass use, leaving aside traditional uses (i.e.,
combustion), is to upgrade biomass-derived products through catalytic processes to obtain
chemicals without requiring an in-depth technological transition. Therefore, catalysis is
crucial for (i) shortening distances between academia and industry regarding biomass use,
(ii) enhancing biorefinery designs, (iii) creating new biomass conversion pathways, and
(iv) increasing processes’ sustainability. Biorefineries comprise thermochemical, biotech-
nological, chemical, and physical processes through which several compounds can be
produced. Thus, catalytic upgrading can be present in all these processes. Indeed, several
research efforts have demonstrated the importance of applying catalysis to improve tech-
nical indicators (i.e., yields, productivity, and product purity) [22]. These improvements
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are discussed while considering thermochemical biomass upgrading and catalytic biomass
fractionation as follows.

2.1. Thermochemical Biomass Upgrading
2.1.1. Pyrolysis

Pyrolysis produces biochar, bio-oil, gases (e.g., hydrogen, methane), and other minor
by-products such as acetone, methanol, phenol, acetic acid, and BTX. This process is
performed under anoxic conditions (i.e., a total absence of oxygen and any other oxidizing
agent). Thus, pyrolysis operates with an equivalence ratio (ER) equal to zero. This process
occurs between 300 ◦C and 600 ◦C [23]. Pyrolysis can be classified as fast, intermediate, or
slow according to the operating conditions, especially the heating rate and the feedstock
residence time. Solarte-Toro et al. [24] described the most important characteristics of these
processes and the different reactor types used at the industrial level. In synthesis, fast
pyrolysis is directed to produce bio-oil, while slow pyrolysis is driven to produce biochar.

Catalytic pyrolysis processes reported in the open literature aim to improve yields and
bio-oil composition (see Table 1). Depending on the location of the catalyst, the catalytic
pyrolysis can be classified as an in situ or ex situ process. In situ pyrolysis is applied
when biomass is mixed with the catalyst and processed together in the reactor. In contrast,
ex situ pyrolysis upgrades the outlet stream from the process by increasing the main
products content [25]. Bio-oil yields vary depending on the biomass source (e.g., agro-
industrial wastes can produce more bio-oil than forestry biomass). Nevertheless, bio-oil
has a high oxygen content regardless of the biomass source. Thus, a fast-pyrolysis product
has a lower heating value than conventional fossil fuels [26]. Catalysts were included to
improve bio-oil quality in terms of heating value, water content, oxygen content, acidity,
viscosity, and chemical composition in fast pyrolysis processes, as the bio-oil composition
is affected by the raw material C, H, O, N, and S contents (i.e., higher O/C ratios affect
bio-oil quality). Indeed, catalytic fast pyrolysis reduces the oxygenated compounds through
catalytic reactions, such as cracking, deoxygenation, decarboxylation, decarbonylation,
hydrodeoxygenation, and hydrogenation [27].

Catalysts applied in fast pyrolysis processes are zeolites, mesoporous silica oxides,
metal compounds, metal oxides, red mud, and bentonite (see Table 1). Zeolites (acid
catalyst) cause cellulose decomposition into anhydro-sugars via dehydration reactions.
These products are upgraded to low-molecular-weight olefins (C2–C6). Then, short hydro-
carbons are combined to produce aromatic compounds. Instead, hemicellulose and lignin
suffer depolymerization, dehydration, and decarbonylation reactions to produce aromatic
compounds and olefins, as described by Rahman et al. [28]. Moreover, as described by
Dada et al. [29], the corresponding catalyst molecules (e.g., Metal/ZSM-5) can potentially
be used to produce high-quality bio-oil in terms of thermal stability and low viscosity and
corrosiveness, which are properties that cannot be achieved through conventional pyrolysis
processes.
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Table 1. Catalytic pyrolysis of lignocellulosic biomass: yields and catalyst effect.

Feedstock VM/FC * Catalyst Operating Conditions Reactor Pyrolysis
Yield (wt%)

Catalyst Effect Ref.
Bio-Oil a Biochar Gases

Poplar sawdust 4.76 ZSM-5 zeolite
(Si/Al = 25)

T: 550 ◦C; O.T. 60 min; Load: 20 g
biomass and 20 g catalyst; in situ
catalysis; C.G.: N2; N2 flow rate:

100 mL/min.

Fixed-bed reactor Fast pyrolysis 28.63 30.63 40.75 N.R. [30]

Pine sawdust 5.79 HZSM-5

T: 400 ◦C; O.T.: 30 min; Load: 25 g
biomass and 6.25 g catalyst; B.P.S.:

<1.18 mm; in situ catalysis; C.G.: N2;
N2 flow rate: 100 mL/min.

Fixed-bed reactor Fast pyrolysis 36.60 34.28 29.12
Bio-oil and gases yields

decrease, and biogas
yield increases.

[31]

Pine sawdust 5.79 Ni/HZSM-5

T: 400 ◦C; O.T.: 30 min; Load: 25 g
biomass and 6.25 g catalyst; B.P.S.:

<1.18 mm; in situ catalysis; C.G.: N2;
N2 flow rate: 100 mL/min.

Fixed-bed reactor Fast pyrolysis 35.34 37.94 26.72
Bio-oil and gases yields

decrease, and biogas
yield increases.

[31]

Cellulose from
switchgrass 5.34

ZSM5 (CBV2314
with SiO2/Al2O3

ratio of 23)

T: 600 ◦C; C/B: 20; C.G.: He2; He2
flow rate: 1 mL/min; in situ catalysis.

Micro-furnace
pyrolyzer Fast pyrolysis 35.29 33.22 31.49 N.R. [32,33]

Chips of pine 6.58 CoMo-S/Al2O3

T: 863 K; O.T.: 40 min; H.R.:
32 K/min; Biomass diameter: 104

µm; in situ catalysis.

Powder-particle
fluidized bed

(PPFB)
Slow pyrolysis 11.49 44.48 44.04 N.R. [34]

Chips of Alaskan
spruce 7.01 CoMo-S/Al2O3

T: 863 K; O.T.: 40 min; H.R.:
32 K/min; Biomass diameter:

104 µm; in situ catalysis.

Powder-particle
fluidized bed

(PPFB)
Slow pyrolysis 6.06 47.63 46.31 N.R. [34]

Chips of tropical
lauan 6.55 CoMo-S/Al2O3

T: 863 K; O.T.: 40 min; H.R.:
32K/min; Biomass diameter: 104 µm;

in situ catalysis.

Powder-particle
fluidized bed

(PPFB)
Slow pyrolysis 6.27 44.11 49.62 N.R. [34]

Mixture of pine
and spruce 5.00

VSi2.5
(Vanadia content:

2.5 wt%)

T: 450 ◦C; O.T.: 90 min; in situ
catalysis; B.P.S.: 1.0–1.4 mm; Biomass

feeding ratio: 2 kg/h; Support
material: SiO2.

Bubbling
fluidized-bed

reactor
Fast pyrolysis 61.14 38.86 N.R.

Bio-oil yield decreases,
and char yield remains

the same.
[35,36]

Commercial
lignocellulosic

biomass (Lignocel
HBS 150–500)

from beech wood

3.64

ZSM-5/A (zeolite
formulation
diluted with

silica–alumina)

T: 500 ◦C; O.T.: 25 min; R.T.: 0.03 s; in
situ catalysis; Load: 1.5 g biomass

and 0.7 g catalyst; C.G.: N2.

Circulating-fluid-
bed

reactor
Fast pyrolysis 27.35 35.93 36.72

Bio-oil yield decreases,
and biochar and gases

yields increase.
[37,38]

3.64 ZSM-5/B catalyst)
T: 500 ◦C; O.T.: 25 min; R.T.: 0.03 s; in

situ catalysis; Load: 1.5 g biomass
and 0.7 g catalyst; C.G.: N2.

Circulating-fluid-
bed

reactor
Fast pyrolysis 32.65 34.68 32.67

Bio-oil yield decreases,
and biochar and gases

yields increase.
[37,38]

3.64
Co/ZSM-5/A

(zeolite promoted
with 5 wt% Co)

T: 500 ◦C; O.T.: 25 min; R.T.: 0.03 s; in
situ catalysis; Load: 1.5 g biomass

and 0.7 g catalyst; C.G.: N2.

Circulating-fluid-
bed

reactor
Fast pyrolysis 22.49 35.48 42.03

Bio-oil yield decreases,
and biochar and gases

yields increase.
[37,38]

3.64
Co/ZSM-5/B

(catalyst promoted
with 5 wt% Co)

T: 500 ◦C; O.T.: 25 min; R.T.: 0.03 s; in
situ catalysis; Load: 1.5 g biomass

and 0.7 g catalyst; C.G.: N2.

Circulating-fluid-
bed

reactor
Fast pyrolysis 23.21 34.95 41.84

Bio-oil yield decreases,
and biochar and gases

yields increase.
[37,38]
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Table 1. Cont.

Feedstock VM/FC * Catalyst Operating Conditions Reactor Pyrolysis
Yield (wt%)

Catalyst Effect Ref.
Bio-Oil a Biochar Gases

White oak wood 4.67 Ca/Y zeolite

T: 500 ◦C; B.P.S.: 2 mm; Load: 260 g
biomass and 800 g catalyst; in situ
catalysis; C.G.: N2; N2 flow rate:

85 L/min.

Bubbling
fluidized-bed

reactor
Fast pyrolysis 42.86 18.57 38.57

Bio-oil and biochar yields
decrease, and gases yield

increases.
[39,40]

Coal and cedar
wood 2.33

USY zeolite
(metal-modified

ultra-stable Y
type)

T: 600 ◦C; O.T.: 2 h; in situ catalysis;
C.G.: Ar; Ar flow rate: 100 mL/min.

Dropdown tube
reactor Fast pyrolysis 44.94 45.38 9.68 N.R. [41,42]

Rice husk 5.00 4% Fe/ZSM-5

T: 550 ◦C; O.T.: 30 min; Load: 3 g
biomass and 15 g catalyst; in situ
catalysis; C.G.: N2; N2 flow rate:

200 mL/min.

Two-stage fixed-
bed reactor Fast pyrolysis 29.44 34.28 36.28 Bio-oil yield decreases,

and gases yield increases. [43]

Sugarcane bagasse 3.83
HZSM-5 (Si/Al =

23 in protonic
form)

T: 500 ◦C; B.P.S.: 0.5 mm; C/B:
0.5/1.0; in situ catalysis; C.G.: N2; N2

flow rate: 50 mL/min.
Fixed-bed reactor Fast pyrolysis 52.98 28.10 18.92

Bio-oil and gases yields
decrease, and biochar

yield increases.
[44]

Wheat straw 1.80 H-ZSM-5 (Si/Al
ratio = 30:4)

T: 350 ◦C; O.T.: 1 h; C/B: 0.1/1.0;
B.P.S.: 0.5–1.0 mm; Solid phase

contact; H.R.: 25 ◦C/min; in situ
catalysis; C.G.: N2; N2 flow rate:

50 mL/min.

Fixed-bed reactor Slow pyrolysis 27.90 37.10 35.00
Bio-oil and gases yields
decrease, and biochar

yield increases.
[45,46]

Wheat husk 1.71 H-ZSM-5 (Si/Al
ratio = 30:4)

T: 350 ◦C; O.T.: 1 h; C/B: 0.1/1.0;
B.P.S.: 0.5–1.0 mm; Solid phase

contact; H.R.: 25 ◦C/min; in situ
catalysis; C.G.: N2; N2 flow rate:

50 mL/min.

Fixed-bed reactor Slow pyrolysis 19.00 31.40 49.60
Bio-oil and biochar yields

decrease, and gases
yield increases.

[46,47]

C. limon peel 5.23 Al-MCM-41
(SiO2/Al2O3 = 40)

T: 500 ◦C for biomass reactor and
600 ◦C for catalytic reactor; H.R.:
7 ◦C/min; Load: 2 mg powder
biomass, 10 mg catalyst; ex situ

catalysis; C.G.: N2.

Tandem micro-
reactor-GC/MS Slow pyrolysis 17.53 37.11 45.36 N.R. [48]

Citrus paradisi peel 6.18 Al-MCM-41
(SiO2/Al2O3 = 40)

T: 500 ◦C for biomass reactor and
600 ◦C for catalytic reactor; H.R.:
7 ◦C/min; Load: 2 mg powder
biomass, 10 mg catalyst; ex situ

catalysis; C.G.: N2.

Tandem micro-
reactor-GC/MS Slow pyrolysis 18.56 32.99 48.45 N.R. [48]

Switchgrass 1.61 Bentonite
(Al2O34SiO2H2O)

T: 400 ◦C; H.R.: 20 ◦C/min; B.P.S.:
0.125 mm; C.P.S.: <0.050 mm;

Biomass concentration: 30 wt%;
Microwave power: 750 W.

