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Abstract: Semiconductor photocatalytic performances can be modulated through morphology mod-
ification. Herein porous hierarchical BiOBr microspheres (BiOBr-MS) of ~3 µm was firstly self-
assembled without the assistance of a template via a facile solvothermal synthesis in triethylene
glycol (TEG) at 150 ◦C for 3 h. KBrO3 was exploited as a bromine source, which slowly provided
bromide ions upon reduction in TEG and controlled the growth and self-assembly of primary BiOBr
nanoplates. The addition of PVP during solvothermal synthesis of BiOBr-MS reduced the particle
size by about three-fold to generate BiOBr sub-microspheres (BiOBr-sMS) of <1 µm. BiOBr-sMS
exhibited significantly higher photocatalytic activity than BiOBr-MS for aerobic photooxidation of
benzyl alcohol (BzOH) to benzaldehyde (BzH) under simulated sunlight irradiation (conversions
of BzOH (50 mM) over BiOBr-sMS and BiOBr-MS were, respectively, 51.3% and 29.6% with 100%
selectivity to BzH after Xenon illumination for 2 h at 25 ◦C). The photogenerated holes and ·O2

−

were found to be main reactive species for the BzOH oxidation over BiOBr spheres by scavenging
tests and spin-trapping EPR spectra. The higher photocatalytic activity of BiOBr-sMS was attributed
to its more open hierarchical structure, efficient charge separation, more negative conduction-band
position and the generation of larger amounts of ·O2

−.

Keywords: BiOBr spheres; hierarchical nanostructures; photocatalysis; benzaldehyde

1. Introduction

Benzaldehyde (BzH) is an important starting material for the production of some chem-
ical intermediates, dyes, flavors and pharmaceuticals (e.g., benzylamine, benzoin, mandelic
acid, triphenylmethane dyes, cinnamaldehyde and chloramphenicol) [1]. It is industrially
produced by the hydrolysis of benzal chloride or partial oxidation of toluene [1,2]. The
former generates large quantities of HCl as a by-product, while the latter produces BzH
only as a by-product in the production of less valuable benzoic acid.

Sunlight-driven photocatalytic aerobic oxidation of benzyl alcohol (BzOH) is a poten-
tial green route to synthesize BzH because O2 is a green oxidant and natural sunlight is
clean, safe, widely available and inexhaustible. This technology relies on the design and
synthesis of sunlight-responsive semiconductor photocatalysts with suitable conduction
and valance-band positions to selectively oxidize BzOH to BzH [3]. In order to utilize solar
energy, it is important for potential photocatalysts to harness visible light since UV light
only accounts for less than 5% in the whole solar spectrum [4].

Various strategies, including heterojunction construction, doping, noble metal deposi-
tion and photosensitization, have been adopted to develop efficient solar photocatalysts
for aerobic photooxidation of BzOH. However, most of these methods required complex
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architecture engineering with multiple components (e.g., WO2.72/rGO nanocomposites [5],
CdS@MoS2 [6], hybrid-SiW11O39 [7], fluorinated mesoporous WO3 [8] and Ni-OTiO2 [9]).
Therefore, it would be more attractive if a single semiconductor with a narrow-band gap
can effectively catalyze the sunlight-driven aerobic photooxidation of BzOH.

