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Abstract: We synthesized an amorphous Ti-based hydroperoxo complex (ATPC) using a facile
method involvingonly titanium hydride (TiH2) and H2O2 under mild conditions. We chose TiH2

as the precursor because it has more reactive sites than metal oxides such as TiO2. Qualitative and
quantitative optical measurements showed that our synthesized ATPC photocatalysts contained many
hydroperoxo groups and various oxidation states of Ti (Ti2+, Ti3+, and Ti4+). Thus, the synthesized
ATPC exhibits excellent photocatalytic properties with very fast rates of organic decolorization
compared to other conventional visiblelight catalysts. The presence of many hydroperoxo complexes
increases the formation of active radicals, which can degrade VOCs such as acetaldehyde in a gas
phase. To test the application of the synthesized ATPC, we fabricated a filter system in an air
purifier using ATPC coating layers and successfully removed the VOCs. We also proposed a possible
photocatalytic oxidation mechanism with ATPC based on this study. It is important to conduct
application tests as well as commercialization in photocatalytic experiments.

Keywords: visiblelight photocatalyst; Ti-based hydroperoxo complex; coating layer; organic dye and
hazardous VOC; air purifier system

1. Introduction

Recently, industrialization-oriented societies and the reckless use of chemical fuels
have caused various environmental problems such as air and water pollution. To solve
these issues, ecofriendly studies are being conducted. Among many environmental prob-
lems, air pollutants contained in industrial and car emissions, which are the major cause
of global warming, are being addressed first. Volatile organic compounds (VOCs) are
oneof the representative air pollutants that are harmful to both human health and the envi-
ronment [1,2]. VOCs areharmful compoundsand can also cause photochemical reactions
with other air pollutants, producing secondary pollutants such as ozone [3,4]. Formalde-
hyde, acetaldehyde (ACT), and benzene, for example, can cause headaches, vomiting, and
dizziness if they come into contact with the skin or enter the respiratory tract [5,6]. These
environmental problems need to be urgently resolved because they can cause damage to the
nervous system when exposed to high concentrations. Recently, many studies have been
conducted to effectively and rapidly remove VOCs, such as adsorption, thermal oxidation,
photocatalytic oxidation, and biofiltration [7–9]. Among them, photocatalysts have been
widely studied because they are environmentally friendly and produce water (H2O) and
carbon dioxide (CO2) as final byproducts [10–12]. In addition, photocatalytic materials
have the advantage of being activated with only solar energy. Resolving energy shortages
and environmental pollution problems has become the most urgent challenge nowadays.
Using a catalyst as one of the many solutions can lower the activation energy of the reaction,
producing more energy for us to use. Among the various catalysts, photocatalysts, which
are more environmentally friendly and utilize light sources, have been extensively studied.
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There are three main reasons why many studies on photocatalysts have been conducted.
First, photocatalysts can be active even at room temperature, unlike other catalysts that
require high temperatures. Second, the photocatalytic reaction can be induced by utilizing
sunlight, which is an infinite resource. Third, the photocatalytic reaction can be stopped at
a desired point in time by blocking the supply of sunlight. Therefore, photocatalysts can
play an important role in solving future environmental issues such as energy conservation
and global warming.