Microwave-
assisted
reactor

Fast pyrolysis 38.78 27.55 33.67 Bio-oil, biochar, and
gases yields increase. [49,50]

* VM/FC: Volatile matter to fixed carbon ratio. a: Organic fraction + Aqueous fraction. T: Temperature. O.P.: Operating time. H.R.: Heating rate. R.T.: Residence time. B.P.S.: Biomass
particle size. C.P.S.: Catalyst particle size. C/B: Catalyst-to-biomass ratio. N.R.: None reported.
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Bio-oil yields through catalytic pyrolysis of lignocellulosic biomass are similar to those
reported without catalysts. There are different reports where the bio-yield decreases (see
Table 1). Chen et al. [51] have reported smaller bio-oil yields with higher deoxygenation
grade. For instance, catalytic fast pyrolysis of lignocel HBS 150–500 (beechwood sawdust
with particle size 150–500 µm) changed according to the catalyst used [52]. H/C and O/C
ratios decrease to 40% and 90% when using heterogeneous catalysis. Then, high heating
values are achieved. The influence of using catalysts in fast pyrolysis on bio-oil properties
is presented in Table 2. After catalytic pyrolysis, the H/C and O/C ratios are lower than the
original biomass (see Table 2). On the other hand, the gas composition varies depending on
the solid catalyst type. Pyrolysis gases comprise CO2, H2, CH4, CO, and light hydrocarbons.
Calcium and aluminum oxides decrease the CO2 content due to the adsorption of this
compound while increasing the H2 content. In contrast, transition metal oxides (e.g., TiO2,
ZrO2, ZnO, and NiO) increase CO2 content [51].

Several kinetic methods have been proposed to describe the chemical species be-
havior in the fast pyrolysis processes. For instance, the kinetic model proposed by
Humbird et al. [53] provides a good approximation for the bio-oil, biochar, and gases
obtained from different lignocellulosic biomass, as this model is based on the cellulose,
hemicellulose, and lignin content. On the other hand, the pyrolysis process can be modeled
using the ultimate analysis of biomass due to the several reactions involved in the thermal
degradation process [54]. Nevertheless, the kinetic study and proper chemical compound
production pathways are not completely clear. This issue is more evident for simulating the
catalytic fast pyrolysis process, as tar-cracking reactions (among others) must be involved,
and activation energies in the entire model must be estimated. In this sense, simulation pro-
cedures describing catalytic fast pyrolysis are uncommon in the open literature. Therefore,
the kinetic study of catalytic fast pyrolysis is a research gap, as chemical species behavior
understanding can help to elucidate optimal operating conditions according to the desired
process outputs.

2.1.2. Gasification

Gasification is the partial oxidation of carbonaceous materials to obtain synthesis gas
(syngas) composed of CO, H2, CH4, and CO2. Syngas has been used as an energy carrier
(i.e., biofuel) and raw material for the catalytic production of methanol, dimethyl ether
(DME), diesel-like fuel, and hydrogen [55]. Typical syngas after gasification has a mean
composition of H2 (15–20%), CO (15–20%), CH4 (1–3%), CO2 (8–12%), and N2 (45–50%) [56].
Nevertheless, syngas composition varies depending on the type of raw material (e.g., coal,
petcoke, and biomass) and the gasifying agent (i.e., O2, steam, CO2, and air) [57]. Different
improvements of the gasification process have been developed and proposed to increase
the H2/CO ratio. In addition, reactor configuration and operating process parameters
have been changed through innovative designs. Catalytic gasification, steam gasification,
solar-thermal gasification, supercritical water gasification, microwave-assisted gasification,
plasma gasification, multi-step gasification, and chemical-looping gasification are possible
routes for increasing the H2/CO ratio after lignocellulosic biomass gasification. This review
paper addresses catalytic gasification, but the other gasification options have been reviewed
by Ghodke et al. [58].
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Table 2. Effect of the catalytic pyrolysis on the H/C and O/C atomic ratios of different lignocellulosic biomass.

Raw Material Catalyst Operating Conditions Bio-Oil a Yield
(wt%)

Elemental Composition (wt%) Atomic Ratios HHV
(MJ/kg) Ref.

C H O N H/C O/C

Forest pine woodchips
(Pinus halepensis)

No catalyst T: 450 ◦C; C/B: 1/6; B.P.S.: 15 mm; A.R.C.: 100 kW of woody biomass. 49.20 60.60 7.70 31.50 0.20 0.13 0.52 26.38 [59]

Bentonite T: 450 ◦C; C/B: 1/6; B.P.S.: 15 mm; C.P.S.: 0.300 mm; A.R.C.: 100 kW of
woody biomass; in situ catalysis. 46.28 62.66 7.61 29.53 0.20 0.12 0.47 27.24 [59]

Sepiolite T: 450 ◦C; C/B: 1/6; B.P.S.: 15 mm; C.P.S.: 0.300 mm; A.R.C.: 100 kW of
woody biomass; in situ catalysis. 46.28 61.90 7.60 30.30 0.20 0.12 0.49 26.86 [59]

Attapulgite T: 450 ◦C; C/B: 1/6; B.P.S.: 15 mm; C.P.S.: 0.300 mm; A.R.C.: 100 kW of
woody biomass; in situ catalysis. 45.00 63.40 7.80 28.60 0.20 0.12 0.45 27.91 [59]

Red mud T: 450 ◦C; C/B: 1/6; B.P.S.: 15 mm; C.P.S.: 0.300 mm; A.R.C.: 100 kW of
woody biomass; in situ catalysis. 49.20 62.56 7.51 29.63 0.30 0.12 0.47 27.04 [59]

Eremurus spectabilis

No catalyst T: 550 ◦C; H.R.: 50 ◦C/min; B.P.S.: 0.850 mm; Biomass load: 20 g;
Fixed-bed tubular reactor; Sweeping gas flow: 100 mL/min. 33.50 58.96 6.77 32.81 1.46 1.38 0.42 23.79 [60]

Tincal
T: 550 ◦C; H.R.: 50 ◦C/min; B.P.S.: 0.850 mm; Biomass load: 20 g;

Fixed-bed tubular reactor; Sweeping gas flow: 100 mL/min; in situ
catalysis.

37.25 57.73 6.98 34.07 1.22 1.45 0.44 23.45 [60]

Colemanite
T: 550 ◦C; H.R.: 50 ◦C/min; B.P.S.: 0.850 mm; Biomass load: 20 g;

Fixed-bed tubular reactor; Sweeping gas flow: 100 mL/min; in situ
catalysis.

33.45 58.34 6.82 33.50 1.34 1.40 0.43 23.53 [60]

Ulexite
T: 550 ◦C; H.R.: 50 ◦C/min; B.P.S.: 0.850 mm; Biomass load: 20 g;

Fixed-bed tubular reactor; Sweeping gas flow: 100 mL/min; in situ
catalysis.

34.00 59.71 6.93 31.99 1.37 1.39 0.40 24.42 [60]

Forest pine woodchips
(Pinus halepensis)

No catalyst T: 450 ◦C; R.T.: 2 h; C/B: 1/3; Biomass flow: 2 kg/h; A.R.C.: 100 kW of
woody biomass; C.G.: N2; N2 flow rate: 5 L/min. 47.50 60.60 7.70 31.50 0.20 1.38 0.42 23.79 [61]

CaO
T: 450 ◦C; R.T.: 2 h; C/B: 1/3; C.P.S.: 0.600 mm; Flows: 2 kg/h biomass
and 6 kg/h catalyst; A.R.C.: 100 kW of woody biomass; C.G.: N2; N2

flow rate: 5 L/min; in situ catalysis.
48.72 67.90 7.60 24.20 0.30 0.11 0.36 29.79 [61]

Forest pine woodchips
(Pinus halepensis) CaO-MgO

T: 450 ◦C; R.T.: 2 h; C/B: 1/3; C.P.S.: 0.600 mm; Flows: 2 kg/h biomass
and 6 kg/h catalyst; A.R.C.: 100 kW of woody biomass; C.G.: N2; N2

flow rate: 5 L/min; in situ catalysis.
48.94 66.80 7.50 25.40 0.30 0.11 0.38 29.10 [61]

Mediterranean sea plant
(Posidonia Oceanica)

No catalyst
T: 500 ◦C; Atmospheric pressure; H.R.: 60 ◦C/min; R.T.: 1 h; Biomass
load: 3 g; Biomass concentration: 25.66 wt%; C/B: 3/7; Stainless-steel

fixed-bed reactor; C.G.: N2; N2 flow rate: 50 mL/min.
47.74 60.77 5.36 30.23 3.64 0.09 0.50 24.44 [62]

CeO2

T: 500 ◦C; Atmospheric pressure; H.R.: 60 ◦C/min; R.T.: 1 h; Biomass
load: 3 g; Biomass concentration: 25.66 wt%; C/B: 3/7; Stainless-steel
fixed-bed reactor; C.G.: N2; N2 flow rate: 50 mL/min; in situ catalysis.

51.15 84.04 6.98 6.90 2.08 0.08 0.08 36.72 [62]

NiCe/HZSM5
T: 500 ◦C; Atmospheric pressure; H.R.: 60 ◦C/min; R.T.: 1 h; Biomass
load: 3 g; Biomass concentration: 25.66 wt%; C/B: 3/7; Stainless-steel
fixed-bed reactor; C.G.: N2; N2 flow rate: 50 mL/min; in situ catalysis.

50.66 81.73 6.87 8.85 2.54 0.08 0.11 35.43 [62]
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Table 2. Cont.

Raw Material Catalyst Operating Conditions Bio-Oil a Yield
(wt%)

Elemental Composition (wt%) Atomic Ratios HHV
(MJ/kg) Ref.

C H O N H/C O/C

A. azurea plant stalks

No catalyst T: 550 ◦C; H.R.: 100 ◦C/min; R.T.: 30 min; Biomass load: 20 g; C.G.: N2;
N2 flow rate: 100 mL/min; Tubular fixed-bed reactor. 30.84 45.59 7.11 45.72 1.58 1.87 0.75 17.43 [63]

Na2CO3
T: 550 ◦C; H.R.: 100 ◦C/min; R.T.: 30 min; Biomass load: 20 g; C.G.: N2;

N2 flow rate: 100 mL/min; Tubular fixed-bed reactor. 31.88 57.06 7.48 32.75 2.71 1.57 0.43 24.18 [63]

Al2O3
T: 550 ◦C; H.R.: 100 ◦C/min; R.T.: 30 min; Biomass load: 20 g; C.G.: N2;

N2 flow rate: 100 mL/min; Tubular fixed-bed reactor. 32.10 49.90 7.43 41.23 1.44 1.78 0.62 20.16 [63]

a: Organic fraction + Aqueous fraction. T: Temperature. C/B: Catalyst-to-biomass ratio. B.P.S.: Biomass particle size. C.P.S.: Catalyst particle size. A.R.C.: Auger Reactor Capacity. H.R.:
Heating rate. R.T.: Reaction time. C.G.: Carrier gas. N.R.: None reported.
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Syngas quality is determined by properties such as (i) heating value, (ii) H2/CO ratio,
and (iii) tar content. Then, these properties are optimized (or improved) by changing the
operating conditions, promoting tar cracking, and crucial reactions (e.g., Boudouard and
water–gas shift reactions) [64]. Catalytic gasification increases syngas quality by adding a
catalyst into the process. In the same way as occurs with pyrolysis processes, gasification
can be carried out through in situ and ex situ catalysis. Table 3 summarizes different syngas
compositions and yields obtained after the catalytic gasification of lignocellulosic biomass
reported in the open literature. In the same way as catalytic pyrolysis, there are several
kinds of catalysts (i.e., metals, no metals, transition metals). Calcium oxide and dolomite
are the most used catalysts in gasification processes (see Table 3). Other used catalysts are
alkali, nickel, zirconia, and ruthenium-based catalyst [58].

Calcium oxide and dolomite are cheaper catalysts. Therefore, the use of these com-
pounds increases the sustainability of the process, as the technical (more H2), economic
(lower expenses and higher incomes), and environmental (low tar production) performance
of the gasification process is improved. Nevertheless, calcium oxide and dolomite are
susceptible to poisoning and deactivation. Moreover, both catalysts (especially dolomite)
are unstable at higher temperatures, which decreases possible industrial applications. Other
catalysts are better than calcium oxide and dolomite, but higher operational expenditures
are required [58]. Indeed, the ruthenium-based catalyst is a better catalyst than nickel,
rhodium, and other transition metals. Even so, the catalyst cost makes its application at the
industrial level unfeasible, if no high-value-added products are involved in the gasification
plant.

Syngas quality (i.e., H2 and CO content) increases when using a catalyst in the gasifi-
cation process. After the increase in H2 and CO content, syngas can be used to produce
several products (e.g., methanol, and fuels). The Fischer–Tropsch process upgrades syngas
to oil-like products (i.e., paraffin and olefins), which can be further converted into a wide
range of liquid fuels (jet fuels, diesel, wax, naphtha). The H2/CO ratio needed for the use
of syngas in the Fischer–Tropsch process is between 1.8 and 2.1 using iron- or cobalt-based
catalysts. Catalysis in biomass gasification plants plays a key role, as most of the H2/CO
ratios obtained in processes without catalysis are lower than 1.8 [65]. Indeed, if the air
is used as gasifying agent, the ratios are lower than 1.0. Thus, the syngas use is limited.
Methanol requires a high H2/CO ratio between 5.0 and 8.0, and several kinetic studies
have been developed for understanding this process [66]. Thus, catalysis helps to increase
the application range of syngas.

Regarding the above context, a thermochemical plant based on biomass gasification
requires catalysts for obtaining bulk products, fuel additives, and fuels. Thus, studies
focused on optimizing catalysts or finding new catalysts are required, as this area (catalysis)
is fundamental for guaranteeing a sustainable process over time. Some ideas reported in
the open literature are related to the use of ashes as catalysts, as oxide metals such as SiO,
Al2O3, Fe2O3, CaO, MgO, and SO3 can be found. This composition provides alkali-based
catalysis. Then, an increase in the H2 content can be obtained (theoretically). However,
slagging can be produced in the gasification reactor due to the high temperatures reached
during the process (>700 ◦C). Zhang et al. [67] investigated the ash fusion characteristics
and gasification reactivity of wheat straw (WS) blended with rice husk (RH) and wood
dust (WD). These authors found that the maximum ratios of WS for WS/RH and WS/WD
mixtures are 60% and 32% to avoid slagging, respectively. Moreover, the gasification
process performance increases when using rice husk ashes. Therefore, the use of ashes can
be a future research trend for improving the syngas quality using cheaper and renewable
materials.
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Table 3. Catalytic gasification of lignocellulosic biomass: yields and catalyst effect.