Among many visible light-responsive semiconductors (e.g., Pt-BiFeO3 [10], Bi2WO6/ZnO
composite [11]), bismuth oxybromide (BiOBr) has attracted considerable attention owing to its
unique layered structure, appropriate-band gap (~2.7 eV) and good chemical stability [12,13].
The layered structure of BiOBr consists of [Bi2O2]2+ layers interleaved with double layers of
Br− along the c-axis (Scheme 1), and is beneficial for the separation of photogenerated charge
carriers owing to the internal electric field normal to each layer. However, the photocatalytic
performance of pure BiOBr is still limited due to high recombination rate of photogenerated
electron-hole pairs and low quantum efficiency. After visible light (>420 nm) irradiation for
4 h at 25 ◦C, only 10.9% of BzOH was converted to BzH in the reaction system comprising
20 mg BiOBr and 8.0 mM BzOH in 2.5 mL benzotrifluoride (BTF) saturated with O2 [14]. Even
after visible light (>420 nm) irradiation for 8 h at 50 ◦C, the conversion of BzOH to BzH was
still low (21.6%) in the reaction system comprising 50 mg BiOBr and 0.5 mM BzOH in 10 mL
CH3CN in the presence of O2 [3].
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Many efforts have been made to enhance sunlight-driven photocatalytic efficiency
of BiOBr, including heterojunction construction (e.g., BiOBr/Bi2WO6 [14] and CuO-Bi-
BiOBr [15]), surface regulation (e.g., BiOBr m [16]), metal loading (e.g., Ag-Fe-Cu/BiOBr [17],
Eu-doped BiOBr [18]), defect engineering (e.g., BiOBr-OV [19]) and synergistic effects (e.g.,
Zn-VBOB [20]). It was also reported that morphology control of BiOBr (e.g., ultrathin
nanosheets and three-dimensional (3D) hierarchical structures) could promote its photo-
catalytic performances [13,21–24]. Compared with low-dimensional counterparts, three-
dimensional hierarchical BiOBr microspheres built from nanosheets or nanoplates not only
alleviate nanoparticle aggregation and facilitate the separation and recovery of catalysts,
but also exhibit enhanced visible-light photocatalytic performances (e.g., in photocatalytic
coupling of amines to imines [22] and degradation of rhodamine B, phenol or tetracy-
cline [21,23,24]) due to synergistic effects of enhanced visible-light utilization via multiple
reflections and scattering, efficient separation of photo-generated electrons and holes and
large surface area. In previous reports, hierarchical BiOBr microspheres of 1.0–6.0 µm in
diameter were prepared in a two-component solvent (ethylene glycol and isopropanol [21]
or water and ethanol [22]) with the assistance of a soft template (e.g., cetyltrimethylammo-
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nium bromide [21,23], reactive ionic liquids [24] and poly(vinylpyrrolidone) (PVP) [22]) for
the formation of self-assembled microspheres.

Herein hierarchical BiOBr microspheres of 2.57 ± 0.49 µm (designated BiOBr-MS)
were directly self-assembled without the assistance of a template via a facile solvothermal
synthesis in triethylene glycol (TEG) at 150 ◦C for 3 h. The addition of PVP during
solvothermal synthesis of BiOBr-MS significantly reduces the particle size to generate
BiOBr sub-microspheres of 0.87 ± 0.25 µm (designated BiOBr-sMS). Both BiOBr-MS and
BiOBr-sMS were evaluated as photocatalysts for aerobic photooxidation of BzOH under
simulated sunlight irradiation. BiOBr-sMS had significantly improved photocatalytic
performances (BzOH conversion and BzH selectivity and yield were 76.4%, 85.4% and
65.2%, respectively, upon Xenon irradiation for 3 h at 25 ◦C), which was attributed to its
efficient charge separation, more negative conduction-band position and generation of
larger amounts of ·O2

− species. The h+ and ·O2
− species were found to be main reactive

species for the BzOH oxidation over BiOBr spheres by scavenging tests and spin-trapping
EPR spectra. The present work demonstrated that the photocatalytic performance of the
BiOBr semiconductor could be effectively enhanced by morphology modulation. It was
achieved by using KBrO3 as a bromine source rather than organic templates, which slowly
provides bromide ions during solvothermal treatment in TEG.

2. Results
2.1. Characterization of BiOBr-(s)MS

The XRD patterns of BiOBr-sMS and BiOBr-MS (Figure 1) are consistent with the
standard pattern of tetragonal BiOBr (PDF No. 78-0348) without any impurity peak,
indicating that pure BiOBr particles with good crystallinity were obtained whether PVP was
added to the initial reaction mixture or not. In comparison with the standard XRD pattern,
the relative intensity of the (110) diffraction peak was obviously enhanced, as observed
in the literature [21,23]. This may be related to the hierarchical spherical morphology of
BiOBr-(s)MS formed by self-assembly of nanoplates building units (SEM images shown
below). During the XRD measurement, most nanoplates in hierarchical spheres would
stand upright rather than lie flat on the XRD holder, which facilitates the exposure of more
(110) facets to the incident X-ray beam and leads to the intensified (110) diffraction peak.
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Figure 1. XRD patterns of BiOBr-sMS and BiOBr-MS. 