Titanium dioxide (TiO2) is a well-known semiconductor material and is widely used
as a photocatalytic material owing to its strong oxidizing power and excellent durabil-
ity [13]. TiO2 is also utilized for solar energy conversion applications such as solar cells by
utilizing its inherent bandgap [14]. However, TiO2 has a bandgap of ~3.0–3.2 eV, which
only allows it to absorb UVlight, making bandgap engineering necessary for the effective
utilization of light sources. The development of a photocatalyst with visible lightactivity
is crucial as most of the sunlight energy is in the visiblelight region. Many studies have
been performed to overcome this problem, and a typical method of bandgap engineering is
achieved by either metal doping or nonmetal doping to TiO2 [15] as well as by coupling
with a semiconductor with a narrow bandgap [16]. Although such photocatalytic mate-
rials have visiblelight activities, they also have several disadvantages. For example, the
process of making narrow bandgaps by doping or coupling is complicated and requires
high temperature and pressure [17], and these materials have low photocatalytic efficiency
in visiblelight. Recently, extensive effort has been devoted to forming peroxo groups
(Ti–OOH, --Ti–O–O–Ti–, and –O–Ti–O–) by oxidizing metal oxide surfaces with H2O2 [18].
The hydroperoxo photocatalysts have visiblelight activity and can cause electron transfer
into the conduction band (CB) of metal oxide, forming a superoxide anion. Generating
metal oxides with a peroxo (or hydroperoxo) surface is a relatively simple process, and
such metal oxides with a hydroperoxo surface have excellent visiblelight photocatalytic
efficiency that can be applied to various fields. Therefore, another study was conducted to
synthesize photocatalysts that have visiblelight activity by intentionally creating oxygen
vacancies in the TiO2 lattice. For example, hydrogenated TiO2 with an oxygen vacancy can
be synthesized by adding a strong reducing agent such as NaBH4 to TiO2 [19]. Studies have
also been conducted on the synthesis of Ti3+ self-doped TiO2through the hydrothermal
method using TiCl3 and (NH4)2TiF6 as the precursor of Ti3+ and Ti4+, respectively [20].
These photocatalysts achieve visiblelight activity owing to the oxygen defects in the syn-
thesized titania-based photocatalysts, ultimately allowingthe absorption of visiblelight by
forming a new donor level in the band structure.

Herein, we synthesized an amorphous Ti-based hydroperoxo complex (ATPC) using
only titanium hydride (metallic Ti) and H2O2undermild conditions through a facile method.
Polymerization was used to generate the ATPC without annealing through an exothermic
reaction. To investigate how the peroxo groups and oxygen vacancy of ATPC affect the
visiblelight catalyst, the decolorization of Rhodamine B (RhB) dye was performed under
visiblelight irradiation. Next, we tested the abilityof the ATPC to remove acetaldehyde
(ACT), one of the VOCs in the gas phase. Finally, we tested the application of ATPC as a
filter system in an air purifier.

2. Results and Discussion
2.1. Photocatalytic Activity Test with Amorphous Ti-Based Hydroperoxo Complex (ATPC)

To test the photocatalytic activity of the synthesized ATPC, we dissolved the ATPC
powder in water and performed spin coating on a glass substrate. Two samples were
prepared with different coating numbers to determine the thickness of the thin film showing
appropriate catalytic characteristics. Figure 1c,d showed that a one-time coated layer
yielded a thin film with a thickness of ~180 nm, while atwo-time coated layer yieldeda thin
film with ~320 nm thickness. The surface shown in Figure 1b is rougher than that shown
in Figure 1a, indicating different surface area. To measure the specific surface area of two
different films, BET analysis was performed with a nitrogen gas adsorption–desorption
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isotherm. The thin films with thickness of 180 and 320 nm had the specific surface area
of 129.9 and 166.5 m2/g, respectively. This suggests thatthicker film will show more high
catalytic activity than thinner film owing to a larger surface area. Therefore, the surface
area strongly depends on the coating number. However, in our case if the film was thicker
than 320 nm, the catalytic activity decreased, indicating that the catalytic reaction mainly
occurred on the surface region rather than in the bulk area. Therefore, an optimized
thickness of a photocatalyst is required to obtainthe maximum catalytic activity.
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Figure 1. FE-SEM images of (a) one-time ATPC coated sample and (b) two-time APTC coated sample.
(c,d) show their cross-sectional images, respectively.