Raw Material VM/FC * Catalyst Operating Conditions Gasifier Type
Product Characterization

Catalyst Effect Ref.Syngas Composition
(v/v%) H2/CO

Pine sawdust 4.38 Calcined
dolomite-based

T: 800 ◦C for catalyst bed reactor; Flows:
0.47 kg/h biomass, 14 g/h catalyst, 0.65

Nm3/h air, and 0.40 kg/h steam; Load: 56 g
catalyst; G.A.: air + steam; G.A./Biomass:

0.85; ex situ catalysis.

Fluidized-bed
reactor

Dry, inert-free gas
composition: H2: 52.79,

CH4: 2.91, CO: 14.47, CO2:
29.83

3.65

H2 content decreases
while the other

fractions’ content
increases.

[68]

Wood sawdust

4.09 Ca-added Ni-based
catalyst

T: 550 ◦C for biomass reactor and 800 ◦C for
catalyst bed reactor; H.R.: 40 ◦C/min; R.T.:

40 min; B.P.S.: <0.2 mm; Load: 1.0 g biomass and
0.5 g catalyst; Gas/wood (wt%): 74.4; G.A.:

Steam. Water injection rate: 4.74 g/h, ex situ
catalysis.

Fixed-bed two-stage
reactor

Dry, inert-free gas
composition: H2: 49.20,

CH4: 7.73, CO: 22.49, CO2:
20.58

2.19

H2 production
increased when
implementing

catalysts.

[69]

4.09 Ni/MCM-41
(40 wt% Ni)

T: 550 ◦C for biomass reactor and 800 ◦C for
catalyst bed reactor; H.R.: 40 ◦C/min; R.T.:

40 min; Load: 0.80 g biomass and 0.25 g catalyst;
B.P.S.: <0.2 mm; Gas/wood (wt%): 62.8;

Residue/wood (wt%): 28.8; ex situ catalysis.

Fixed-bed two-stage
reactor

Dry, inert-free, gas
composition: H2: 51.16,

CH4: 3.54, CO: 26.69, CO2:
18.60

1.92

H2 production
increased as well as
that of CO2. CO and

CH4 content decrease.

[70]

Wet pig manure 7.72 Ni/Al2O3 (20 wt%
Ni, 0.5–1.2 mm)

T: 750 ◦C; H.R.: 10 ◦C/min; Load: 5.0 g
biomass; C.G.: Ar; Ar flow rate: 120 mL/min;

ex situ catalysis.

Two-stage fixed-bed
quartz reactor

H2: 60.66, CH4: 4.92, CO:
21.31, CO2: 13.11 2.85

All fractions’ content
increases with the

catalyst.
[71,72]

Sewage-sludge-
derived
volatiles

7.66
Ni/LYLC

(19 wt% Ni; 0.5–1.0
mm)

T: 900 ◦C for biomass reactor and 650 ◦C for
catalysts bed reactor; H.R.: 10 ◦C/min; R.T.:
1.5 h; Load: 1.0 g SSDVs and 3.0 g catalyst

Two-stage fixed-bed
reactor

H2: 69.14, CH4: 2.47
CO: 9.88, CO2: 18.52 7.00 N.R. [73]

Dehydrated corncob 4.45
Ni-exchanged resin
char (Ni/RC) (18.0

wt% Ni)

T: 900 ◦C for biomass reactor and 650 ◦C for
catalyst bed reactor; H.R.: 10 ◦C/min; Load:

1 g biomass. B.P.S.: 0.5–1.0 mm; C.G.: Ar. G.A.:
Steam; ex situ catalysis.

Two-stage fixed-bed
reactor

H2: 53.66, CH4: 4.88, CO:
36.59, CO2: 4.88 1.47

All fractions’ content
increases with the

catalyst.
[74,75]

Almond shells 1.55 Perovskite
(LaNi0.3Fe0.7O3)

T: 770 ◦C; H.R.: 5 ◦C/min; Load: 280 g
catalyst; B.P.S.: 1.1 mm; C.G.: N2; G.A.: Steam;

G.A./Biomass: 0.3 kg/h; ex situ catalysis.

Two-stage fixed-bed
quartz reactor

(TSFBQR)

Dry, inert-free, gas
composition: H2: 58.80,

CH4: 3.10, CO: 25.90, CO2:
12.20

2.27
H2 and CO fractions
increase while CO2
and CH4 decreases

[76]

Sugarcane bagasse

5.94 Na2CO3

T: 650 ◦C; H.R.: 10 ◦C/min; Biomass loading:
12 wt%; Catalyst loading: 20 wt%; G.A.: Steam.
Steam flow rate: 20 mL/min; in situ catalysis.

Batch system reactor H2: 34.85, CH4: 10.98, CO:
2.93, CO2: 51.24 11.90 H2 production

increased. [77]

5.94
Dolomite

(CaMg(CO3)2) and
sand (1:2 wt%)

T: 700 ◦C; Load: 1 kg biomass; B.P.S.: 2.5 cm;
G.A.: Steam and air; G.A./Biomass: 0.5; in

situ catalysis.

Fluidized-bed
gasifier

H2: 30.87, CH4: 10.89
CO: 46.26, CO2: 10.97 0.65 N.R. [77,78]
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Table 3. Cont.

Raw Material VM/FC * Catalyst Operating Conditions Gasifier Type
Product Characterization

Catalyst Effect Ref.Syngas Composition
(v/v%) H2/CO

Rice husk 5.62 Uncalcined dolomite

T: 850 ◦C; H.R.: 15 ◦C/min; Biomass particle
diameter: 1.5 mm; Feeding rate: 4 g/min

biomass and 0.8 g/min catalyst; G.A.: Air;
C.G.: H2; H2 flow rate: 1.5 mL/min; in

situ catalysis.

Bubbling
fluidized-bed reactor

Dry, inert-free, gas
composition: H2: 35.41,

CH4: 5.09, CO: 36.34, CO2:
23.16

0.97
H2, CO, and CH4
fractions increase

with catalyst
[79]

Wheat straw 1.80 Metal catalyst
Ru/Al2O3

T: 550 ◦C; R.T.: 60 min; Biomass concentration:
20 wt%; Deionized water load: 8 mL; Catalyst
concentration: 5 wt%; B.P.S.: <1 mm; C.G.: N2.

Tubular batch reactor H2: 30.77, CH4: 12.82, CO:
53.85, CO2: 2.56 0.57 N.R. [45]

Cotton stalks 5.61 Calcined cement kiln
dust

T: 800 ◦C; R.T.: 90 min; Load: 0.5 g dried
biomass; G.A.: O2; in situ catalyst.

Bench-scale
fixed-bed reactor

H2: 39.40, CH4: 4.10, CO:
36.80, CO2: 19.70 1.07

H2 fraction increases
while CH4 and CO
fractions decrease.

[80]

Corn stalks 4.01 Calcined cement kiln
dust

H2: 32.00, CH4: 4.30, CO:
42.00, CO2: 21.70 0.76 [80]

Rice straw 4.15 H2: 26.40, CH4: 6.40, CO:
35.00, CO2: 32.20 0.75 [80]

* VM/FC: Volatile matter/Fixed carbon. T: Temperature. B.P.S.: Biomass particle size. H.R.: Heating rate. R.T.: Reaction time. G.A.: Gasifying agent. G.A./Biomass: Gasifying-agent-to-
biomass ratio. C.G.: Carrier gas. N.R.: None reported.
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2.1.3. Hydrothermal Carbonization (HTC)

The HTC process has been studied as a promising alternative to upgrading ligno-
cellulosic biomass into hydrocarbons by thermal degradation. This process is attractive
due to the possibility of converting wet biomass directly, avoiding drying and saving ther-
mal/electrical energy. In the same way as pyrolysis, solid (so-called hydrochar) and liquid
streams are produced. Hydrochar has been studied as a precursor of activated carbon,
while the liquid stream has been analyzed as a potential precursor of hydrocarbons [81].
The effects of implementing catalysts in the HTC process have been studied and reviewed.
Organic and inorganic catalysts have been reported in the open literature [82]. The objective
of catalytic HTC is to increase the hydrochar yield.

Lignocellulosic biomass must be depolymerized, deoxygenated, and carbonized in the
HTC process. The organic catalysts used for promoting these reactions are citric acid and
acetic acid. The role of these catalysts is to provide a more acidic medium for disrupting
cellulose, hemicellulose, and lignin. This organic catalysis increases the hydrochar yield,
giving different properties to the product. For instance, the hydrochar properties after
acidic catalysis using citric acid differ from those reported when using acetic acid as a
catalyst [81,83–85]. Thus, the applications, calorific value, and physical characteristics are
different. The same behavior has been identified when using inorganic catalysts such as
inorganic acids, salts, and metallic compounds [82]. Hydrochar applications and yields vary
depending on the type of catalyst used in the process. For this reason, Djandja et al. [82]
revealed that FeCl3, HCl, citric acid, some alkalis, and some oxidants are potential candidate
catalysts for producing superior solid fuel. In contrast, only organic acids are recommended
for producing porous carbon materials.

The operating variables and process conditions are key factors in the HTC process.
Temperature, pressure, catalyst loading, solid-to-liquid ratio, and residence time are re-
ported in Table 4. The operating conditions vary depending on the end use of the hydrochar.
Nevertheless, most processes are carried out at temperatures higher than 200 ◦C. Moreover,
biochar yield is not always improved when introducing catalysts to the process. There are
some cases where the hydrochar quantity decreases after the HTC process. Thus, the effect
of the catalyst must be studied based on several experiments and operating conditions to
ensure a good performance [86].

Regarding the use of hydrochar, Liu et al. [87] analyzed the application of biochar
as an absorbent for heavy metal ions in water and soils and summarized the removal
mechanism. A specific case is discussed of treating biochar by steam activation, which
performed well in the removal of heavy metals (i.e., Cu2+ and tetracycline) at conditions of
500 ◦C for 45 min. Physicochemical properties of biochar can be modified as described by
Chen et al. [88] for the decontamination of aquatic and soil systems by both organic and
inorganic pollutants.

The technical, economic, and environmental performance of the HTC process must be
analyzed using simulation tools that have been used to assess the feasibility of an HTC plant.
For instance, Akbari et al. [89] studied the techno-economic performance of the HTC process
applied to yard waste. Two configurations were compared. The first configuration produces
biochar using steam and several flash separators, while the second process configuration
uses special heat exchangers for increasing temperature. The first configuration was the
most promising option from the technical point of view (i.e., mass and energy indicators
were higher). Nevertheless, this configuration had the lowest economic performance, with
a production cost of 3.3 $/GJ. On the other hand, the environmental assessment of the HTC
process has been reviewed by Hussin et al. [90]. These authors concluded that more studies
on the environmental life cycle assessment (E-LCA) of the HTC processes are needed.
Furthermore, a lack of comprehensive information on data emissions such as toxic metallic
elements and greenhouse gas emissions (GWP) using different types of biomasses through
the hydrothermal carbonization process has been evidenced. Thus, the E-LCA of the HTC
process can be considered as a research gap for further investigation and development.
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Table 4. Catalytic hydrothermal carbonization of lignocellulosic biomass: yields and catalyst effect.

Raw Material VM/FC * Catalyst Operating Conditions Reactor Type Hydrochar Yield (wt%) Catalyst Effect Ref.

Banana peels 32.60 H3PO4
(40 wt%)

T: 230 ◦C; R.T.: 2 h; Load: 4 g biomass,
50 mL H3PO4 solution; B.P.S.: 0.5–1.0 cm;

in situ catalysis.

Polytetrafluoroethylene
(PTFE) inner steel

autoclave
29.17 Hydrochar yield significantly

decreases with catalysis. [91,92]

Wheat straw 7.38 Acetic acid
(95 wt%)

T: 200 ◦C; H.R.: 3 K/min; R.T.: 6 h; Load:
25 g dry biomass, 500 mL feedwater; B.P.S.:

0.5 mm; pH: 2.00; Stirring rate: 90 rpm.
Parr stirred reactor 49.9 Hydrochar yield increases

with catalysis. [93,94]

Wheat straw 7.38 Acetic acid
(95 wt%)

T: 260 ◦C; H.R.: 3 K/min; R.T.: 6 h; Load:
25 g dry biomass, 500 mL feedwater; B.P.S.:

0.5 mm; pH: 2.00; Stirring rate: 90 rpm.
Parr stirred reactor 31.3 Hydrochar yield increases

with catalysis. [95,96]

Glucose N.A. Al(OTf)3

T: 200 ◦C; R.T.: 48 h; Load: 1.5 g raw
material, 1 mmol catalyst, and 20 mL

deionized water; pH: 3.65; R.V.: 50 mL.

Teflon-lined
stainless-steel mini

autoclaves
31.33

Hydrochar yield decreases
and the particle size increases

with catalysis.
[97]

Glucose N.A. NaOTf
T: 200 ◦C; R.T.: 48 h; Load: 1.5 g raw
material, 1 mmol catalyst, and 20 mL

deionized water; pH: 8.92; R.V.: 50 mL.

