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Abstract: The development of new and advanced materials for various environmental and en-
ergy applications is a prerequisite for the future. In this research, the removal of hazardous moxi-
floxacin (MOX) is accomplished by synthesizing new hybrids of MOF-5 i.e., Ni/Mo.S2/MOF-5/GO,
Ni.S2/MOF-5/GO, Mo.S2/MOF-5/GO, and Ni/Mo.S2/MOF-5 nanocomposites by using a metal-
organic framework (MOF-5) and graphene oxide (GO) as a precursor. The introduction of NixMoxS2

facilitates the unique interfacial charge transfer at the heterojunction, demonstrating a significant
improvement in the separation effectiveness of the photochemical electron-hole pairs. To evaluate
equilibrium adsorption capacity, time, pH, and concentration of organic pollutants were used as
experimental parameters. The adsorption kinetics data reveals pseudo-first-order (R2 = 0.965) kinetics
when Ni/Mo.S2/MOF-5/GO photocatalyst was irradiated under light for 90 min against MOX
degradation. This led to a narrow energy band gap (2.06 eV in Ni/Mo.S2/MOF-5/GO, compared
to 2.30 eV in Ni/Mo.S2/MOF-5), as well as excellent photocatalytic activity in the photodegrada-
tion of moxifloxacin (MOX), listed in order: Ni/Mo.S2/MOF-5/GO (95%) > Ni.S2/MOF-5/GO
(93%) > Mo.S2/MOF5/GO (90%) > Ni/Mo.S2/MOF-5 (86%) in concentrations up to 2.0 mgL−1,
caused by the production of superoxide (O2

•−) and hydroxide (OH•) radicals, which encouraged the
effective photocatalytic activities of the heterostructure. After five successive tests demonstrating
its excellent mechanical stability, the impressive recyclability results for the Ni/Mo.S2/MOF-5/GO
revealed only a tiny variation in efficiency from 95% (for the first three runs) to 93% (in the fourth run)
and 90% (in the fifth run). These findings show that the heterostructure of Ni/Mo.S2/MOF-5/GO
is an effective heterojunction photocatalyst for the quick elimination of moxifloxacin (MOX) from
aqueous media.

Keywords: MOF; graphene; heterojunction; transition metals compounds; degradation; fluoro-
quinolones (FQs); moxifloxacin (MOX)

1. Introduction

A family of synthetic antibacterial substances known as fluoroquinolones (FQs) is
becoming popular for majority of the nations in Europe and is one of the most typical
antibiotics found in the treatment of wastewater [1]. In the animal agricultural industry,
tetracycline, as well as enrofloxacin are widely used antibiotics for both treatment of infec-
tious diseases in livestock animals and promotion of livestock growth, however, they are
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also responsible for severe contamination of water bodies and soil [2]. Quinolones, espe-
cially second and third generation drugs, are used more frequently in human medicine [3].
A fluoroquinolone of the third generation, moxifloxacin (MOX), is commonly used to treat
certain bacterial infections in humans and animals [4]. MOX’s propensity for genotoxic-
ity [5] makes its release and buildup in the environment a significant risk to ecosystems
and health. Thus, a method for decontaminating the FQ drug moxifloxacin (MOX) from
wastewater that is both efficient and affordable needs to be developed. Various techniques
in practice for the exclusion of antibiotics and other noxious pollutants from water include
adsorption, photo-Fenton, photo-degradation, and advanced oxidation processes [6–9]. En-
vironmental remediation can be accomplished using sunlight-irradiated photo-degradation
and is considered the most economic, most efficient, and productive technique for the treat-
ment of waste water using various materials such as GO-based composites, hexaferrites,
porous silica-based composites, metal oxide-based catalysts etc. [10–13].

Among all the promising classes of advanced materials, metal-organic frameworks
(MOFs) are well-structured crystalline coordination polymers with large surface areas,
exceptional absorbability, and strong catalytic properties [14–16]. Moreover, the crystallite
sizes, chemical compositions, atomic weights, and weight percentages of the resultant
nanocomposites and the optimized crystal phases can be easily controlled by controlling
the conditions, such as the temperature, dwell time, heating rate and gaseous atmosphere
etc. MOFs have been extensively applied in a variety of applications such as catalysis,
energy-storage, supercapacitors, oxidation reduction reactions, and the adsorption of
contaminants from polluted water [17–21].