We performed the decolorization of the RhB dye under visiblelight irradiation to
confirm how the peroxo group and oxygen vacancy of ATPC surface affected the visiblelight
catalyst (see also Section 3). Our synthesized ATPC photocatalysts showed very fast organic
decolorization ratesowing to the formation of many active radicals such as OH radicals.
We added 20 mg of samples to a concentration of RhB solution and stirred it in a dark
room for 30 min to establish an adsorption–desorption equilibrium. We used a 200 W blue
LED lamp as the light source, and the total irradiation time of each sample was 2 h. After
2 h, we separated the RhB mixture from the sample usingcentrifugation and measured the
absorbance usinga UV–Visible spectrophotometer. Figure 2 shows that the two-time coated
sample (Figure 2b) decomposed more RhB dye in the same time than the one-time coated
sample (Figure 2a), reflecting thickness and surface area differences as well as peroxo
groups on the ATPC surface. We also found that there was no considerable difference when
coating two or more times. Therefore, we used the same sample of two-time coating with a
thickness of ~320 nm to check the photocatalytic activities for other VOCs such as ACT in a
gas phase.
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Figure 2. UV–Visible absorption spectra obtained before and after decolorization of RhB dye with
(a) one-time ATPC coated sample and (b) two-time APTC coated sample.

The experiment involved the degradation of acetaldehyde (ACT) in a gas phase using
a flow-type reactor equipped with an online gas chromatography (GC, HP 6890, HEWLETT
PACKARD). The stationary phase and detector of the GC were the HP-PLOT Q column
and the flame ionization detector, respectively. The synthesized ATPC powder (500 mg)
in a quartz boat was placed at the center of the quartz tube. A gas mixture containing
107.7 ppm of ACT and dry air was flowed into a photocatalytic reactor using mass flow
controllers, while blue light (10 W, KWLD B1207W, Kwangwon light) was irradiated on
the sample at a distance of ~10 cm. The gas mixture that passed through the sample was
injected into the GC every 10 min, and the amount of ACT and CO2 were monitored with
the lightirradiation time. Figure 3a shows that CO2 is generated as ACT is removed, and
it can be seen that ~15% of the ACT can be removed within 5 h. The power (10 W) used
was relatively weak compared to 200 W for the decolorization of the RhB dye; hence, more
time was required to remove the ACT. A 10 W small powered blue LED was used as the
light source to consider its installation inside an air purifier system. Therefore, only 15% of
the ACT was removed in 5 h. However, if a stronger power source, such as a 200 W blue
LED lamp, was used, the percentage of removal could be increased to >60% within only
2 h, suggesting an increased functionality of photocatalytic activity.

Based on this study, we suggested a possible photocatalytic oxidation mechanism
of ATPC as follows [21]. When the hydroperoxo group (Ti-OOH) absorbs visiblelight,
radicals are formed and an electron (e−) is also formed by combining with an unshared
electron pair of oxygen. The formed e− reacts with oxygen in the air to form superoxide
anions, providing strong oxidation. The remaining plus-charged hydroperoxo groups
react with water molecules on the photocatalyst’s surface to form OH radicals, which
degrade the contaminants (i.e., ACT) through oxidation [21–23]. To prove and clarify
these mechanisms utilizing various analytical instruments, we have to carry out both
in-situ and ex-situ experiments to detect intermediates, radicals, holes, and electrons by
time-resolved photoluminescence (TRPL), time-dependent light irradiated UV–Vis spectra,
transient absorption spectroscopy, electron spin resonance (ESR), X-ray photoelectron
spectroscopy (XPS), Diffuse Reflectance Fourier Translation Infrared Spectroscopy (DRIFTS),
etc. Recently, Shu et al. proposed similar photocatalytic oxidation of ammonia (NH3) on
TiO2-based catalysts such as P25 and nanosheet TF4 [23]. For systematic investigation
into the NH3 adsorption and conversion behaviors, they utilized in-situ DRIFTS and
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obtainedaprogressed mechanism of NH3 photocatalytic oxidation. Additionally, Karmakar
et al. proposed the CO2 photocatalytic reduction mechanism based on time-dependent
in-situ DRIFTS experiments on CO2 reduction in a mixture of CO2 and H2O vapor on
Ce-MOF-RuII-bpy surface [24]. Based on our data and suggested mechanisms, therefore,
our ATPC photocatalytic efficiency shows the best performance because it can form more
electrons than conventional photocatalytic TiO2 materials. For these reasons, as seen in
Figure 3b, the adsorption and degradation of ACT proceeded rapidly on the surface of
ATPC particles. Air pollutants such as ACT are initially adsorbed on the surface of the
ATPC photocatalyst, and subsequentlyphoto-oxidative decomposition occurs through light-
induced electron–hole pairs. After the reaction, the finally formed water (H2O) and carbon
dioxide (CO2) are desorbed from the adsorption site of the ATPC photocatalyst surface.
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2.2. Application Test for Air Purifier System