Teflon-lined
stainless-steel mini

autoclaves
48.00 Hydrochar yield and particle

size increase with catalysis. [97]

Cellulose N.A. Al(OTf)3

T: 200 ◦C; R.T.: 48 h; Load: 1.5 g raw
material, 1 mmol catalyst, and 20 mL

deionized water; pH: 3.68; R.V.: 50 mL.

Teflon-lined
stainless-steel mini

autoclaves
38.67

Hydrochar yield decreases
and particle size increases

with catalysis.
[97]

Cellulose N.A. NaOTf
T: 200 ◦C; R.T.: 48 h; Load: 1.5 g raw
material, 1 mmol catalyst, and 20 mL

deionized water; pH: 7.58; R.V.: 50 mL.

Teflon-lined
stainless-steel mini

autoclaves
55.33

Hydrochar yield and the
particle size increase

with catalysis.
[97]

Hornwort 5.46 KOH
T: 300 ◦C; R.T.: 30 min; Dilution ratio: 1:8;

Load: 30 g biomass, 3 wt% catalyst of
initial raw material.

Cylindrical autoclave
reactor 31.40 Hydrochar yield decreases

with catalysis. [85]

Metasequoia leaves 11.88 Iron sludge

T: 150 ◦C; R.T.: 3 h; B.P.S.: 0.15 mm. Load:
5 g biomass, 0.5 g catalyst, and 60 mL

deionized water; Stirring time: 0.5 h, in
situ catalysis.

Enclosed stainless-steel
reactor 59.53 Hydrochar yield increases

with catalysis. [98]

Wooden stir sticks
(white pine and birch) 6.76 Acid catalyst solution

T: 240 ◦C; H.R.: 7 ◦C/min; R.T.: 1 h; Load:
10 g biomass, 120 mL water and catalyst;
C/B: 12/1; B.P.S.: 2 mm; in situ catalysis.

Parr bench-top reactors 45.50 Hydrochar yield increases
with catalysis. [95,96]

Rice husk 5.00 NaCl
(Analytical-grade)

T: 220 ◦C; R.T.: 60 min; Load: 7.5 g
biomass, 22.5 mL deionized water, and

NaCl was 5% of mass of rice husk; B.P.S.:
0.6 mm; Ultrasonic pretreatment was

implemented with 260 W.

Stainless-steel batch
reactor 65.00 Hydrochar yield decreases

with catalysis. [43,99]
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Table 4. Cont.

Raw Material VM/FC * Catalyst Operating Conditions Reactor Type Hydrochar Yield (wt%) Catalyst Effect Ref.

Sugarcane bagasse 5.94 HCl

T: 180 ◦C; R.T.: 4 h; B.P.S.: <1 mm; Biomass
loading: 12 g:100 mL HCl; HCl

concentration: 2 M; For adsorption: pH
5.00 and stirring rate 200 rpm.

Stainless-steel
Teflon-line autoclave

reactor
49.70 N.R. [77,100]

Cassava pulp 7.96 Acetic acid
(Dehydration catalyst)

T: 220 ◦C; H.R.: 6 ◦C/min; R.T.: 5 h; P:
30 bar; Load: 350 mL sludge; Sludge/Raw

material: 1/1 (wt%).

Stainless-steel
high-pressure reactor 69.8 Hydrochar yield increases

with catalysis. [101]

Cotton textile waste 14.95 FeCl3·6H2O
T: 240 ◦C; H.R.: 5 ◦C/min; R.T.: 4 h; Load:

3 g biomass, 1 g FeCl3, and 60 mL
deionized water; B.P.S.: 1 mm.

Non-stirred
stainless-steel

Teflon-lined reactor
21.95 Hydrochar yield decreases

with catalysis. [102]

Avocado peel 2.24 FeCl3·6H2O
T: 180 ◦C; H.R.: 4 ◦C/min; R.T.: 5 h; Load:
100 g biomass, 600 mL deionized water;

C/B: 20 wt%; B.P.S.: 0.3 mm.

High-pressure stirred
laboratory reactor 62.7 Hydrochar yield increases

with catalysis. [103]

* VM/FC: Volatile matter/Fixed carbon. T: Temperature. P: Pressure. B.P.S.: Biomass particle size. H.R.: Heating rate. R.T.: Reaction time. R.V.: Reaction volume. C/B: Catalyst-to-biomass
ratio. N.A.: Does not apply. N.R.: None reported.
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2.2. Catalytic Biomass Fractionation

Lignocellulosic biomass fractions have been researched and studied for producing a
series of value-added products and energy vectors based on biotechnological pathways.
These conversion routes require a pretreatment stage for disrupting biomass materials and
increasing access to enzymes and microorganisms. Catalytic biomass upgrading refers to
using any catalyst (homogeneous or heterogeneous) for the disrupting and upgrading of
biomass components into platform molecules and value-added products.

Catalysis is present in the pretreatment of biomass. Chemical pretreatment methods
are considered catalytic methods for disrupting biomass. The acid pretreatment uses
inorganic and organic acids as catalysts, the ammonia fiber expansion (AFEX) pretreatment
uses ammonia as catalysts, alkaline pretreatment uses inorganic bases for removing lignin,
and the organosolv pretreatment uses an inorganic acid and alcohol to separate the three
biomass fractions [104,105]. Therefore, all these methods are the subject of study for finding
new and improved catalysts and reactions in order to increase yields and productivity. One
of the most important drawbacks of the pretreatment methods is the use of homogeneous
catalysts, as liquid waste streams with the catalysts are generated [106]. This drawback
encourages using new catalysts for the pretreatment, increasing operational expenditures.

For instance, the acid pretreatment uses sulfuric acid (or any other inorganic acid) to
remove the hemicellulose content of a biomass sample. The sulfuric acid is not recovered
after the pretreatment stage for further use [107]. Therefore, the pretreatment requires a
constant feed flow of a sulfuric acid solution to pretreat new biomass. This issue can be
overcome by implementing solid catalysts in the pretreatment stage. Indeed, zeolites and
cation-exchange resins have been researched as possible catalysts for the acid pretreatment
of biomass [106]. However, few studies have reported the use of solid catalysts instead of
homogeneous catalysts due to the cost associated with the use of the catalyst. Even so, solid
catalysts in biomass pretreatment could help to improve the environmental performance
due to the recyclability and re-use potential of this kind of compounds.

The pretreatment stage has been considered a key step for biomass upgrading, as this
stage allows decreasing crystallinity and biomass recalcitrance [106]. After this process,
enzymatic hydrolysis is carried out to produce reducing sugars from the cellulose fraction
(i.e., glucose). This step can also be considered as a catalytic process, as the enzymes are the
medium for obtaining the desired product. After this process, biotechnological routes are
applied to upgrade these sugars to value-added products through fermentative processes.
The product portfolio of biotechnological conversion is wide, as several microorganisms
can upgrade glucose to different products. Indeed, the lignocellulosic fractions can be
upgraded into different valuable products with a solid catalyst. Table 5 presents some
interesting products obtained after the direct upgrading of biomass in the presence of a
metal catalyst.
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Table 5. Conversion of main biomass fractions into value-added products via catalytic processes.

Fraction Biomass Catalyst Product Operating Conditions Reactor Type Yield (wt%) Ref.

Cellulose

Corn stover Al2(SO4)3 Methyl levulinate

T: 170 ◦C; R.T.: 45 min; B.P.S.: 1 mm; Cellulose
load: 0.4 g; Solvent: Methanol; Stirring rate: Low

level; Microwave power: 800 W; Solvent load:
15 mL.

Microwave reactor 84.49 [108]

N.R. RuCl3

5-
Hydroxymethylfurfural

(5-HMF), lactic acid
(Lac), and levulinic acid

(LA)

T: 220 ◦C; R.T.: 30 min; Cellulose concentration:
4 wt%; Solvent: Butanol; Catalyst concentration:

0.125 mol/L
High-pressure reactor

5-HMF: 83.30
Lac: 2.65
LA: 14.05

[109]

Sugarcane leaf
waste FeCl3 Reducing sugars

T: 60 ◦C; R.T.: 3.5 min; pH: 4.8; Catalyst
concentration: 2 M; Microwave power: 700 W;

B.P.S.: <1 mm; Biomass load: 5 g.
Microwave oven 40.6 [110]

Food waste
(Cooked rice and

bread crust)
SnCl4

Hydroxymethyl-
furfural (HMF) and

glucose

T: 140 ◦C; R.T.: 20 min; Catalyst concentration:
20 mol%. Microwave reactor HMF: 9.50

Glucose: 90.50 [111]

Corn stover
1-(1-propylsulfonic)-

3-methylimidazolium
chloride

Reducing sugars T: 160 ◦C; R.T.: 3 h; B.P.S.: 0.7 mm; Biomass load:
0.05 g; Catalyst load: 2.50 mL. Stainless-steel reactor 90.20 [112]

Hemicellulose
Rice straw CuO Xylose and arabinose

T: 160 ◦C; R.T.: 3 h; Stirring rate: 600 rpm; PH2:
1.5 MPa; B.P.S.: 0.062 mm; C.P.S.: 0.075 mm; C/B:

3/10 (wt%).
Stainless-steel reactor Xylose: 53.00

Glucose: 17.30 [113]

Corncob NaHCO3 Glucose T: 50 ◦C; Biomass load: 1 g; pH: 5.0; Stirring rate:
200 rpm; Catalyst concentration: 2 wt%. Rotary shaker Glucose: 67.60 [114]

Hemicellulose

Beech wood SnCl4 Furfural and xylose

T: 150 ◦C; R.T.: 120 min; Load: 0.1 g xylan,
0.1 mmol catalyst, 5 mL ultrapure water; Solvent:

2-methyltetrahydrofuran; (2-MTHF);
MTHF/water: 2/5 vol%.

Batch reactor Furfural: 78.1
Xylose: 8.30 [115]

Cannabis sativa L.
shives Al2(SO4)3 Furfural T: 160 ◦C; R.T.: 90 min; Catalyst concentration:

5 wt%; Biomass load: 1200 g. Bench-scale reactor 62.70 [116]

Typha latifolia MgCl2 Xylose and glucose T: 180 ◦C; R.T.: 15 min; B.P.S.: 1 mm; Catalyst
concentration: 0.4 M. Batch reactor Xylose: 90.60

Glucose: 61.70 [117]
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Table 5. Cont.

Fraction Biomass Catalyst Product Operating Conditions Reactor Type Yield (wt%) Ref.

Lignin

Corncob ZnMoO4/MCM-41
(MCM-41: 1.5 g)

Ethyl coumarate (EC)
and ethyl ferulate

(EF)

T: 220 ◦C; R.T.: 4 h; PH2: 30 atm; Solvent:
Ethanol; Lignin load: 100 g; Catalyst load:

25 mg; Solvent load: 15 mL.

Parr autoclave
reactor

EC: 3.90
EF: 3.70 [118]

Birch Ni-Fe/AC
(Ni/Fe: 1/1) Propylsyringol

T: 200 ◦C; R.T.: 6 h; PH2: 2 MPa; Stirring
rate: 800 rpm; Solvent: Methanol; Lignin

load: 100 mg; Load: 50 mg catalyst;
10 mL solvent.

Parr reactor 20.30 [119]

Sugarcane
bagasse

Ni/ZrP
(Ni: 20 wt%) 4-Ethyl phenol

T: 270 ◦C; R.T.: 4 h; PH2: 2 MPa; Stirring
rate: 650 rpm; Solvent; Isopropanol;

Lignin load: 0.5 g; Load: 0.1 g catalyst;
20 mL solvent.

Stainless-steel
autoclave 7.39 [120]

Hardwood Cu/Mo-ZSM-5

Phenol,
3-methoxy,2,5,6-

trimethyl
(PMT)

T: 220 ◦C; R.T.: 7 h; Inert atmosphere;
Solvent: Methanol; Lignin load: 0.5 g;
Load: 0.125 g catalyst, 60 mL solvent,
1.7 mmol NaOH; Water/Methanol:

45/15 (vol%).

Parr reactor 20.60 [121]

Wheat straw Ga(OTf)3
Soluble phenolic

compounds

T: 160 ◦C; R.T.: 2 h; Solvent: Ethanol;
Lignin load: 40 g; Catalyst concentration:

8 mmol/L.
Autoclave reactor 17.90 [122]

T: Temperature. Pi: Pressure of component i. B.P.S.: Biomass particle size. C.P.S.: Catalyst particle size. R.T.: Reaction time. C/B: Catalyst-to-biomass ratio. N.R.: None reported.
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Cellulose can be degraded to 5-hydroxymethyl furfural (5-HMF) as reported by
Jiang et al. [123], formic acid, levulinic acid, ethylene glycol, gluconic acid, lactic acid,
sorbitol, and mannitol. The operating conditions and catalyst type vary according to the
desired product. For instance, lactic acid has been produced using cellulose as raw material,
reaching a conversion yield of about 90 wt% in a stirred tank reactor at lab scale at 240 ◦C,
2 MPa, 600 rpm, and 30 min in the presence of ErCl3 [124]. Gluconic acid was produced
with a yield from 30–50 wt% when using a homogeneous catalyst (FeCl3) for producing
gluconic acid at 110 ◦C, 600 rpm, and 120 min [125]. On the other hand, hemicellulose can
be upgraded to furan-based components and lactones after depolymerization, dehydra-
tion, and deoxygenation. Finally, catalytic lignin decomposition allows the production
of phenolic compounds such as vanillin, ethyl coumarate, and ethyl ferulate. All these
processes occur at high temperature and pressures (T > 100 ◦C, and P > 2 MPa). Therefore,
heating and power requirements of catalytic upgrading of biomass can be hotspots of these
processes. The research on high-selectivity catalysts is crucial for reducing the downstream
processing as much as possible to obtain a high-purity value-added product. Table 5 shows
different metal catalysts used for biomass upgrading. Nevertheless, few studies have
been focused on analyzing the recyclability and re-use potential of these catalysts from
a techno-economic and environmental perspective. Thus, more studies considering this
point are required.