MOF-5, first published in 1999, is composed of ZnO4 units linked together by a 1,4-
benzenedicarboxylate linker to form an extraordinary cubic lattice. The MOF-5, initially
appearing as a cubic structure, came into prominence in 2002 [22]. As a result of using
pristine MOFs containing heteroatoms or MOFs with metal/non-metal guests as precur-
sors, it has been demonstrated that nanocomposites resulting from this procedure can be
doped in situ with metals and/or heteroatoms such as N, C, S, and P to alter the semicon-
ductor’s electronic structure, semi-conductive properties, and energy band positions in
order to improve solar absorption and charge separation. A number of factors prevent
pristine MOFs from being a good candidate for direct photocatalytic applications, including
the weak coordination bonds between metal ions (oxo-clusters) and organic linkers, the
wide band gaps, and poor semi-conductive properties (limited charge generation and
transfer). It has been reported that MOFs need to be coupled with other substances for
adsorption, such as meso-porous SiO2/(MOF), meso-porous Al2O3/(MOF), MOF/g-C3N4,
and MOF/graphene [23] To enhance the photocatalytic performance of MOF derived
nanocomposites, it is imperative to optimize the morphologies, compositions, electrical
conductivity, and interfacial contacts [24–26]. GO, known to exist for about 150 years, is
a carbon-based compound with many hydroxyl, epoxide, and carboxyl surface groups.
By subjecting graphite to intense oxidizers, it is possible to produce graphene oxide (GO),
which is composed of elements C, O, and H in varying proportions [13,27,28]. The con-
cept of MOF-GO nanocomposites is based on specifications for the hydroxyl (OH) and
epoxy functional groups of GO, which enable metal ions in MOFs to operate as composites.
Therefore, GO can form nonporous, dense arrays of layers by fusing the complementary
properties of two materials. Hydrothermal synthesis is a simple approach for synthesizing
and increasing the mesoscopic regularity of a material by using a chemical process at low
temperature and pressure. This study used a one-step hydrothermal technique to generate
a hybrid of MOF-5 and GO. Recently, several novel findings on MOF-GO hybrids [29] have
been reported employing a variety of MOFs, such as MOFs based on zinc (MOF-5) [30],
zirconium MOF (UiO-66) [31], and iron (MIL-100) [32]. However, there is presently little
study on the capacity of MOF-GO composites or their photocatalytic performance in the
removal of noxious pollutants from waste water.

Molybdenum disulfide (Mo.S2) exhibits a six-party condensed structure that is similar
to graphene and exhibits good optical and electrical transmission properties. In particular,
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Mo.S2 nanosheets can enhance the number of reaction sites and are utilized as a non-
noble metal catalyst to increase photocatalytic yield [33]. Metal ions of molybdenum and
nickel can improve the structure of ligands and MOFs, which ultimately regulates the
photocatalytic activity of MOF compounds. In the present work, the fabrication of MOF-
5/GO using Ni.S2 nanospheres was carried out via a solvothermal technique with Mo.S2
coated on the surface of Ni.S2 nanospheres, as outlined in the synthesis scheme. The high
attraction created by homologous inorganic molecules between the nucleation sites was
utilized in the construction of the Ni.S2/Mo.S2/MOF-5/GO nanocomposite.

This study focused on the development of an effective and efficient MOF-5/GO hetero-
junction for photocatalytic degradation of toxic antibiotics from simulated wastewaters. For
this, the fabrication of MOF-5/GO was carried out to produce a series of nanocomposites:
Ni/Mo.S2/MOF-5/GO, Ni.S2/MOF-5/GO, Mo.S2/MOF-5/GO, and Ni/Mo.S2/MOF-5. It
is expected that the newly synthesized nanocomposites would expand the surface area and
boost the amount of photogenerated electron-hole pairs, hence improving the photocat-
alytic activity of MOF-5/GO hybrids as they are formed. Photodegradation of pollutants,
formation of reactive species such as superoxide and hydroxyl radicals, and formation of
holes are the steps that lead to the transformation of organic pollutants into H2O and CO2.
In our research, several factors are evaluated to determine how well the photodegradation
process works [34], including the wavelength (UV, UV-Vis), intensity of incident light, pH
value of the medium in the reactor, concentration of the photocatalysts and the organic
pollutants, reaction time, and dynamics of charge carriers. We hope that researchers will be
motivated by this work to investigate and develop new photocatalysts for the purification
of water containing MOX and other noxious pollutants.