As people spend more time indoors, there is a growing interest in creating a comfort-
able and healthy indoor air environment. This has led to increased research into ecofriendly
airpurification mechanisms [25,26]. Based on the ecofriendly characteristics of our ATPC
samples, they have potential for use in future applications that prioritizeefficiency and
durability. We successfully incorporated our synthesized ATPC coating layers into a filter
system in an air purifier and were able to effectively remove VOCs. To test the commercial
viability of our photocatalyst, we applied it to the filter of a small car air purifier. Figure 4
provides a schematic of two different coating methods: (a) direct dip coating of the photo-
catalyst onto the ABS plastic filter substrate, and (b) dip coating with the addition of the
adhesion-promoting leveling agent, EBECRYL 350 (EB-350), to improve the bond between
the coating layer and the ABS plastic substrate surface. As shown in Figure 5a, it was very
tough for us to obtaina uniform and thick ATPC film on the ABS plastic substrate with
good adhesion. Therefore, we introduced an adhesion-promoting leveling agent, EBECRYL
350 (EB-350), to improve the adhesion between the coating layer and the plastic substrate
surface. With EB-350, we could modify the plastic surface first, and then successfully grow
uniform and thick ATPC film on the ABS plastic substrate, resulting in good adhesion and
high photocatalytic activity.
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Figure 5. SEM cross-sectional images of the APTC coating layers on the ABS plastic filter substrates
(a) without EB-350 and (b) with EB-350.

The cross-sectional images of the coatings are presented in Figure 5. Figure 5a shows
the rough surface and thin film thickness of the photocatalyst coated by dip coating
without EB-350, while Figure 5b shows a relatively uniform surface and a greaterfilm
thickness with the addition of EB-350. A coating film was obtained in Figure 5b that
exhibited photocatalytic performance similar to that obtained by spin coating twice on a
glass substrate.

Figure 6 displays the results of the RhB removal experiment using the coatings shown
in Figure 5. In Figure 6a, only ~40% of the RhB was removed in 2 h owing to the very small
thickness and poor surface uniformity, whereas in Figure 6b, >90% of the RhB was removed
in 2 h due to a thick film witha high surface area andgood uniformity, as well as better
adhesion between the ATPC coating layer and the substrate. These results demonstrate
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that our synthesized ATPC photocatalyst can be used commercially and can be adopted as
an airpurifier filter to remove more VOCs in the future.
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Figure 7 depicts the appearance of an air purifier with the filter of Figure 4b installed
inside a vehicle. The product is expected to be released and sold as early as next year in
gold and silver colors. We will also consider more colors and designs that reflect flow
mechanics for future products to cater to the consumer’s preference.
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3. Materials and Methods
3.1. Synthesis of Amorphous Ti-Based Hydroperoxo Complex (ATPC)

All the chemicals used in the synthesis of the amorphous Ti-based hydroperoxo
complex (ATPC), namely titanium hydride (TiH2, Sigma-Aldrich, St Louis, MO, USA) and
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hydrogen peroxide solution (H2O2, 30 wt.% in H2O, Sigma-Aldrich), were used as starting
agents without any further purification. The typical synthetic method for ATPC was very
simple. First, TiH2 powder (3.0 g) and distilled water (75 mL) were vigorously stirred at
25 ◦C. Second, 100 mL of H2O2 was slowly added into the solution to form a Ti–OOH
surface with a TiH2 core. After 1.5 h, metallic Ti reacted with H2O2, resulting in a gray
colored gel state due to an exothermic reaction, followed by an increase in temperature
up to 100 ◦C. Finally, 50 mL of H2O2 was added into the gray gel and stirred for 1 h to
form a green colored gel state. After the gel was dried at 100 ◦C and ground, a fine powder
was obtained. The details of our synthetic method as well as the characteristics of ATPC
have already been reported elsewhere [21]. With the measurements of XPS and Raman
spectra, we confirmed that our synthesized ATPC photocatalysts had large amounts of
hydroperoxo groups and many oxygen vacancies on the ATPC surface that could induce
very high photocatalytic activity under the visible light catalyst.