On the other hand, platform molecules are derived after disrupting the lignocellulosic
matrix of biomass. The United States Department of Energy (USDOE) has proposed a
list of the top 12 biochemicals/platforms produced from biomass [126]. Most of these
compounds are produced from C5 and C6 sugars (i.e., xylose and glucose) via catalytic
upgrading or fermentation pathways. Indeed, aqueous solutions of monomeric sugars
derived from biomass could be subjected to various types of reactions involving oxygen
removal and C–C bonds formation. Therefore, the production of highly reactive molecules
to be transformed into a wide variety of compounds is only possible through hydrolysis-
based methods [2]. The main platform molecules derived from hydrolytic processing are
furfural, hydroxymethylfurfural (HMF), levulinic acid, and γ-valerolactone.

To develop a suitable mixture of liquid fuels for usage or blending with commercial
fuels such as gasoline (C5–C12), jet fuel (C9–C16), and diesel, the furan platform has been
studied as a potential precursor of these hydrocarbons. Furan-based compounds are
produced via dehydration and deoxygenation of sugars (e.g., xylitol, glucose). Inorganic
acid or ionic liquids are used in homogeneous catalysis to produce furfural and HMF.
Furfuryl alcohol, cyclopentanol, n-pentane, butane, furan, 2,5-dimethyl furan (DMF), and
tetrahydrofurfural (THF2A) are a few of the key products that can be obtained from
furan compounds [2]. Several reviews have dedicated efforts to giving comprehensive
information about the possible applications of furan-based compounds (i.e., furfural and
HMF) and their conversion pathways into high-value-added products [104,105,127].

Another platform generated from the hydrolysis of lignocellulosic biomass is levulinic
acid. This organic acid is esterified to produce ethyl and methyl esters, which are then
combined with diesel fuel. However, levulinic acid can be upgraded to γ-valerolactone
through the dehydration of the angelica lactone pathway using homogeneous or heteroge-
neous catalysis. Subsequently, γ-valerolactone can be upgraded to added-value chemicals
such as 5-nonanone through the pentenoic acid hydrogenation pathway or transformed
into methyl-tetrahydrofuran, which is a gasoline additive. Moreover, levulinic acid can
be used as a polymer additive [128]. Another way to produce additives for fuels or even
other added-value chemicals is through the direct catalytic conversion of biochemical
products. Among the main products obtained by biochemical routes, lactic acid has been
one of the most researched. Lactic acid can be transformed using heterogeneous catalyst
in light alkanes such as methane, ethane, and propane [129]. Further, lactic acid can be
transformed into C6 and C7 ketones. Moreover, lactic acid can be upgraded to polylactic
acid using heterogeneous catalysts. This process is described by Ortiz-Sanchez et al. [130],
where SnO is required as solid catalyst. Nevertheless, other catalysts need to be researched
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to improve the process, as SnO suffers deactivation in the presence of water. Thus, a
high-efficiency removal system must be designed for avoiding low yields and productiv-
ities. Finally, glycerol (a by-product of the biodiesel production) has been studied to be
upgraded via heterogeneous catalysis. Indeed, this molecule has been upgraded to produce
1,2-propanediol and 1,3-propanediol via hydrogenolysis, dihydroxyacetone via oxidation,
and other value-added products via etherification and esterification [131]. A brief list of the
possible value-added products derived from the furan platform, lactic acid, levulinic acid,
and glycerol is presented in Table 6.

Regarding the aqueous phase derived from biomass, Pipitone et al. [132] have studied
different catalytic valorization techniques through reforming processes to produce H2 from
the oxygenated compounds present in this phase. The authors analyzed the available routes
for the catalyst synthesis that allowed high selectivity, substrate conversion, and industrial
scaling. Morales et al. [133] reported the production of H2 with a yield of 85% from glycerol
by the aqueous-phase reforming process using nickel aluminate catalyst (0.5 g) at 250 ◦C and
45 bar with a composition of 10 wt% glycerol solution. Moreover, heterogenous catalysis
can be applied to biomass-derived aqueous phase for the obtaining of high-valued-added
products such as platform chemicals through dehydration, hydrogenation, oxidation, and
reforming reactions, as previously mentioned [134].

3. Recent Trends Related to Catalytic Processes for Improving Biorefineries’ Designs

Catalytic upgrading of biomass has increased in recent years in order to obtain more
bio-based products that can be used in any productive sector. Therefore, different research
efforts have been focused on analyzing new ways to implement catalytic processes for
biomass upgrading or waste-streams valorization [135–138]. This review paper refers
to some trends related to the catalytic upgrading of bio-based compounds. However,
there are more trends worthy of being studied and analyzed. The trends presented are
as follows: biocatalysis, CO2-upgrading, catalysts’ recyclability and use, and biochar as
catalysts’ source. The above-mentioned research lines in catalytic processes aim to improve
biorefineries’ designs, as more products can be involved in a biorefinery. Moreover, the
sustainability of these facilities is upgraded due to the emissions reduction and waste-
streams minimization.
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Table 6. Products derived from platform molecules: 5-HMF, furfural, lactic acid, levulinic acid, and glycerol.

Platform Molecule Catalyst Product Operating Conditions Reactor Type Yield (wt%) Catalyst Effect Ref.

HMF

Perovskite-Type Oxide
(PTO) supported by Ni:

LF-N5 (5 wt% Ni)

2,5-Dimethylfuran (DMF),
5-Methylfurfuryl alcohol

(MFA) and 5-Methylfurfural
(MF)

T: 230 ◦C; R.T.: 6 h; Load: 1.0 mmol
HMF, 1.0 mmol n-tetradecane, 100 mg
catalyst, 12 mL ethanol; PH2: 5.0 MPa.

Parr reactor and
magnetic stirrer

DMF: 69.30, MFA: 28.80,
MF: 1.90

DMF yield
increases while
MFA and MF

decrease.

[139]

Mg:Al:Ni
(2 mole ratio; 48.3 wt% Ni) Furfuryl alcohol (FOL) T: 180 ◦C; P: atmospheric; R.T.: 10 h;

Load: 1 mL catalyst.
Vertical down-flow
fixed-bed reactor FOL: 93.99 N.R. [140]

Pt/MCM-41
(1 wt% Pt)

2,5-bis-(hydroxymethyl) furan
(BHMF) and 5-Methylfurfuryl

alcohol (MFA)

T: 35 ◦C; R.T.: 2 h; Catalyst/HMF (wt):
1/5; Water: 2 mL; PH2: 0.8 MPa. Batch reactor BHMF: 98.9, MFA: 1.10 N.R. [141]

Pd/SiO2(0.6) +
Ir–ReOx/SiO2(5–2.5)

1,6-Hexanediol,
1,5-Hexanediol, Hexane,

1-Hexanol, and
2,5-bis(hydroxymethyl)

tetrahydrofuran

T: 100 ◦C; PH2: 5 MPa; Load: 1 wt%
HMF, 1.0 g Pd/SiO2 in upper layer
and 1.0 g; Water/THF: 2/3 (vol%).

Fixed-bed reactor

1,6-HDO: 46.20,
1,5-HDO: 19.40, Hexane:
12.90, 1-Hexanol: 17.50,

DHMTHF: 4.70

N.R. [142]

C–Fe3O4–Pd

2,5-furandicarboxylic acid
(FDCA), 2,5-diformylfuran

(DFF), and 2-hydroxymethyl-
furan-5-carboxylic

acid

T: 80 ◦C; R.T.: 4 h; Solvent: H2 O; Load:
50.4 mg HMF, 8 mL solvent, and 40 mg

catalyst; O2 flow rate: 30 mL/min.
N.R.

FDCA: 82.30
DFF: 1.20

HMFCA: 0.9
N.R. [143]

Levulinic acid

Beta zeolite
(H-Beta-19, Si/Al: 23) Diphenolic acid (DPA)

T: 140 ◦C; R.T.: 4 h; Load:12 mmol
Levulinic acid, 0.3 g catalyst;

Phenol/Levulinic acid: 6 (mol).
Pressure glass reactors DPA:45.70 N.R. [144]

Ni/Al2O3
(35 wt% Ni)

2-methyltetrahydrofuran
(MTHF) and G-valerolactone

(GVL)

T: 250 ◦C; R.T.: 5 h; PH2: 70 bar;
Solvent: 2-propanol; Load: 5 wt%
levulinic acid in solvent; Levulinic

acid/catalyst: 10 (wt%).

Autoclave reactor MTHF: 75.00, GVL: 8.00
Products yields
increases with

catalysis.
[145]

Pd/HZSM-5
(2 wt% Pd)

Valeric acid and its esters
(VA + VE)

T: 240 ◦C; R.T.: 8 h; PH2: 4.0 MPa;
Solvent: Ethanol.

Stainless-steel batch
reactor VA + VE: 92 N.R. [146]

CuMg
(Cu2+: 0.25 mol/L; Mg2+:

0.5 mol/L)
1,4-pentanediol (PDO)

T: 170 ◦C; R.T.: 2 h; PH2: 3 MPa;
Stirring rate: 400 rpm; Load; 40 mg

catalyst, 40 mg levulinic acid, and 3.96
g ethanol.

Autoclave reactor PDO: 53.6 N.R. [147]

Amberlyst-15
Succinic acid (SA), maleic acid
(MA), fumaric acid (FA), and

furoic acid (FuA)

T: 80 ◦C; R.T.: 24 h; Stirring rate: 500
rpm; Oxidant: H2O2; Solvent: Water;

Load: 50 mg catalyst, 1 mmol furfural,
30% oxidant, and 3 mL solvent.

Schlenk glass tube
attached with a reflux

condenser

SA: 74, MA: 11, FA: <1,
FuA: 2

Catalysis is needed
for production. [148]
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Table 6. Cont.

Platform Molecule Catalyst Product Operating Conditions Reactor Type Yield (wt%) Catalyst Effect Ref.

Furfural

NiO-MgO
Ni/Mg: 0.25 mol% Furan

T: 190 ◦C; R.T.: 5 h; Solvent:
Cyclopentylmethyl ether; H2: furfural

molar ratio: 11.5; Furfural flow rate:
2.3 mmol/h; H2 flow rate: 10 mL/min.

Tubular quartz reactor Furan: 88 N.R. [149]

NiO-MgO
Ni/Mg: 0.25 mol% Furfuryl alcohol

T: 190 ◦C; R.T.: 5 h; Solvent:
Cyclopentylmethyl ether; H2: furfural

molar ratio: 11.5; Furfural flow rate:
2.3 mmol/h; H2 flow rate: 10 mL/min.

Tubular quartz reactor Furfuryl alcohol: 6 N.R. [149]

1,8-diazabicyclo [5.4.0]
undec-7-ene

(Substrate/Catalyst: 5.56)
Furoic acid

T: 40 ◦C; R.T.: 4 h; PO2: 0.1 MPa; Load:
48 mg furfural, 2 mL DMSO,

30 mg catalyst.

Teflon-lined
stainless-steel autoclave Furoic acid: >99 Catalysis is needed

for production. [150]

5 wt% Ru/C
1,4-butanediol (BDO),

tetrahydrofuran (THF), and
n-butanol (NBA)

T: 170 ◦C; P: 50 bar; R.T.: 3 h; Load:
16 g furan, 45 g water, 51 g ethanol,

0.1 g catalyst; Ru/C: 1/12.5 and
Furan/H2O: 1/12.5.

16-reactor nanoflow
unit

BDO: 21, THF: 52
NBA: 14 N.R. [151]

Ru/SiO2 Furfurylamine
T: 130 ◦C; PH2: 750 psi; R.T.: 10 h;

Dioxane/water: 40:1 (%wt); Furfural
concentration: 0.1 M; 40 mL water.

Batch reactor Furfurylamine: 58 Catalysis is needed
for production. [152]

Lactic acid

Magnesium aluminate
spinel

(Mg/Al: 1/2 mol%)

Acetaldehyde (AD), propionic
acid (PA), acetic acid (ACA),

acrylic acid (AA), and
2,3-pentanedione (PD)

T: 380 ◦C; Feedstock: 20 wt% solution
of lactic acid; Catalyst load: 0.38 mL;
Solvent: water; C.G.: N2; Feed flow

rate: 1 mL/h.

Fixed-bed quartz
reactor

AD: 87.5, PA: 2.6
ACA: 1.7, AA: 5.5

PD: 1.0
N.R. [153]

ZSM-5 zeolite
(Alkali-treated with 0.5

mol% NaOH)
Acrylic acid R.T.: 350 ◦C; Catalyst load: 1.5 g;

LHSV: 4.0 h−1.
Vertical

fixed-bed steel reactor Acrylic acid: 64.8 N.R. [154]

3Pb-1Pt
(Carbon black catalyst)

Pyruvic acid (PA) and acetic
acid (AA)

T: 90 ◦C; P: 0.1 MPa; R.T.: 20 min; pH: 12;
Catalyst load: 0.25 g; Load: 25 g lactic
acid, 0.21 g LiOH· H2O (90 wt%); O2
flow rate: 100 mL/min; Stirring rate:

800 rpm.