2. Results and Discussion
2.1. XRD Analysis

XRD patterns of Ni.Sx/Mo.Sx/MOF-5/GO are shown in Figure 1a–d while the MOF-
5 is represented as (♣) in spectras. These graphs confirm the successful synthesis of
nanocomposites Pristine MOF-5(♣) displays crystalline peaks at 2θ values 6.80◦, 9.64◦,
13.55◦, 15.29◦, 20.60◦, 22.41◦, 24.69◦, 31.30◦, and 32.12◦ for crystal planes 200, 220, 400,
420, 531, 533, 551, and 911 respectively [35].As seen in Figure 1a, GO has a distinctive,
strong peak at 2θ = 26.5◦ that is attributed to 002. The MOF-5/GO exhibits diffraction
peaks at 2θ = 10.12◦, 15.61◦, 18.55◦, 20.58◦, 25.95◦, 27.27◦, 28.39◦, 30.31◦, 31.12◦, 32.34◦,
34.06◦, and 43.80◦ [36]. These peaks are somewhat displaced, but they do not alter the
crystalline structure of the material. From the Ni/Mo.S2/MOF-5, Ni.S2/MOF-5/GO, and
Ni-Mo.S2/MOF-5/GO catalysts, peaks attributed to Ni.S2 can be found at 2θ = 32.0◦

(200) and 45.6◦ (220), while Mo.S2 presence was confirmed (PDF#75-1539) with indexes at
2θ = 35.25◦ (103) and 54.5◦ (106). The spectra also comprised a few peaks of Ni from NiS2
at 62.2◦ and 75.01◦, with indexes (220) and (311) along with peaks of Mo from Mo.S2 at
49.32◦ and 71.71◦ which correspond to (200) and (101), respectively. Furthermore, different
structural parameters of the prepared nanocomposites determined from XRD analysis are
presented in Table 1.

Table 1. Geometric parameters of Ni/Mo.S2/MOF-5/GO, Ni.S2/MOF-5/GO, Mo.S2/MOF-5/GO,
Ni/Mo.S2/MOF-5 nanocomposite determined from XRD analysis.

Nanocomposites a (A◦) c (A◦) Volume
(A◦)3

Crystallite
Size (nm)

Strain ε

(Nm−2)

Dislocation
Density
(m−2)

Lattice
Spacing

(A◦)

Ni/Mo.S2/MOF-5/GO 3.561 5.6732 51.7324 24.0866 1.524 × 10−6 1.760 × 10−6 3.78
Ni.S2/MOF-5/GO 2.4438 4.6071 24.6437 25.2436 1.495 × 10−6 1.569 × 10−6 2.47
Mo.S2/MOF-5/GO 2.217 4.476 18.867 25.8973 1.456 × 10−6 1.479 × 10−6 2.59
Ni/Mo.S2/MOF-5 3.1355 5.4291 46.9241 24.115 1.478 × 10−6 1.659 × 10−6 3.42
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Figure 1. The XRD spectra of (a) Ni/Mo.S2/MOF-5(♣)/GO, (b) Ni.S2/MOF-5(♣)/GO,
(c) Mo.S2/MOF-5(♣)/GO, and (d) Ni/Mo.S2/MOF-5(♣) and Fourier transform infrared (FTIR)
spectra of sample (e) Ni/Mo.S2/MOF-5/GO, (f) Ni.S2/MOF-5/GO, (g) Mo.S2/MOF-5/GO,
(h) Ni/Mo.S2/MOF-5 nanocomposites.

2.2. FTIR Analysis

The FTIR graphs of synthesized nanocomposites are depicted in Figure 1e–h. FTIR
spectra of Ni/Mo.S2/MOF-5/GO show significant distinctive bands of GO at 3416, 1657,
1490, 1218, 1040, and 860 cm−1 [37]. The typical peaks in GO include the stretching
vibrations of the OH at 3416 cm−1, C-O at 1490 cm−1 (carbonyl or carboxylic group), C=O
at 1657 cm−1 (aromatic stretching frequency), and C-O at 1218 cm−1 (epoxy). The epoxy
or peroxide functional group showed an absorption band at 860 cm−1, while the C-O that
belongs to alkoxy shows a stretching vibration band at 1040 cm−1.