In SEM images (Figure 2), BiOBr-MS particles are mostly microspheres of 2.57 ± 0.49 
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formed by self-assembly of nanoplates of 30.2 ± 3.5 nm in thickness (Figure 2c). It is worthy 
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In SEM images (Figure 2), BiOBr-MS particles are mostly microspheres of 2.57 ± 0.49 µm
in diameter. Each microsphere possesses porous flower-like hierarchical structure formed by
self-assembly of nanoplates of 30.2 ± 3.5 nm in thickness (Figure 2c). It is worthy to note that
the BiOBr-MS microspheres are directly self-assembled without the assistance of a template.
In our method, TEG is a reducing solvent with a high-boiling point (~285 ◦C) [25–28]. During
solvothermal treatment in TEG at 150 ◦C, KBrO3 will be gradually reduced to provide bromide
ions for controlled growth and self-assembly of BiOBr-MS microspheres.
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The addition of PVP during solvothermal synthesis of BiOBr-MS reduces the particle
size by about three-fold to generate BiOBr-sMS sub-microspheres of 0.87 ± 0.25 µm in
diameter, as revealed by its SEM and TEM images (Figure 3). In addition, the constituent
nanoplates (24.8 ± 2.8 nm thick) in BiOBr-sMS microspheres are also thinner than those in
BiOBr-MS. PVP has been generally exploited to make thin BiOX (X = Cl, Br or I) nanosheets
irrespective of different halogen ions [13,29,30]. Therefore, PVP mainly interacts with Bi3+

ions in the [Bi2O2]2− layers of BiOBr-sMS via its carbonyl or amine functional groups
of PVP molecules, and restricts the growth along the [001] direction to generate thinner
BiOX nanoplates. Meanwhile, the polyvinyl chains of PVP adsorbed on the BiOBr-sMS
nanoplates also contribute to their self-assembly process via van der Waals forces [22],
inducing the formation of BiOBr-sMS with smaller particle sizes.
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The porous structures of BiOBr-(s)MS were also supported by N2 adsorption–desorption
isotherms (Figure 4). Both BiOBr-sMS and BiOBr-MS showed Type IV isotherm with H4
hysteresis loop between P/P0 = 0.4 and 1.0 according to IUPAC recommendation [31]. Type
IV isotherms are typical of mesoporous adsorbents. The Type H4 loop is often associated with
narrow slit-like pore. The SBET and Vp values are 18.8 m2/g and 0.068 cm3/g for BiOBr-sMS,
and 36.9 m2/g and 0.118 cm3/g for BiOBr-MS. The larger SBET of BiOBr-MS is ascribed
to its rich micropore, as manifested by higher adsorption at lower relative pressure in its
N2 adsorption isotherm (Figure 4). The average pore diameter dp (nm) was estimated by
dp = 4000VP/SBET [32–35] to be 14.5 nm for BiOBr-sMS and 12.8 nm for BiOBr-MS, which
indicates that BiOBr-sMS has a more open hierarchical structure than BiOBr-MS.
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2.2. Photocatalytic Performances of BiOBr-(s)MS

The photocatalytic performances of BiOBr-sMS and BiOBr-MS were evaluated by
simulated sunlight-driven aerobic photooxidation of BzOH to BzH (Figure 5). After illu-
mination with Xenon lamp for 2 h, the BzOH conversions (CBzOH) over BiOBr-sMS and
BiOBr-MS are 51.3% and 29.6%, respectively, with nearly 100% selectivity to BzH (SBzH).
The high selectivity of BzH may be related to selective adsorption of BzOH via –CH2OH
group on BiOBr, which is beneficial for its selective oxidation by photo-generated surface
reactive species (e.g., photo-holes and ·O2