Three-neck flask PA: 59.98, AA: 1.05 Catalysis is needed
for production. [155]

H3PW on activated carbon
(30 wt% H3PW) Polylactic acid T: 160 ◦C; R.T.: 4 h; Catalyst load:

0.02 g; Stirring rate: 240 rpm.
50-mL three-neck

round-bottom flask Polylactic acid: 60.00 N.R. [156]

Cs-doped hydroxyapatite
catalyst

(Ca/Cs: 1.622/1.667 mol)
2,3-Pentanedione

T: 300 ◦C; R.T.: 4.5 h; Catalyst load:
0.38 mL; Calcination temperature: 700 ◦C;
C.P.S.: 0.40 mm; C.G.: N2; N2 flow rate: 1
mL/min; Feed flow rate: 1 mL/h; Lactic

acid feedstock: 20 wt% in water.

Fixed-bed quartz
tubular reactor 2,3-Pentanedione: 63.8 Catalysis is needed

for production. [157]
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Table 6. Cont.

Platform Molecule Catalyst Product Operating Conditions Reactor Type Yield (wt%) Catalyst Effect Ref.

Glycerol

Nb-MgAl
(18 wt% Nb)

Diglycerol (DG) and formic
acid (FA)

T: 150 ◦C; Glycerol concentration:
4.31 × 103 mol/L;

Continuous process.

Stainless-steel
packed-bed reactor DG: 66.50, FA: 23.75 Only formic acid is

produced. [158]

NiAl-Glycerinate
(Prepared by two-step
calcination and 10 wt%

CeO2)

Hydrogen

T: 630 ◦C; Water/Glycerol: 9 mol%;
Catalyst load: 0.5 g; Gas Hourly Space

Velocity (GHSV) of
19,600 cm3gcat−1h−1.

Fixed-bed tubular
stainless-steel reactor Hydrogen: 77

Hydrogen yield
increases with

catalysis.
[159]

NS-ZM-75
(Si/Al: 75) Acrolein and acetol

T: 320 ◦C; R.T.: 24 h; P: 1 atm; Glycerol
concentration in feed: 5 wt%; Coke:

0.130 mg/gcat.

Stirred laboratory
reactor Acrolein: 92, Acetol: 4 N.R. [160]

Pt-Bi/AC
(5 wt% Pt and 1.5 wt% Bi)

Dihydroxyacetone (DHA),
glyceric acid (GCA), and

tartronic acid (TTA)

T: 80 ◦C; PO2: 3.5 bar; R.T.: 2 h; Stirring
rate: 800 rpm; Glycerol initial

concentration: 1 M; Glycerol/dry
catalyst: 10 wt%; Load: 100 mL

glycerol solution and 0.92 g catalyst.

Stainless-steel batch
reactor

DHA: 35.28, GCA: 6.72,
TTA: 10.92 N.R. [161]

Ce0.75Zr0.25O2
(Ce/Zr: 3/1 wt%) Glycolic acid

T: 60 ◦C; NaOH/glycerol: 2(mol%);
O2/glycerol: 0.23(mol%);

Catalyst/glycerol: 0.77(wt%); Glycerol
concentration: 2 M.

Stirred batch reactor Glycolic acid: 68 N.R. [162]

T: Temperature. P: Pressure. Pi: Pressure of component i. C.P.S.: Catalyst particle size. R.T.: Reaction time. C.G.: Carrier gas. N.R.: None reported.
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3.1. Biocatalysis as the Basis for Producing Specialty and Fine Chemicals

Biocatalysis is a new alternative that several industrial processes are implementing
to assist or replace existing synthetic routes through which specialty and fine chemicals
are produced [163]. Therefore, the use of cell systems or enzymes has mainly been studied
specifically to cover the demands of pharmaceutical applications to obtain high-value
compounds. The current technologies are based on the production of optical purity species
for the required chiral center that represents a specific function in a medical patient [164].
Moreover, several authors have implemented green chemistry metrics to study the optimum
operating conditions to allow the minimum waste generation and use of hazardous reagents
or solvents [165].

The use of a biocatalyst involves economic factors that must be considered during the
process. According to Pollard et al. [164], the obtained products must present considerably
similar concentrations of those products generated when using chemical standard routes.
Nevertheless, enzymes need to work in high-substrate concentrations without decreasing
the activity. The second aspect that conditions the productive process is the biocatalyst cost,
and this metric must be at a value around 1000 gproduct/genzyme activity for the enzymes
and at around 15 gproduct/gbiocatalyst for the cell systems.

Table 7 summarizes fine compounds obtained when using biocatalysts in different
substrates, as well as the application of each precursor for the synthesis of a specific
pharmaceutical product. Ketone is the most common substrate and is used for the obtaining
of pyrimidines and chiral intermediates. According to Chong et al. [166], the inhibitor
ipatasertib can be efficiently synthetized by bicyclic pyrimidine as the starting material of
the Ketoreductase enzyme (KRED) that acts on the ketone. This compound is produced with
a yield of 86.00 wt%, and as reported, the operating conditions in terms of temperature and
pH are neutral or not highly energy demanding for the biocatalytic asymmetric reduction
that occurs. When comparing to chemical routes, the use of extreme conditions can cause
isomerization, rearrangement of the compound, or racemization [167]. These phenomena
reduce the productivity and make upstream processing necessary in order to reach purity
and demanded standards.

Pollard et al. [164] note that biocatalytic processes are carried out in small scales when
compared to most of the existing chemical processes. Up to 10,000 tons of pharmaceutical
compounds are produced per year, and the scaling-up from laboratory scale is difficult.
Factors such as batch operating mode can represent a negative effect for the enzyme
or cell systems, as the substrate consumption has repercussions on the product quality
standards [168]. Moreover, the large capacity of the devices at industrial level does not
allow a perfect mixing, or if so, the energy consumption is higher than that at laboratory
scale. Finally, the equipment materials are not the same when referring to one scale or
another, which leads to low productivities [164].

Enzymes promote stability and selectivity for the desired compound [167]. For in-
stance, when using Cyclohexanol as substrate and KRED as enzyme, St-Jean et al. [169]
described that for a thermal requirement of 50 ◦C in an advanced racemic intermediate,
the process reaches a yield of 95.00 wt% for diketone intermediate, an intermediate for the
synthesis of Navoximod (II) as an IDO inhibitor.

Several mental health diseases such as anxiety and depression are treated with
medicine that causes side-effect profiles. Nevertheless, (R)-sec-Butylamine 17 and (R)-1-
cyclopropylethylamine constitute chiral intermediates from which Corticotropin-Releasing
Factor-1 (CRF-1) can be synthetized as a receptor antagonist [164]. As shown in Table 7,
another receptor antagonist can be synthetized from 3-Fluoro-4-aminopiperidine, produced
by the asymmetric transaminase [170]. The reaction time indicates that the product is
obtained after 24 h; however, the yield is 94.00 wt%, and the operation is under mild
conditions.
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Table 7. Biocatalysis applied to upgrade bulk products into high-value-added products.

Substrate Microorganism/Enzyme Product Operating Conditions Yield (wt%) Application Ref.

Ketone Ketoreductase enzyme
(KREDComm: 3 wt%) Bicyclic pyrimidine

T: 30 ◦C; pH: 7.0 phosphate buffer;
Substrate concentration: 105 g/L;

NADP: 0.1 wt%; Reductant:
2-propanol.

86.00
Synthesis of inhibitor ipatasertib

that targets the Akt kinase
(ATP-binding).

[166]

Cyclohexanol Ketoreductase enzyme
(KREDComm: 0.5 wt%) Diketone intermediate

T: 50 ◦C; pH: 7.2 phosphate buffer;
Substrate concentration: 100 g/L;

Reductant: 2-propanol.
95.00 Synthesis of Navoximod (II) as

an IDO inhibitor. [169]

Ketone Alcohol dehydrogenase
(ADHComm: 0.4 wt%)

Hydroxy ester
intermediate

T: 30 ◦C; pH: 7.0 potassium
phosphate buffer; R.T.: 18 h;

Ketone concentration: 2 mg/mL;
Enzyme concentration: 2 mg/mL.

88.00 Synthesis of a Gamma secretase
inhibitor. [166]

Tetralone
Asymmetric

transaminase
(ATAComm: 0.4 wt%)

Chiral amine
intermediate

T: 30 ◦C; pH: 7.8 phosphate buffer;
R.T.: 24 h; Substrate concentration:
10 mg/mL; Enzyme mass: 30 mg;
Cosolvent: Methanol (3.3 wt%).

94.00 Synthesis of a Gamma secretase
inhibitor. [171]

Ketone
Asymmetric

transaminase
(ATAComm: 2 wt%)

3-Fluoro-4-
aminopiperidine

T: 45 ◦C; pH: 10.5 with 0.85 M
borate buffer; R.T.: 24 h; Substrate

concentration: 10 mg/mL; Enzyme
concentration: 1 g/mL; DMSO: 20
vol%; N2 sweep was carried out.

94.00 Synthesis of a CGRP receptor
antagonist. [170]

Ketone
Asymmetric

transaminase
(ATAEng: 1 wt%)

Chiral amino-acid
intermediate

T: 65 ◦C; R.T.: 24 h; Substrate
concentration: 75 g/L; Enzyme

loading: 1 wt%; Without organic
cosolvent.

89.00 Synthesis of Sacubitril for heart
failure treatment. [172]

Aldehyde:
Racemic amine

tranylcypromine sulfate
1 (rac-trans)

Imine reductase
(IR-46: 1.2 wt%)

Amine tranylcypromine
sulfate 1 (1R,2S)

T: 30 ◦C; pH: 6.3 with NaOAc
buffer; Substrate concentration: 10.5
g/L; Enzyme loading: 453.7 (wt%).

84.00
Synthesis of lysine-specific

demethylase-1 inhibitor
GSK2879552.

[173]

Isopropyl ester Streptomyces purpureus
(RedAmEng: 1.5 wt%)

Propan-2-yl
(1S,3S)-3-(Methylamino)

cyclobutane-1-
carboxylate butanedioic

acid (1:1)

T: 25 ◦C; R.T.: 72 h; pH: 7.2 with
potassium phosphate buffer;
Substrate load: 5.0 g; Enzyme

loading: 125 mg; DMSO: 2.5 mL.

73.00 Synthesis of abrocitinib
JAK1 inhibitor. [174]
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Table 7. Cont.

Substrate Microorganism/Enzyme Product Operating Conditions Yield (wt%) Application Ref.

Ketone Nitrilase enzyme
(NitrilaseComm: 5 vol%) Bicyclic pyrimidine

T: 25 ◦C; pH: 7.2 with 0.5 M
K2SO4/50 mM KH2PO4 buffer;

Substrate concentration: 20 wt%;
Without organic cosolvent.

45.00 Synthesis of the Akt kinase
inhibitor ipatasertib (I). [166]

Vinyl acetate Lipase from Pseudomonas
fluorescens rac-phenylethanol T: 40 ◦C; R.T.: 48 h; Stirring rate:

250 rpm. 94.00
For ophthalmic preservations

and used as an inhibitor of
cholesterol absorption.

[175]

Racemic mandelic acids E. coli TCD04 containing
pET28a-ArMR Phenylglyoxylic acid

T: 30 ◦C; R.T.: 48 h; Fermentation
volume: 100 mL; No addition of

coenzyme or cosubstrate.
99.00 Synthesis of food additives and

pharmaceutical intermediates. [176]

Ketones ω-Transaminases from
Ochrobactrum anthropi

(1S)-1-
phenylethanamine

pH: 7.0 with phosphate buffer
50 nM; R.V.: 2 mL; Enzyme

concentration: 5 mg/mL; DMSO:
15 v/v%.

94.00
Used as a sacrificial chiral

auxiliary for diastereoselective
additions.

[177]

Racemic mandelonitrile
Nitrilase BCJ2315 from
Burkholderia cenocepacia

J2315
(R)-(−)-mandelic acid

T: 30 ◦C; pH: 8.0 with sodium
hydroxide 6 M; Substrate

concentration: 150 mM; R.T.:
70 min; Stirring rate: 250 rpm;

Enzyme load: 1 g.

97.40 Synthesis of penicillin and
cephalosporin. [178]

Glycosynthase exo-Hexosaminidase Lacto-N-triose II

T: 37 ◦C; pH: 7.5; R.T.: <1 h;
Stirring rate: 650 rpm; Lactose
concentration: 600 mN; DMSO:
20 wt%. Catalyst load: 11 g/kg

product.

90.00
Synthesis of human milk

oligosaccharides and own
nutraceutical potentials.

[179]

T: Temperature. R.T.: Reaction time. R.V.: Reaction volume.
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The implementation of a biocatalytic route in a productive process might demand
specificity related to the equipment and a considerable economic investment. Neverthe-
less, the operating conditions indicate that biocatalysis is a promising alternative for the
synthesis of fine chemicals, especially those related to the pharmaceutical sector, where
productivity and selectivity constitute key factors [180]. Additionally, there is a great variety
of enzymes and cell systems available for each compound, which contributes to avoiding
subsequent purification stages that are common in the existing chemical processes. Finally,
biocatalysts promise to prevent stream wastes, and the implemented agents consist of
renewable materials [170], which are important considerations for any process, especially
those related to biorefineries.

3.2. Carbon Dioxide Conversion through Heterogeneous Catalysis

Greenhouse gas (GHG) emissions constitute a current issue that demands new alter-
natives be implemented in the industrial sector to mitigate environmental implications.
Within the total GHG emissions, CO2 occupies the second position after methane [181],
representing an increase in concentration in the atmosphere by up to 400 ppm in recent
years [182]. There have been several studies where CO2 utilization (CDU) is carried out to
promote the production of high-value-added products when using catalysis [183]. Nev-
ertheless, a complete integration of CO2 capture and storage (CCS) systems to utilize
technologies by which this gas could be transformed to different polymeric, organic, and
inorganic products [184] should be analyzed.