The MOF-5 shows two distinct bands at 1691 and 1599 cm−1 attributed to C=O and
C-O stretching vibrations of the aromatic ring of terephthalic acid. However, distinctive
peaks attributed to the aromatic ring of terephthalic acid in MOF-5 were observed in
the vicinity of 1200–600 cm−1. The band that appeared at 769 cm−1 corresponds to C-H
stretching vibrations. The inset Figure 1e shows an absorption band at 476 cm−1 attributed
to the Zn-O stretching [38]. The FTIR spectra of MOF-5/GO nanocomposites [39] show that
GO [40] had no prominent effect on MOF-5 properties. Meanwhile, the peak at 2850 cm−1

demonstrates the existence of uncondensed NH3. A few wide peaks at 3200 and 3650 cm−1

are due to OH and NH bonds, as displayed in Figure 1e,f, and another band at 2920 cm−1

is linked to adsorbed water molecules.

2.3. Morphology and Structure Analysis

The morphology of the synthesized nanocomposite materials was examined through
SEM analysis. The SEM pictures in Figure 2a demonstrate that GO is incorporated into
the MOF-5 framework without significantly changing its shape. Images taken by scanning
electron microscope showed that the breakdown of the nanocomposite made from MOF-5
enabled the creation of flaky carbon nanostructures with graphene oxide acting as their
support. Due to the presence of Na2S in the synthesis of molybdenum disulfide, which
generated a few irregular nanoparticles, the altered morphology of GO/MOF-5 indicated
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the adherence of the metallic sulphides Mo.S2 and Ni on the surface of GO/MOF-5. How-
ever, the Ni/Mo.S2-modified MOF-5/GO has changed the shape of the tiny ball structure
into a flaky structure, as seen in Figure 2b; thus, Ni/Mo.S2/MOF-5/GO was successfully
developed. Additionally, EDS was performed to reveal the elemental composition of newly
synthesized nanocomposites derived from MOF-5/GO. Nanocomposites provided valid
evidence for elements like C, O, N, Cl, Zn, Ni, and Mo.
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Figure 2. SEM images of (a) MOF-5/GO (b) Ni/Mo.S2/MOF-5/GO.

2.4. Band Gap Turning Analysis

Using UV-visible spectroscopy, the band gap energies and absorbance spectra of
the newly synthesized photocatalysts namely, Ni/Mo.S2/MOF-5/GO, Ni.S2/MOF-5/GO,
Mo.S2/MOF-5/GO, and Ni/Mo.S2/MOF-5 were analyzed, as shown in Figure 3a. Their
Tauc plots, as presented in Figure 3b, were drawn using the standard approach, and the
following equation was used to determine the corresponding energies of these absorption
peaks [41].

Eg = hc/λabsorption. (1)

where, Eg = optical band gap, c = velocity of light, h = Planck constant, and λ = wavelength.
The proposed photocatalytic nanocomposite Ni/Mo.S2/MOF-5/GO is a heterojunc-

tion between MOF-5/GO and bi-metallic sulphides (Ni.S2, Mo.S2). There was a signif-
icant increase in absorption due to the reduction in the energy band gap, from 2.30 eV
to 2.06 eV, shown by Ni-Mo.S2/MOF-5. The highest light absorption is demonstrated
by Ni/Mo.S2/MOF-5/GO, which leads to the highest photocatalytic activity. Moreover,
enrichment in light absorption intensity also showed a viable increase in the number
of photo-induced (e−/h+) pairs [42,43]. As a result, more active species are detected as
(O2
•−) and (OH•) radicals. This ultimately led to enhanced photocatalytic activity of

Ni/Mo.S2/MOF-5/GO [44].
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2.5. Photocatalytic Activity of MOF/GO

The well-known fluoroquinolone antibiotic, moxifloxacin was picked as a represen-
tative emerging hazard to study how effectively the synthesized materials function as
photocatalysts when exposed to visible light. The MOX absorption spectra exhibit maxi-
mum absorption at approximately 288–300 nm in the presence of various photocatalysts
when exposed to unfiltered sunlight, and it was observed that the MOX peak steadily re-
duced with time in the presence of all catalysts. In order to examine the effectiveness of the
photocatalysis of nanocomposites composed of Ni/Mo.S2/MOF-5/GO, Ni.S2/MOF-5/GO,
Mo.S2/MOF-5/GO, and Ni/Mo.S2/MOF-5 under sunlight illumination for 90 min, moxi-
floxacin (MOX) was subjected to photocatalytic degradation. As illustrated in Figure 4a–d,
Ni/Mo.S2/MOF-5/GO demonstrated 95% degradation efficiency, which, when compared
to the other composite materials, indicates a narrower charge zone results in the formation
of the best possible heterojunction, since all the composites that were synthesized were
determined to be photocatalytically active for moxifloxacin (MOX). Electron hole recombi-
nation can be prevented by graphene’s ability to operate as an electron receiver, taking in
photoexcited electrons from semiconductors [45,46]. The absorption of visible light cannot
be increased by graphene [47]. Visible light-absorbing graphene is required as a co-catalyst
for MOF [48–50].