−). However, as the photooxidation of BzOH
on BiOBr-sMS proceeded, SBzH gradually decreased (e.g., 67.0% at 4 h in Figure 6) due to
further oxidation of BzH to benzoic acid. The photocatalytic activity of BiOBr-sMS is signifi-
cantly higher than that of BiOBr-MS under Xenon lamp illumination. Since both BiOBr-sMS
and BiOBr-MS were synthesized via the same synthetic procedure, except for the addition
of PVP during the solvothermal synthesis of BiOBr-sMS, BiOBr-MS was post-treated with
PVP as follows: 0.30 g of BiOBr-MS was stirred in 30 mL of DI water containing 0.40 g
of PVP at room temperature for 1 h, centrifuged and then dried in a 60 ◦C vacuum oven
overnight. The photocatalytic activity of the resulting control sample (denoted PVP/BiOBr-
MS) was evaluated to clarify the role of PVP on the enhanced photocatalytic performance of
BiOBr-sMS. As shown in Figure 5, PVP/BiOBr-MS has the lowest activity among the three
samples (2 h BzOH conversion in the order of 11.6%, 29.6% and 51.3%). It indicated that the
post-modification of BiOBr-MS by PVP deteriorated the photocatalytic activity of BiOBr-MS,
possibly by blocking some active surface sites. Since physically adsorbed PVP could not
improve the activity of BiOBr-sMS, it implied the importance of PVP in modulating the
growth and self-assembly of BiOBr-sMS during its synthesis, which resulted in smaller,
three-dimensional, hierarchical porous sub-microspheres made up of thinner nanoplates.

The photooxidation products of BzOH over BiOBr-sMS at different illumination times
were analyzed to obtain more information about its kinetic process. As shown in Figure 6,
CBzOH increased with the illumination time. Upon illumination by Xe lamp for 4 h, 96.5%
of 50 mM BzOH was converted, which is among the highest conversion achieved on single-
component BiOBr photocatalysts for visible light-driven photooxidation of BzOH with
a high-initial concentration (50 mM) (Table 1). However, SBzH gradually decreased with
illumination (SBzH: 100% at 2 h and 67.0% at 4 h). The decrease in SBzH after illumination
for 4 h may be due to the high concentration of BzH accumulated in the reaction system,
which was further oxidized to benzoic acid. As a result, the yield of BzH (YBzH) was almost
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constant after illumination for 3 h (64.7–65.2%). It is interesting to note that the CBzOH–time
plot in Figure 6 was excellently fitted with a linear equation, CBzOH = 0.249t (R2 = 0.999).
It indicated that the photocatalytic oxidation of BzOH over BiOBr-sMS conformed to the
zero-order reaction model with the rate constant of k0 = 12.5 mmol L−1 h−1. Similarly,
the CBzOH–time plots over BiOBr-MS and PVP/BiOBr-MS could also be fitted into the
zero-order reaction model with the corresponding k0 value of 6.7 and 3.0 mmol L−1 h−1

(Figure S1). The largest k0 value of BiOBr-sMS is consistent with its highest activity.
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Figure 6. Time-dependent photocatalytic aerobic oxidation of BzOH over BiOBr-sMS. Reaction
conditions: 20 mg BiOBr-sMS, O2 balloon and 50 mM BzOH in 10 mL CH3CN, illuminated with
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Table 1. Comparison of catalytic performances of various photocatalysts under Xe lamp illumination.

Entry Photocatalyst Conditions Convn/Sel/Yield (%) Ref.

1 BiOBr-sMS 20 mg catalyst, 0.5 mmol BzOH, O2
balloon, 10 mL CH3CN, 25 ◦C, 2 h

51.3%/100%/51.3%
(96.5%/67.0%/64.7% at 4 h) This work

2 WO2.72
0.1 g catalyst, 25 mmol BzOH, O2
(20 mL/min), 60 mL BTF, 25 ◦C, 8 h 9.5%/91.0%/8.6% [5]

3 WO2.72/rGO 0.1 g catalyst, 25 mmol BzOH, O2
(20 mL/min), 60 mL BTF, 25 ◦C, 8 h 37.6%/92.0%/34.6% [5]

4 Fluorinated
mesoporous WO3

0.1 g catalyst, 0.025 mmol BzOH,
50 mL H2O, 25 ◦C, 4 h. ~57%/~99%/56% [8]