A complete analysis of CO2 as a raw material in transformation routes according to
the production scale contributes to mitigating environmental problems. Moreover, the pro-
duction of different compounds that are currently of great interest could be favored [185].
To achieve this proposal, new transformation routes in processing plants with CO2 streams
that can be used as raw material must be installed after having developed the respective sus-
tainability assessment, where the techno-economic, environmental, and social dimensions
are considered [186]. Some of the investigated methods for CO2 conversion to chemicals
include electrocatalytic or photocatalytic reduction, bio-catalysis, dry methane reforming,
and catalytic hydrogenation [187]. Advances in molecular catalysis for electrocatalytic
capture of CO2 have indicated the process to be an appealing option for transformation of
CO2 to chemicals such as carbon monoxide, formic acid, formaldehyde, and ethanol [188].

Von der Assen has focused on the evaluation of producing dimethyl carbonate (DMC)
by several reaction routes through the CDU concept [189]. This product is an important
carbonylating compound that can be utilized for different fields including electronics,
chemicals, pesticides, and medicine [190]. Two main routes that use CO2 as raw material
are the direct synthesis from CO2 and methanol, and the synthesis from propylene carbon-
ate, which is also known as the PC-route. Furthermore, a high-level conversion (85.2%)
can be reached with a zirconium (IV) acetylacetonate (Zr(acac)4) catalyst, leading to a
carboxymethylation with a selectivity up to 99% [191]. Tamboli et al. [181] also studied the
conversion of CO2 into DMC in a batch operating mode by using methanol as raw material
to obtain a product yield of 26.17 wt% when the catalyst involved is Ce0.5Zr0.5O2 (see
Table 8 and Figure 2). The reactions involved during the process enhance high efficiency
and avoid the use of toxic chemicals such as phosgene, according to the kinetic study
presented by Ohno et al. [191] and the work of Honda et al. [192].

Industrial sectors with high-residual-gas streams should consider the presented prod-
ucts in Table 8 to generate demanded and value-added compounds produced from CO2
through heterogeneous catalysis, considering the great variety of products that includes
fuels, chemical precursors, and medicines such as Benzamide. This compound is produced
from CO2 and low quantities of methanol when operating in high-pressure conditions to
obtain a yield of 54.56 wt% [193]. Carbon monoxide (CO) can also be obtained by CO2
reduction using Ni/nSiO2 or Co-Fe/Al2O3, reaching yields up to 74 wt% with the use of
the first catalyst operating at 800 ◦C and vacuum pressure [194].
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Figure 2. Schematic of the production of dimethyl carbonate (DMC) using CO2 and methanol as raw
material and Ce0.5Zr0.5O2 as catalyst.

3.3. Catalysis Recyclability and Re-Use

Once the catalytic operation has been completed by using either a homogenous or
heterogenous catalyst, the recovery of these substances implementing different technologies
must be guaranteed in order to reuse them once more in the process [195]. High catalytic
performance is related to ease of separation and recycling of the catalyst. When carrying out
the recovery, solid loss must be minimum to enhance a techno-economic process. According
to the review paper presented by Miceli et al. [196], the separation methods that include
extraction, filtration, and centrifugation required more time and, consequently, there is not
a real industrial application because of the high economic requirements.

Homogenous catalysts enhance important advantages when compared to heteroge-
nous catalyst regarding the selectivity and stability [197]. Nevertheless, in terms of separa-
tion facilities forming the reactive mixture, a heterogenous catalyst is cheaper and presents
a low environmental impact, as non-sophisticated technologies must be implemented. Con-
sequently, fewer limitations are presented for heterogenous substances when considering
specialty and fine chemicals obtained in, for instance, the pharmaceutical industry [198].
Moreover, for reactive mixture in gas and solid phases, the catalyst can be separated and
cleaned by using conventional techniques, and as for liquid and solid systems, the catalyst
matrix can be recovered by filtration [196].

As mentioned before, implementing catalyst recovery techniques guarantees economic
and environmental improvements. Nevertheless, Sádaba et al. [199] explained that deac-
tivation of the catalyst might occur by different phenomena such as poisoning, thermal
degradation, or metals leaching into liquid phase. Therefore, when the recovery process
has been completed several times and the catalyst activity has decreased, several authors
recommend using the spent catalyst in an alternative process to mitigate environmental
issues before disposition in landfills [200]. Chiranjeevi et al. [200] analyzed the minimiza-
tion of spent catalyst as waste from refineries’ applications and concluded that the main
reasons for the recent deactivation of catalyst in oil processing include the rapid demand
for product that makes the flowrates increase, the reduction in time for the operating
cycles, and particular characteristics of the feedstock that cause poisoning of the catalytic
substances.

Among the most used methods for catalyst recovery, filtration and centrifugation
constitute the most used technologies for heterogenous substances, considering the dif-
ference in both chemical and physical properties in the reactive mixture [196]. Filtration
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is carried out using a filter or membrane to remove the solid part of the liquid and gas
mixture. The fluid phase that is separated from the solid fraction is called permeated, and
the phenomenon is influenced by a pressure gradient. Santoro et al. [198] studied the hot
filtration for the removal or solid catalyst to stop the reaction by using metal-catalyzed
C-H functionalization. As for centrifugation, the driving force is the difference in density
that is utilized to separate the liquid and solid mixtures. After the operation, the solid part
remaining in the bottom of the flask is denominated as pellet, while the supernate refers to
the fluid phase [196]. Liu et al. [201] analyzed the recovery of a silver nanoparticle catalyst
by centrifugation to carry out capture and conversion of CO2 as a low-energy-consumption
alternative.

Another recycling alternative for heterogenous catalyst recovery is magnetic separa-
tion. This technique offers promising options for recycling catalyst-based metals in terms
of techno-economic feasibility, as the operation takes little time and the implementation
cost is low [202]. When considering a biorefinery scenario, sustainable processes must
consider green chemistry principles alongside the production stages. Therefore, there
might exist technologies that promote metal recovery from spent catalyst before final dis-
position. Miceli et al. [196] present two traditional techniques whose aim involves both
economic and environmental dimensions for the production process. The first technique,
denominated as hydrometallurgy, refers to metal dissolution in acid or base solution for
a subsequent recovery of the specific metal by solvent extraction. Hu et al. [203] studied
the removal of vanadium by ion exchange from a molybdate solution using a loaded resin
that allowed a vanadium desorption ratio of 98.5% when regenerating the column. The
second alternative corresponds to a pyrometallurgical process in which metal separation is
carried out by using chemical treatments. Pyrolysis and incineration are involved in these
treatments, which makes this process much more complex and expensive due to the high
energy demand. Additionally, Peng et al. [204] mentioned that for platinum group metals
recovery, vaporization techniques can be applied, but there could be corrosion as well as
environmental and health impacts.
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Table 8. Value-added products derived from CO2-catalytic upgrading.

Reactants Catalyst Product Operating Conditions Reactor Yield (wt%) Application Ref.

CO2 and methanol Ce0.5Zr0.5O2 Dimethyl carbonate

T: 140 ◦C; PCO2: 7.5 MPa; R.T.: 12 h;
Dehydrating agent:

2,2-Dimethoxypropane (DMP); Load:
25 mL methanol, 1 g catalyst, 1 g

DMP; Stirring rate: 900 rpm.

Stainless-steel batch
reactor 26.17

Green starting
material for organic
synthesis, solvent,

and fuel.

[181]

CO2 and methanol Ti0.10Ce0.90O2 Dimethyl carbonate

T: 140 ◦C; P: 24 bar; Methanol flow
rate: 0.145 mL/min; CO2 flow rate:

40 mL/min. CO2 is initially flown for
10 min to discharge air inside the

reactor.

Continuous
fixed-bed reactor 19.08

Green starting
material for organic
synthesis, solvent,

and fuel.

[189]

CO2 and H2

PdNPore
(Pd/Al: 97/3

wt%)
Formic acid

T: 80 ◦C; PH2: 1 MPa; PCO2: 1.5 MPa;
R.T.: 20 h; Load: 0.025 mmol catalyst,

3 mmol 1,8-diazabicyclo [5.4.0]
undec-7-ene, and 2 mL acetonitrile;

N2 atmosphere is required.

Autoclave reactor
with a magnetic stir 86.00

Antibacterial
compound. Liquid
organic hydrogen

carrier.

[205]

CO2, H2, and NaOH Fe complex
(SiMe3) Sodium formate

T: 120 ◦C; PH2: 30 bar; PCO2: 20 bar;
R.T.: 24 h; Load: 3 mmol NaOH and

0.003 mmol Fe complex;
Ethanol/H2O: 1.5 mL/3.0 mL.

Autoclave reactor 30.70

Production of
sodium hydrosulfate
and formic acid. Also
used in leather and

food industry.

[206]

CO2 and H2 Ni/nSiO2 Carbon monoxide

T: 800 ◦C; Vacuum pressure; H.R.:
10 ◦C/min; H2/CO2: 4/1(mol%);

Load: 15 mg catalyst; Total flow rate
to reactor: 100 mL/min.

Fixed-bed
quartz tube

reactor
74.00

Production of
numerous organic

and inorganic
compounds.

[194]

CO2 and H2
Co-Fe/Al2O3

(85 wt% Al2O3) Carbon monoxide
T: 650 ◦C; P: Atmospheric; R.T.: 40 h;
H2/CO2: 3/1(mol%); Total flow rate

to reactor: 230 mL/min.
Fixed-bed reactor 48.00

Production of
numerous organic

and inorganic
compounds.

[207]

CO2 and H2

Cu2+:Zn2+:Al3+:
Zr4+

(6:3:0.5:0.5)
Methanol

T: 270 ◦C; P: 5 MPa; H2/CO2: 3/1
(mol%); Load: 1 g catalyst; Gas
Hourly Space Velocity (GHSV):

4600 h–1.

Continuous
high-pressure,

fixed-bed reactor
14.11

Production of
plastics, paints. Also

used as fuel.
[208]



Catalysts 2023, 13, 902 31 of 45

Table 8. Cont.

Reactants Catalyst Product Operating Conditions Reactor Yield (wt%) Application Ref.

O2 and H2

Cu/Zn/Al/Zr
hydrotalcite
(2:1:0.7:0.3)

Methanol
T: 230 ◦C; P: 5 MPa; H2/CO2/N2:
73/24/3; Load: 0.7 g catalyst, 1.4 g

quartz sand; GHSV: 8500 mLgcat−1 h−1.

Continuous
fixed-bed reactor 12.30

Production of
plastics, paints. Also

used as fuel.
[209]

CO2 and
polycarbonate

Ni-based
catalysts

Bio-oil, biochar, and
gases

T: 700 ◦C; H.R.: 10 ◦C/min;
Polycarbonate particle size: <2 mm;

Load: 1 g of supported catalyst; Total
flow rate to reactor: 200 mL/min.

Quartz tube and
external heating

furnace

Bio-oil: 12.20
Biochar: 26.40
Gases: 61.40

The process allows
obtaining syngas

without contributing
to pollutant
compounds.

[210]

CO2 and 2-
methylbut-3-yn-2-ol

Zn@RIO-1
(100 mg

powder-like
RIO-1)

4,4-Dimethyl-5-
methylene-1,3-
dioxolan-2-one

(α-alkylidene cyclic
carbonate)

R.T.: 10 h; PCO2: 1 atm; Load: 5 mmol
2-methylbut-3-yn-2-ol, 5 mmol DBU,

15 mg catalyst.

High-pressure stirred
laboratory reactor 96.00

Polymer precursor
and used for fuel and
electrolytes industry.

[211]

CO2 and 2-
methylbut-3-yn-2-ol

Zn@RIO-1
(100 mg

powder-like
RIO-1)

3-Cyclohexyl-5,5-
dimethyl-4-
methylene-

oxazolidin-2-one
(2-oxazolidinone)

T: 80 ◦C; R.T.: 10 h; PCO2: 1 atm; Load:
5 mmol 2-methylbut-3-yn-2-ol,

5 mmol cyclohexylamine, 15 mg
catalyst.

High-pressure stirred
laboratory reactor 92.00

For skin treatment
and for infections in

soft tissues.
[211]

CO2, phenol, and
CCl4

Fe3O4@SiO2-
ZnBr2

(15.1 wt% Zn)
Diphenyl carbonate

T: 130 ◦C; PCO2: 8 MPa; R.T.: 4 h;
Load: 12 mmol phenol, 10 mmol CCl4,

1.2 mmol catalyst; Stirring rate:
1200 rpm.

Stainless-steel reactor 28.10
Production of

aromatic
polycarbonates.

[212]

CO2, methanol, and
2-cyanopyridine CeO2 2-Picolinamide

T: 120 ◦C; PCO2: 5 MPa; R.T.: 10 h;
Load: 100 mmol methanol, 50 mmol

2-cyanopyridine, 0.17 g catalyst.
Stainless-steel reactor 85.00

Inhibition of
Poly(ADP-ribose)

synthetase.
[193]

CO2, methanol, and
benzonitrile CeO2 Benzamide

T: 120 ◦C; PCO2: 5 MPa; R.T.: 10 h;
Load: 100 mmol methanol, 500 mmol

benzonitrile, 0.17 g catalyst.

Stainless-steel
autoclave reactor 54.50

Treatment of diseases
related to reflux, and
vomiting prevention.