The influence of Ni.Sx/Mo.Sx/MOF-5/GO catalyst dosage, MOX concentration, and
pH on MOX degradation by all catalysts as a function of time under sunlight irradiation
was also checked; results are summarized in the supporting file as (Figure S1).
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2.6. Kinetics Studies of the Photodegradation of MOX

The increase in photocatalyst surface active sites, which in turn leads to an increase
in the generation of species responsible for MOX photodegradation, including (e−/h+),
(O2
•−), and (OH•), is the reason for accelerated degradation [51]. Although the additional

catalyst causes the particles to assemble, which inhibits light from interacting with the
catalyst and leads to the successive absorption of photons by the photocatalyst surface, the
percentage degradation starts to decline above the optimal catalyst loading limit for each
catalyst, and ultimately dampens the performance.

As a result, the activity of degradation is increased, and electron-hole pair recombi-
nation is decreased. The quantitatively given photodegradation reaction kinetics were
studied using the linear fit model and were calculated by the following equations:

Ct = C0 e−kt (2)

and
−ln (Ct /C0) = kt (3)

where Ct = concentration at time t, C0 = initial concentration, e = base e, k = rate constant
of decline/day, t = time, and ln = natural log. By plotting −ln (Ct/C0) on the y-axis and
irradiation time (t) on the x-axis, a straight line is obtained, as shown in Figure 5a, where the
k values of samples Ni/Mo.S2/MOF-5/GO (0.044 min−1), Ni.S2/MOF-5/GO (0.043 min−1),
Mo.S2/MOF-5/GO (0.041 min−1), and Ni/Mo.S2/MOF-5 (0.033 min−1) were calculated
from the slope.
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Mo.S2/MOF-5/GO, and Ni/Mo.S2/MOF-5 photocatalysts.

The calculated values of k (rate constant) for different photocatalysts used for MOX
degradation are presented in Table 2. The rate constant’s R2 values for the synthesized
composites were 0.992, 0.981, 0.986 and 0.965, which supported the pseudo-first order
kinetics and continuous photodegradation of MOX.

Table 2. Kinetic rate constant (k); Degradation efficiency, percent; and R2 values of grown nanocom-
posites.

Sample Dye Degradation
Efficiency, %

Rate Constant, K
(min−1) R2 Band Gap

(±0.1 eV)

Ni/Mo.S2/MOF-5 MOX 86 0.033 0.992 2.30
Mo.S2/MOF-5/GO MOX 90 0.041 0.981 2.27
Ni.S2/MOF-5/GO MOX 93 0.043 0.986 2.22

Ni/Mo.S2/MOF-5/GO MOX 95 0.044 0.965 2.06
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2.7. Detection of the Reactive Species

Designing a potential charge transfer pathway for the degradation of organic pollu-
tants requires careful consideration of the primary reactive species. In order to acquire
(O2
•−), (OH•), and h+, a number of scavengers: benzoquinone (BQ), isopropyl alcohol

(IPA) and ammonium oxalate (AO), respectively, were tested during the degradation of
MOX [52,53]. Different scavengers exhibit distinct influences on the photodegradation path-
way, as may be seen experimentally. The degradation capacity was significantly decreased
when BQ and IPA were introduced to this reaction, as shown in Figure 5b, indicating
that photo-generated (O2

•−) and (OH•) radicals were essential for the degrading process.
Moreover, the addition of AO affected the catalyst’s ability to degrade, suggesting that the
h+ species were not the main active oxidative species in the photocatalytic degradation of
MOX. Furthermore, the significant impact of the presence of (O2

•−) on MOX removal was
confirmed by BQ addition, and a significant decrease in the MOX photocatalytic ability
was observed. However, the remarkable quenching phenomena was seen in the sample
with the addition of IPA, showing that the grown Ni/Mo.S2/MOF-5/GO nanocomposite
acts as the top reactive species during MOX removal [54]. The MOX degradation followed
the given order of reactive species as h+ < O2

•− < OH• [55,56], which is well demonstrated
in the graphical representation in Figure 5b.