5 Hybrid-SiW11O39
40 mg catalyst, 1 mmol BzOH,
3 mL CH3CN purged with O2, 25 ◦C, 4 h 80% yield [7]

6 0.8Br-BiOBr
/Bi2WO6

20 mg catalyst, 0.2 mmol BzOH,
2.5 mL BTF saturated with O2, 25 ◦C, 4 h 30.9%/100%/30.9% [14]

7 TiO2

0.3 g catalyst, 25 mmol BzOH, 27 mL BTF,
air bubbled at 20 mL/min, 5 h,
(temperature unavailable)

21.6%/91.4%/19.7% [36]

8 Nb2O5/TiO2

0.3 g catalyst, 25 mmol BzOH, 27 mL BTF,
air bubbled at 20 mL/min, 5 h,
(temperature unavailable)

64.3%/85.1%/54.7% [36]

9 Ni(1%)-OTiO2

80 mg catalyst, 0.5 mmol BzOH, 5 mL BTF
saturated with O2 (2atm) for 5 min,
1 h (temperature unavailable)

93%/99%/88% [9]

2.3. Mechanistic Studies of Enhanced Photocatalytic Activity of BiOBr-sMS

It is generally accepted that the photocatalytic activity is affected by various factors,
such as specific surface area, band-gap energy, band position and separation efficiency of
photo-induced electrons and holes. The BET surface areas of BiOBr-sMS and BiOBr-MS
are 18.8 and 36.9 m2/g, respectively. Therefore, the surface area may not be the key factor
contributing to the enhanced photocatalytic activity of BiOBr-sMS. However, BiOBr-sMS
has larger average pore diameter than BiOBr-MS (14.5 vs. 12.8 nm), which should benefit
the mass transport and diffusion in BiOBr-sMS.

UV-vis absorption spectra of BiOBr-(s)MS are shown in Figure 7a. As compared to
BiOBr-MS, the absorption onset of BiOBr-sMS shifted to a shorter wavelength by about
17 nm (398 vs. 415 nm) with lower absorbance. Thus BiOBr-sMS utilizes less visible and
ultra-violet light of the total solar energy, which cannot explain its improved photocat-
alytic activity either. The band-gap energy, Eg, was estimated by Tauc plots according to
αhν = A(hν−Eg)n/2, where α, ν and A are the absorption coefficient, light frequency and
a constant, respectively, and n is a constant that depends on the characteristics of the
optical transition in a semiconductor (n = 1 for a direct transition and n = 4 for an indirect
transition). For BiOBr, as an indirect gap semiconductor, the value of n is 4 [13,19,37].
By extrapolating the αhν—(hν)1/2 plots to the x axis (Figure 8 inset), the Eg values of
BiOBr-MS and BiOBr-sMS are estimated to be 2.75 eV and 2.85 eV, respectively. The larger
band-gap energy of BiOBr-sMS is ascribed to its smaller particle size.

Theoretical calculation reveals that the conduction and valance bands of BiOBr consist
of Bi 6p, O 2p and Br 4p orbital [37,38]. The O 2p and Br 4p states dominate the valance-
band (VB) maximum, while Bi 6p states contribute the most to the conduction-band (CB)
minimum [38]. Both BiOBr-MS and BiOBr-sMS have similar compositions except the
involvement of PVP during the solvothermal synthesis of BiOBr-sMS. Since PVP mainly
interacts with the Bi3+ ions via its carbonyl or amine functional groups, it is reasonable to
assume that PVP mainly influences the CB position of BiOBr-SMS while both BiOBr-MS
and BiOBr-sMS have similar VB positions. As the band-gap energy of BiOBr-sMS is larger
than that of BiOBr-MS by 0.10 eV, the CB minimum of BiOBr-sMS is expected to shift
upwards by 0.10 eV. As compared to BiOBr-MS, the more negative CB position of BiOBr-
sMS is expected to facilitate the reduction of adsorbed molecular oxygen to generate more
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superoxide radical anions (·O2
−), which was collaborated by the following scavenging tests

and spin-trapped EPR spectra. The generation of more·O2
− contributes to the enhanced

photocatalytic activity of BiOBr-sMS.
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Figure 8. Trapping experiments of photocatalytic oxidation of BzOH over BiOBr-(s)MS.