[193]

CO2, methanol, and
H2

Ru3(CO)12/Rh2(OAc)4

(Ru/Rh: 60/60
µmol)

Acetic acid

T: 200 ◦C; R.T.: 12 h; CO2/H2:
4/4 MPa; Promoter: Lil; Ligand:

Imidazole; Load: 750 µmol ligand and
3 µmol promoter; C.G.: Ar.

Teflon-lined
stainless-steel batch

reactor
77.00

Production of
plastics, insecticides,
rubber, and acetate

derivatives.

[213]

T: Temperature. P: Pressure. Pi: Pressure of component i. R.T.: Reaction time. C.G.: Carrier gas. H.R.: Heating rate.
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3.4. Biochar Use as Catalyst Source

Biochar is a carbonaceous compound derived from thermochemical processing of
lignocellulosic biomass, as reviewed in previous sections. Biochar can be used to enhance
soil properties, pollutant adsorption (e.g., dyes, inorganic metals, and ions), and CO2
capture and storage. However, this material has a high potential to be used as catalyst, as
physical properties such as porosity and surface area make this thermochemical product
attractive [214]. In this way, biochar is a promising material to replace solid carbon-based
catalysts. The most important advantages related to the use of biochar as catalysts are the
low cost and easy production. Physicochemical properties of biochar can be modified using
acid/base processes (e.g., impregnation).

Biochar needs to be activated to improve catalytic efficiency. Indeed, biochar properties
such as surface area, porosity, pore volume, pore size, and acidity are also improved. These
properties can help to increase yield, productivity, and selectivity. A way to increase biochar
porosity is via hydrothermal treatment or oxygenation [215]. Examples of different reactions
catalyzed by biochar are transesterification and hydrolysis. Several authors have reported
biochar sulfonation using sulfuric acid and calcination. This process increases the hydrolytic
capacity. Lee et al. [214] analyzed the implementation of sulfonated pine-chip biochar as
catalyst for hemicellulose hydrolysis to xylose and compared the conversion obtained (85%)
when applying a commercial activated carbon at similar operating conditions (see Figure 3).
Another application of biochar as catalysts addresses tar cracking. Indeed, biochar can be
used to increase H2 concentration in syngas, as this compound promotes different reactions
in the gasification process. Moreover, the Fisher–Tropsch reaction has been catalyzed
using activated biochar. The yields obtained after the process are similar to those obtained
using iron-based catalyst [216]. Finally, activated biochar can be used as acid catalyst for
the lignocellulosic matrix disruption and to remove hemicellulose. Ormsby et al. [217]
performed hemicellulose hydrolysis, reaching an 85% conversion to xylose. Thus, biochar
can be used for producing sugar-derived compounds and chemical platforms [218].
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Despite the high potential of biochar to be used as catalyst, issues related to the
standardized production of this material need to be researched and improved. Moreover,
research on proper raw materials for biochar production is required, as the raw material
chemical composition and physical properties affect the biochar quality. Another impor-
tant aspect to improve biochar’s use as catalyst is related to the operating conditions for
producing biochar. Slow or fast pyrolysis processes should be optimized for improving the
above-mentioned properties. Similar points were highlighted by Lee et al. [214]. Indeed,
these authors concluded that further investigations into developing the catalytic properties
of biochar are important to produce stable catalysts. If these hotspots are improved, biochar
can be used as catalyst by improving the sustainability of the thermochemical production
processes, as more income can be obtained from the production of biochar and other prod-
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ucts (i.e., bio-oil). Furthermore, the use of biochar as catalysts also offers benefits to other
processes, as biochar can be a cheaper catalyst than homogeneous (e.g., inorganic acids) or
heterogeneous catalysts (e.g., zeolites).

4. Sustainability Metrics of Catalytic Biomass Upgrading in Biorefineries

Biorefineries have been defined as complex systems to upgrade biomass. These
facilities aim to produce a wide range of products and energy vectors. The number of
chemicals produced in a biorefinery are uncountable, as there are many pathways for
biomass upgrading. Nevertheless, these possibilities can be increased by introducing
catalytic processes, as catalytic conversion of biomass can increase the number of bio-based
products that can be used to replace oil-based products (e.g., fuels, and polymers). Thus,
conventional biorefineries involving thermochemical and biotechnological pathways can be
improved with a new biorefinery system by involving catalytic and biocatalytic processes.
Moreover, these new biorefineries must also perform the minimization of the environmental
impact through waste-streams processing.

Future biorefineries should be sustainable. This fact implies a perfect balance between
economic, environmental, and social aspects. Sustainability dimensions can be enhanced
by improving technical aspects. Indeed, process conversion, yields, productivities, energy
efficiency, and waste-streams flow are optimized (i.e., maximized or minimized). Figure 4
shows the role of catalytic and biocatalytic processes in future biorefineries, as these
processes can be introduced into thermochemical and biotechnological routes. The design
of these biorefineries must involve not only the classical definitions of the knowledge-
based and optimization approaches. The design of future biorefineries must involve a
comprehensive design to improve technical, economic, and environmental aspects, as
studied for sustainable energy production in a soybean biorefinery by Paulinetti et al. [219].
In this research paper, the authors analyzed the implementation of anaerobic digestors
on an industrial scale for the treatment of soybean molasses, resulting in different reactor
configurations that represent initial investments of USD 5.8 and 7.6 million, with annual
returns of USD 1 and 2.2 million, respectively.

Using lignocellulosic materials as feedstocks in biorefineries to produce value-added
products has been profiled as a potential option to produce value-added products. However,
biorefinery implementation is still restricted, as most biotechnological conversion pathways
do not have a high Technological Readiness Level (TRL). Therefore, more efforts are
needed to ease the transition from oil-based to bio-based sources. Moreover, implementing
biotechnological processes can have a higher complexity level, as the microorganisms need
specific growth conditions. This fact directly relates to the total capital costs associated with
the technologies employed for the conversion of this raw material into liquid transportation
fuels or chemicals. The second-generation feedstock biorefining comprises pretreatment,
transformation/reaction, and separation/purification stages, where high-cost technologies
and high energy requirements have caused a slow application of these raw materials at
the industrial level. Therefore, new challenges in this area have surged to increase the
possibility of using this type of feedstock.

The above-mentioned processes use substances known as catalysts, which increase
the reaction rate to obtain the desired products without being consumed or modifying
the reaction’s chemical equilibrium. Depending on the catalyst used, catalytic processes
can be classified into homogeneous and heterogeneous catalysis. The main difference
between these types of catalysis is that one occurs in the liquid phase and the other in
the solid phase. In addition, heterogeneous catalysis has the following advantages over
homogeneous catalysis: high stability under severe temperature conditions and easy
recovery and reuse.
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Figure 4. Integration of catalytic, biocatalytic, and waste-streams-upgrading processes into conven-
tional biorefineries for increasing sustainability.

According to the above, implementing catalytic processes to convert the main compo-
nents of lignocellulosic materials into compounds that can be applied to different sectors is
an interesting alternative. In the current proposed biorefineries, homogeneous catalysis
has been employed in the pretreatment stage to remove hemicellulose (xylan) through a
diluted acid process and to degrade the cellulose to fermentable sugars through enzymatic
hydrolysis. Nevertheless, other processes such as gasification, pyrolysis, and liquefaction
have begun to be improved using heterogeneous and homogeneous catalysis. Table 9
shows the results for the technical, economic, and environmental dimensions of some
biorefineries where catalysis is implemented.

The implementation of catalysis in biorefineries has not yet been studied from a
complete sustainability perspective where technical, economic, environmental, and social
impacts are considered. Table 9 shows that for the obtaining of high-value-added products
and fuels, current sustainable metrics have mainly included technical factors regarding the
catalyst performance for a determined biomass-upgrading process. Moreover, considering
the aim of this study to highlight the role of the catalysis in boosting biomass use at the
industrial level, the creation of a common framework is necessary for a complete analysis
of future biorefineries where catalytic processes are required to establish the possibility of a
real scaling.
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Table 9. Sustainability metrics of biomass-upgrading processes reported in the open literature.

Raw Material Product Catalysis Process Description
Sustainability Metrics

Ref.
Technical Economic Environmental

Wheat straw Hydrogen Straw-derived biochar
Catalytic gasification by using
straw-derived biochar catalyst

in a two-stage fixed-bed reactor.

Yield: 25.59 g H2/kg
wheat straw N.R. Emitted CO2:

81.35 kg/kg H2
[220]

Biomass-derived
cellulose

2,5-
Furandicarboxylic

acid (FDCA)

Pt/C catalyst
(5 wt% Pt)

There is a two-stage catalytic
conversion system:

(i) dehydration of cellulose to
5-hydroxymethylfurfural

(HMF), (ii) oxidation of HMF
to FDCA.

Yield: 93.6 mol% PC: $1532 USD/ton FDCA N.R. [221]

Coffee cut stems or
orange peel waste

Butanol, ethanol,
and mixed alcohols Hydroxyapatite

Obtained glucose from the raw
materials is catalytically

converted to ethanol, butanol,
and mixed alcohols. The system

is integrated with a
cogeneration plant.

YieldButanol: 0.048
ton/ton RM.

YieldEthanol: 0.032
ton/ton RM.

YieldMixed alcohols: 0.044
ton/ton RM

PCButanol: $1.570 USD/kg. PCEthanol:
$0.914 USD/kg. PCMixed alcohols:

$1.261 USD/kg. PCElectricity: $0.115
USD/kg. PMButanol: 46.48%.

PMEthanol: 33.72%

GWPButanol: 0.01
PEI/kg [222]

Oil palm rachis

Ethanol, lactic acid,
ethyl levulinate,
n-pentane, and

methanol

ZSM-5, Ni/SiO2-Al2O3,
and Cu/ZnO/Al2O3

The proposed biorefinery
implements heterogeneous

catalysis for the obtention of the
mentioned products through
fermentation and anaerobic

digestion processes.

YieldEthanol: 0.226
kg/kg RM.

YieldLactic acid: 0.064
kg/kg RM.

YieldEthyl levulinate: 0.246
kg/kg RM.

Yieldn-Pentane: 0.079
kg/kg RM.

YieldMethanol: 0.014
kg/kg RM

PCEthanol: %1.496 USD/kg.
PCLactic acid: $7.500 USD/kg.

PCEthyl levulinate: $1.333 USD/kg.
PCn-Pentane: $1.400 USD/kg.
PCMethanol: $0.270 USD/kg.

PMEthanol: −66.22%
PMLactic acid: −72.53%.

PMEthyl levulinate: 73.34%.
PMn-Pentane: 6.67%. PMMethanol:

26.23%. PBP: 5 years

N.R. [2]

Olive tree biomass Bioethanol Carbon-based catalyst
(C-SO3H)

Catalysis is implemented during
the pretreatment stages of the

biorefineries with a solid
loading of 15 wt% in order to
solubilize lignin and cellulose
fractions in biomass to release

fermentable sugars.

Yield: 110.83 kg/t RM PC: $2.55 USD/L Emitted CO2: 3287.18
kg/h [223]

PC: Production cost. PM: Profit margin. PBP: Payback period. GWP: Global warming potential. RM: Raw material N.R.: None reported.
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5. Practical Implications

Catalysis is a fundamental area with the potential to be introduced in a stronger
way in current biorefineries and biomass-upgrading systems, as this area increases the
number of products that can be obtained from biomass. This review can contribute to
understanding some of the most recent catalytic processes applied to upgrade biomass,
as well as recent trends to improve biorefineries’ sustainability based on waste-streams
valorization. Moreover, this review tries to give additional information about biocatalysis,
CO2 conversion, biochar use as a catalyst, and solid catalysts recyclability and re-use as
a complement to other review paper in the open literature. Several research ideas can be
extracted from this paper (e.g., a kinetic study of the catalytic pyrolysis and gasification,
techno-economic and environmental assessment of catalysts involved in biorefineries,
biochar use as a potential catalyst for hemicellulose removal, biocatalysis implementation in
biorefineries). Finally, this review paper offers readers much information related to biomass
catalytic conversion, considering raw materials, products, yields, operating conditions, and
catalyst effect. This information can be used as the basis for proposing new experiments
and scale processes.

6. Conclusions

Catalysis plays an important role in the development of new and improved biore-
fineries, as this area can help to increase sustainability. Thermochemical upgrading of
biomass is one of the research areas that has been most studied, as gasification, pyrolysis,
and hydrothermal treatment have high TRL. Thus, improving yields and conversions by
adding solid catalysts provides a reliable and efficient alternative to promote biomass use
instead of non-renewable resources. Indeed, catalysis is capable of reducing tar, increas-
ing hydrocarbons, and promoting hydrogen production. On the other hand, catalysis
implementation for biomass disruption and platform-molecule production is still under
development. Research has been performed to study different types of catalysts. Never-
theless, few processes have a high TRL (i.e., low implementation at the industrial level).
Platform molecules and high-value-added products derived from catalytic processes are
being proposed as the future for increasing biorefineries’ sustainability and decreasing
crude-oil dependency. Catalytic processes are also being implemented for upgrading waste
streams to minimize the environmental impact of biorefineries while increasing economic
performance. CO2 conversion, biochar use as catalyst, and biocatalysis inclusion are the
most significant trends for improving biorefinery sustainability. Finally, the sustainability
assessment of catalytic biomass-upgrading processes is scarce in the open literature. Thus,
the real effect of implementing catalytic processes in biorefineries is now unknown, as
pre-feasibility studies are needed to demonstrate the possible implementation of this kind
of process at the industrial level.
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