2.8. Effect of Photo-Catalyst on the Photodegradation of MOX

The effect of nanocomposites dosage on MOX degradation with regard to time is
depicted in Figure 5c. The order of photodegradation of MOX was followed by all of the
synthesized photocatalysts, which are all determined to be active. This demonstrates an
increase in degradation efficiency, as the catalyst dose is improved for all Ni/Mo.S2/MOF-
5/GO (95%) > Ni.S2/MOF-5/GO (93%) > Mo.S2/MOF5/GO (90%) > Ni/Mo.S2/MOF-5
(86%) up to 2.0 mgL−1 (Table 3).

Table 3. Comparison with various studies for degradation of moxifloxacin.

Catalyst Synthesis Method Irradiation Time
(min) Light Source %

Degradation Ref.

Bio-FeMnCoO x Bio-synthesis 20 --- 95.2 [57]

CNABA hybrids Physico-chemical 50 300 W xenon lamp 65 [58]

Porous sulfurized iron-based
composite Co-precipitation 30 XL (300 W) 97 [59]

CaBiFe85%Ti15%O3
Nanoparticle Co-precipitation 60 UV-visible light 89.16 [60]

Ni/Mo.S2/MOF-5/GO Solvo-thermal 90 Sunlight
(280–320 nm) 95 Current

study

2.9. Stability and Reusability MOF-5/GO Nanocomposites

As a result of photodegradation, the photocatalyst’s activity decreased under contin-
uous exposure. Hence, before using the composites in real applications, it is essential to
critically consider their stability and reusability [61]. Figure 5d illustrates the effectiveness
of the produced Ni/Mo.S2/MOF-5/GO nanocatalyst’s photocatalytic degradation of MOX
over five consecutive cycles. To verify the stability of the used catalysts after cycling,
the Fourier transform infrared (FTIR) spectra were taken and no significant change was
observed in synthesized nanocomposites, as shown in Figure S3 (Supporting Information).

In the first three cycles it remained constant; however, a minor decline in adsorption
percentage was seen in the final two cycles. The MOX molecule may have moved inside
the MOF-5/GO nanocomposite’s internal cavities, where it could not be readily removed,
which may be the reason for the slight decline in the adsorption efficiency of nanocompos-



Catalysts 2023, 13, 984 10 of 17

ites. Nevertheless, faster adsorption, combined with high reversibility as shown by these
data, reflects its utility and value for MOX adsorption in practical applications.

2.10. Enhancement Mechanism of Photocatalytic Activity

The enhancement in the photocatalytic mechanism of the Ni/Mo.S2/MOF-5/GO com-
posite is illustrated in Figure 6, based on the aforementioned experimental results. The re-
sults demonstrate that adding Ni-Mo.S2 and GO to the carbon-based/semiconductor/MOF
composite improves the photocatalytic activity of MOF-5. Within the MOF-5/GO substrate,
Ni.S2 and Mo.S2 clusters may act as quantum fragments, surrounded by terephthalate
ligands. When used as antennas, these organic bridging ligands may generate visible light
and then efficiently transmit the energy to the Ni.S2 and Mo.S2 clusters. The creation of an
(e−/h+) pair on the catalyst surface governs the fundamental workings demonstrated in
experiments on photocatalytic MOX degradation. Additionally, following GO alteration,
the Ni/Mo.S2/MOF-5/GO composite showed a stronger positive valance band potential,
which would increase its capacity for photocatalytic oxidation in the degradation of MOX.
The literature states that the Zn-based MOF-5 conduction band potential (ECB) and valence
band potential (EVB) are around 1.01 and 2.87 eV vs. NHE, respectively [62]. When MOF-5
gets energized by photons, the electron in the VB state is excited to the CB state. This can
be accomplished by making a hole in the VB, causing the photogenerated electrons on the
CB MOF-5 to simultaneously move quickly to the GO surface, resulting in effective carrier
splitting and increased photocatalytic activity. In this way, the GO sheet will serve as an
excellent electron acceptor, and the electron-hole recombination will be interrupted [63,64].
Consequently, because of its two-dimensional pi-conjugate structure, graphene oxide is a
great conductor [65]. The electrons on the CB reduce O2 to generate superoxide radicals
(O2
•−). However, the standard redox potential of (H2O/OH•) = 2.8 eV vs. NHE) was

slightly lower than the VB of the catalyst, allowing the holes in the VB of Ni/Mo.S2/MOF-5
to quickly oxidize water to create more (OH•), increasing the photodegradation efficiency.