Photoluminescence (PL) spectroscopy is generally used to evaluate the recombination
rate of photo-excited charge carriers. The stronger PL intensity suggests rapid recombina-
tion of photoelectrons and holes. As displayed in Figure 7b, the PL spectrum of BiOBr-sMS
had lower intensity than that of BiOBr-MS due to the reduced charge recombination in
the former. It implied more efficient separation of photo-induced electrons and holes in
BiOBr-sMS, which also contributes to its enhanced photocatalytic performance.

A series of active species trapping experiments were conducted to further investigate
the photooxidation mechanism of BzOH. When triethanolamine (TEA) was added to the
BzOH system to trap the holes (h+) [3], the BzOH conversion decreased significantly (e.g.,
from 51.0% to 14.2% over BiOBr-sMS in Figure 8), revealing that the photo-generated
holes are the major oxidative species for the selective oxidation of BzOH into BzH. The
addition of p-benzoquinone to trap superoxide radical anions (·O2

−) also decreased the
conversion of BzOH but to a lesser extent (e.g., from 51.0% to 38.0% over BiOBr-sMS in
Figure 8), supporting partial contribution of ·O2

− to the oxidation of BzOH. However,



Catalysts 2023, 13, 958 10 of 14

when tert-butanol was added to trap hydroxyl radicals [39,40], no obvious influence on the
BzOH conversion was observed (e.g., from 51.0% to 47.2% over BiOBr-sMS in Figure 8),
suggesting a negligible contribution of hydroxyl radicals to the oxidation of BzOH in
our photocatalytic reaction systems. The same reactive species (h+ and ·O2

−) responsible
for the oxidation of BzOH to BzH were also found in other photocatalytic systems (e.g.,
Ni-OTiO2 [9]).

EPR spectra were collected with DMPO a spin-trapping agent to identify the gener-
ation of ·O2

−. Strong characteristic signals of DMPO–·O2
− adduct were observed over

BiOBr-sMS and BiOBr-MS under Xenon illumination [3,19], confirming the formation
of superoxide radicals (Figure 9). In contrast, no EPR signal was detected in darkness
(Figure 9). As compared with BiOBr-MS, the signal intensities of DMPO–·O2

− adduct
generated over BiOBr-sMS were stronger (the difference curve between BiOBr-sMS and
BiOBr-MS displayed in Figure 9), indicating the formation of more ·O2

− over BiOBr-sMS,
due to its more negative CB position, which also contributed to its enhanced photocatalytic
activity.
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3. Materials and Methods
3.1. Chemicals Reagents

Bismuth nitrate pentahydrate (Bi(NO3)3·5H2O) and benzaldehyde (BzH) were pur-
chased from Aladdin (Shanghai, China). KBrO3, triethylene glycol (TEG), acetonitrile
(CH3CN), benzyl alcohol (BzOH), octane (C8H18), triethanolamine (TEA) and p-quinone
(BQ) were provided by Sinopharm Chemical Reagent, China. Tert-butanol (TBA) was
obtained from Shanghai Macklin Biochemical, China. Poly(vinylpyrrolidone) (PVP, Mw:
55,000) and 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO) were supplied by Sigma-Aldrich
(Shanghai, China). All chemicals were of analytical reagents and used as received. All
solutions were prepared in deionized (DI) water.

3.2. Solvothermal Synthesis of BiOBr-(s)MS

BiOBr-sMS was made as follows: 0.4851 g (1.0 mmol) of Bi(NO3)3·5H2O was first
dissolved in 25 mL of TEG upon sonication and magnetic stirring. Then, 0.4 g of PVP
was added and stirred for 30 min, followed by the addition of 0.1670 g (1.0 mmol) of
KBrO3. After being stirred for another 1 h, the whole reaction mixture was transferred to a
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50-mL autoclave and heated at 150 ◦C for 3 h. The BiOBr-sMS particles were recovered by
centrifugation, washed five times with DI water and dried in a 60 ◦C vacuum for 12 h.

BiOBr-MS was prepared following the same procedure except that no PVP was added
in initial reaction mixture.