XPS shown in Figure 8 was measured to confirm the Ti oxidation number and oxygen
related species as well asoxygen vacancy. As shown in the bottom figure of Figure 8a, the
typical binding energy of Ti4+ was confirmed in the case of TiO2. One noticeable thing is
that the binding energy of metallic Ti and Ti4+ was confirmed through the data of TiH2,
because the surface of TiH2 can easily oxidize even in the air. In the case of green and
yellow colored ATPC, they showed the various Ti oxidation states such as Ti2+, Ti3+, and
Ti4+. This was because surface oxidation proceeded slowly from metallic Ti. In addition,
Figure 8b shows the measurements of the O 1s peaks and the results are as follows. First,
the green colored ATPC showed the oxygen-bonded binding energy between Ti4+/Ti2+ and
VO (oxygen vacancy)/TiOH/TiOOH observed to be high. This could be attributed to our
synthesized peroxo complexes, as oxidation and polymerization reactions took place on
TiH2 surface. In the case of yellow colored ATPC, it can be explained that the oxidation
reaction proceeded by H2O2 from the green gel so that the Ti-OOH groups increased.
Raman spectra were also measured to obtain supplement information for peroxo groups
present in the synthesized ATPC. As shown in Figure 8c, there were two vibration modes
(916 and 685 cm−1) originating from the peroxo groups. In addition, strong Eg mode
(286 cm−1) derived from oxygen vacancy and typical TiO2 vibration mode (531 cm−1) was
also measured [27].
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3.2. Characterization

Under a 200 W blue LED lamp, the photocatalytic activity of the synthesized ATPC
was first evaluated by the decolorization of RhB. Figure 9 presents the detailed diagrams
for the photocatalytic activity measurements for the removals of (a) RhB dye and (b) ACT
VOC, respectively. In a typical photocatalytic activity measurement procedure, 20 mg of
ATPC powder was added to a 70 mL aqueous solution of 10 ppm RhB and stirred for about
30 min to establish an adsorption–desorption equilibrium. As the first step, a blank test was
conducted for about 30 min to confirm whether the RhB dye was physically adsorbed on
the surface of the ATPC photocatalyst or decomposed without a visible light source. Next,
under visible light conditions, the suspensions were irradiated at a certain distance. During
light irradiation, every 5 min the suspensions (each 4 mL) were collected and separated
via centrifugation. The separated solution was transferred to a 1 cm × 1 cm cuvette for
absorbance measurement using a UV–Visible spectrophotometer. By checking the peak of
absorbance at 550 nm corresponding to the π→ π∗ transition, the photocatalytic activities
of each sample were measured. An application test for an airpurifier system was also
conducted with the synthesized ATPC coating layers as follows. First, the samples were
washed and centrifuged with distilled water after each photocatalytic activity measurement
was finished to remove the RhB dye from the sample surface. The following procedure was
repeated several times.
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4. Conclusions

In this study, an amorphous Ti-based hydroperoxo complex (ATPC) as the new photo-
catalyst involvingonly titanium hydride (TiH2) and H2O2 was synthesized by using a facile
method undermild conditions. Based on the results presented above, we conclude that all
the synthesized samples showeda good degradation efficiency owing to the active carriers
formed from the peroxo groups and oxygen vacancies of ATPC. Overall data suggest that
this study presents a very good approach to solving air pollution problems such as VOCs.
The reason is that in the process of synthesizing ATPC, not only low-cost precursors were
used but also a facile synthesis method at room temperature was proposed. Moreover, both
the synthesis of ATPS and the fabrication of ATPC-based coating layer are expected to be
applicable to various fields such as the removal of both organic pollutants and hazardous
wastes as well as a scale-up synthesis method. In addition, since our synthetic method does
not need any additional heat or pressure during the synthesis process, this mild synthetic
method will be very valuable if it can be applied to other metallic materials besides TiH2.
Furthermore, it will be easy to build a mass synthesis system in an industrial aspect later.
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