MOF-5, GO + hν→ e−CB [MOF-5, GO] + h+
VB [MOF-5, GO] (4)

e−CB [MOF-5, GO] + O2 →MOF-5, GO + O2
•− (5)

h+
VB [MOF-5] + OH−→ h+

VB[MOF-5] + OH• (6)

h+, O2
•−, OH• + MOX→ CO2 + H2O (7)

As a result of the hydroxyl (OH) group substitution in aqueous solution scavenging
the holes in the valance band, an innovative route for the generation of remarkably volatile
radicals (OH•) is created. This OH• radical dominates the reaction and makes it simpler for
reactants to diffuse to the active sites, as the catalyst oxidizes the MOX. The effectiveness of
pollutant degradation is dependent on how many active sites are available on the catalyst
surface. The hydroxyl, superoxide radicals and holes generated could directly oxidize the
MOX molecules to form the degradation by-products CO2 and H2O. However, we observed
in the radical scavenging experiments that the contribution of the holes and superoxide
radicals was less than that of the hydroxyl.
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3. Experimental Methods
3.1. Materials

The supplier of the antibiotic moxifloxacin (BAY12-80369 MOX 98%) was Bayer (Berlin,
Germany). For our experimental work, natural graphite flakes were purchased from Sigma
Aldrich (Saint Louis, United States). Daejung Chemicals (Gyeonggi, Korea) provided
the sulfuric acid (H2SO4 98.0% purity), anhydrous ethanol (EtOH, 99.8%), potassium
permanganate (KMnO4 99.8%), zinc nitrate hexahydrate [Zn(NO3)2·6H2O, 99.0%], ethy-
lene glycol (99.9%), and N,N-dimethylformamide (DMF). Without additional purification,
terephthalic-acid (1,4-benzenedicarboxylic acid, H2BDC, 99.9%), hydrochloric-acid (HCl
36%), phosphoric-acid (H3PO4 87%) and hydrogen peroxide (H2O2 35%) by Duksan Chem-
ical (Ansan, Korea) were all employed as analytical-grade reagents. All studies were
conducted using deionized (DI) water.

3.2. Analysis and Characterization

The as-synthesized samples’ physicochemical properties were investigated using
various tools and methods, such as an X-ray powder diffractometer (XRD)(9JDX-3532 JEOL,
Tokyo, Japan), An Alpha-Bruker Fourier transform infrared spectroscopy (FTIR(Mannheim,
Germany)Scanning electron microscopy (SEM)(JSM5910 JEOL, Tokyo, Japan), and a UV-Vis
spectrophotometer(Cecil CE 7400, Waltham, USA). To sonicate the reaction solution, an
ultrasonic bath (E30 H Elmasonic) (Elma Ultrasonic, Singen, Germany)was used.

3.3. Zn-Based MOF (MOF-5) Preparation

The DMF technique was used to synthesize the MOF-5, in line with the report, after
modification. In a single-step experiment, a homogeneous solution was made by vigorously
stirring 0.6 g of Zn(NO3)2·6H2O and 0.12 g of terephthalic acid (H2BDC) with 20 mL of
ethylene glycol for an hour. An autoclave composed of stainless steel and coated with
Teflon was used to heat the solution for eight hours at 170 ◦C. The product was obtained by
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centrifugation, cooling at room temperature, and repeated washes with DMF and ethanol.
The solvent was removed by dissolving the creamy white precipitates in pure chloroform
solvent for 24 h at room temperature. The final product was then collected and washed
with ethanol before being dried at 70 ◦C.

3.4. Synthesis of Graphene Oxide (GO)

A modified Hummers method was applied to manufacture GO from graphite pow-
der [66]. A flask equivalent to 50 mL of 98 percent H2SO4 was placed in an ice-bath. The
flask was then filled with 2.0 g of graphite and vigorously agitated. After that, 6.0 g of
KMnO4 was gradually added to the flask while the temperature of the reaction was sus-
tained under 25 ◦C in an ice bucket for approximately half an hour. The reaction mixture
was then heated in a water-bath up to 35 ◦C, stirred for roughly 45 min, and then added to
the flask. The reaction temperature was further raised to 90 ◦C after adding 50 mL of water
to the flask containing the reaction mixture, and the mixture was finally stirred for 30 min.