3.3. Characterization

The crystal structure was determined by powder X-ray diffractometer (XRD, Bruker
AXS D8 Advance, Karlsruhe, Germany) with Cu Kα (1.5406 Å) as the X-ray source in
the 2θ range of 10◦~80◦ at a scanning speed of 5◦/min. The morphology was observed
by a scanning electron microscope (SEM, Hitachi SU8010, Tokyo, Japan). UV-vis diffuse
reflectance spectra (DRS, Tpkyo, Japan) were collected on the Hitachi UH4150 UV-vis
spectrometer with BaSO4 as a reference, and converted from reflection to absorbance by
the Kubelka-Munk method. Photoluminescence (PL) spectra were performed via the
Hitachi F-4600 fluorescence spectrophotometer with an excitation wavelength at 320 nm.
N2 adsorption–desorption isotherms were measured on Micromeritics ASAP 2020 analyzer
(USA). All samples were degassed at 150 ◦C for 4 h under vacuum before measurement.
The specific surface area was calculated using the BET method (SBET) from adsorption data
in a relative pressure range from 0.05 to 0.30. The pore volume (Vp) was assessed from the
adsorbed amount at a relative pressure of 0.99.

3.4. Photocatalytic Aerobic Oxidation of BzOH over BiOBr Nanostructures

In a typical process, 20 mg of BiOBr-sMS was first stirred in 10 mL of BzOH (50 mM)
solution in CH3CN in a closed double-wall quartz cell in the dark at room temperature
for 30 min to reach the adsorption equilibrium. The reaction temperature was controlled
by circulating water. The quartz cell was connected to a balloon full of molecular oxygen
(Scheme 2). Then, the suspension was illuminated from the top for 2–4 h with a 225 W
Xe lamp (CEL-PF300-T8, Beijing China Education AuLight Technology, Beijing, China)
to simulate sunlight. At certain intervals, about 1.5 mL of suspension was sampled,
centrifuged and filtered through a filter membrane. The product was analyzed with n-
octane as an internal standard on the Fuli 9720 gas chromatograph (China) fitted with a FID
detector. The catalytic experiments were repeated with the standard deviation of about 5%.
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3.5. Scavenging and Spin-Trapping Tests

TEA (66 µL), BQ (0.0541 g) and TBA (48 µL) were added to scavenge h+, ·O2
− and ·OH,

respectively, during photocatalytic aerobic oxidation of BzOH, as described in Section 3.4.
In spin-trapping studies, DMPO was used as a trapping agent to detect ·O2

− by electron
paramagnetic resonance (EPR) spectra, which were recorded on the Bruker EMXplus
Spectrometer at room temperature.

4. Conclusions

Porous hierarchical BiOBr microspheres (BiOBr-MS) of 2.57 ± 0.49 µm were first
self-assembled without the assistance of a template via a facile solvothermal synthesis in
triethylene glycol (TEG) at 150 ◦C for 3 h. The slow release of bromide ions upon reduction
of KBrO3 in TEG facilitated the controlled growth and self-assembly of primary BiOBr
nanoplates. The addition of PVP during solvothermal synthesis of BiOBr-MS reduced
the particle size by nearly three-fold to generate BiOBr sub-microspheres (BiOBr-sMS) of
0.87 ± 0.25 µm. BiOBr-sMS exhibited remarkably improved photocatalytic activity than
BiOBr-MS for aerobic photooxidation of benzyl alcohol (BzOH) to benzaldehyde (BzH)
under simulated sunlight irradiation (the conversions of BzOH (50 mM) over BiOBr-sMS
and BiOBr-MS were, respectively, 51.3% and 29.6% with 100% selectivity to BzH after Xenon
illumination for 2 h at 25 ◦C). Scavenging tests and DMPO-O2

− spin-trapping EPR spectra
supported that photogenerated holes (h+) and ·O2

− were the main reactive species for the
BzOH oxidation over BiOBr spheres. The higher photocatalytic activity of BiOBr-sMS was
attributed to its more open hierarchical structure, efficient charge separation, more negative
conduction-band position and the generation of larger amounts of ·O2

− species.
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