3.5. Synthesis of Metal Organic Framework-5/Graphene-Oxide (MOF-5/GO)

With multiple changes to a typical MOF-5 [67], the MOF-5/GO nanocomposite was
synthesized by adapting the single-step solvothermal method. Initially, 0.6 g of Zn
(NO3)2·6H2O and 0.12 g of terephthalic acid H2BDC were dispersed in 60 mL of DMF to
obtain a final clean solution. To create a homogenized DMF emulsion of graphene oxide,
0.36 g of GO was sonicated into a solution of 10 mL of DMF for 120 min [68]. Following the
addition of the GO suspension, the previously clean solution was stirred for an additional
30 min, before being transferred to a 100 mL stainless-steel autoclave lined with Teflon
and heated to 120 ◦C for 48 h. After that, a vacuum drying process employing a desiccator
fitted with a heater at 80 ◦C for 12 h was used to produce the resulting solid sample, which
was cleaned with DMF and CHCl3. The hybrid materials were named MOF-5-GO in their
first state of synthesis.

3.6. Fabrication of Ni/MoS2/MOF-5-GO Nanocomposite

A hydrothermal approach was employed to fabricate the MOF-5/GO composite. In
50 mL of deionized water, 0.3 g of sodium molybdate dihydrate (Na2MoO4·2H2O) and
0.5816 g of nickel nitrate hexahydrate (Ni(NO3)2·6H2O) were mixed. This mixture was
homogenized by using a sonicator for 30 min. Following that, 0.15 g of sodium sulphide
nonahydrate was dissolved in 100 mL of DI water to create a 0.006 molar aqueous solu-
tion of sodium sulphide nonahydrate (Na2S·9H2O); 12 mL of this was pipetted out and
added to the above solution. In a further step, 0.25 g of freshly prepared MOF-5/GO
was added and it was stirred once more for an hour. The mixture was then transferred
to a sealed Teflon vessel and incubated for 21 h at 90 ◦C. After lowering to room temper-
ature, the catalyst was centrifuged (4500 rpm) for 15 min. The obtained product was a
Ni/Mo.S2/MOF-5/GO composite rinsed with deionized water and anhydrous ethanol.
Following that, the precipitates were desiccated for 8 h at 25 ◦C. The acquired product was
finally grounded and stored. By adapting the scheme proposed above in Figure 7a,b the
photocatalyst composites Mo.S2/MOF-5/GO, Ni.S2/MOF-5/GO, Ni/Mo.S2/MOF-5 were
also successfully synthesized.

3.7. Photocatalytic Experiments

MOF-5-based Ni/Mo.S2/MOF-5/GO photocatalysts used to degrade moxifloxacin
molecules out of wastewater were investigated. In a typical experiment, without adding
any further chemicals, the aqueous solution of MOX was created and used as a sample of
wastewater. Prior to the desired dilution (10 ppm), the stock solution of MOX (1000 ppm)
was prepared by dissolving 0.1 g of MOX in 100 mL of distilled water. In tests involving
photocatalytic degradation, 10 mg of photocatalyst was introduced to a photoreactor
containing 50 mL of MOX solution atpH 5. The solution was stirred magnetically in a dark
room for 30 min, then placed in sunlight for 90 min to observe the adsorption-desorption
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equilibrium. Under dark conditions, there was no degradation of MOX observed; however,
the photocatalytic efficiency for MOX degradation was significantly enhanced up to 90 min
when Ni/Mo.S2/MOF-5/GO composite was irradiated with unfiltered sunlight.
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During the process, aliquots of 2 mL were withdrawn from the parent solution af-
ter 10 min intervals, separated through centrifugation, and the intensity of characteristic
electronic absorption band was noted using a UV-Vis spectrophotometer. The degrada-
tion of MOX was recorded by observing the reduction in the UV-Vis absorption spectra
(max = 290 nm) as a function of exposure time. The following equation was used to calcu-
late MOX (%R) removal efficiency:

% R = (C0 − C)/C0 × 100 (8)

where, C0 (mg L−1) is the primary concentration of MOX and C (mg L−1) is the secondary
concentration of MOX after photocatalytic decomposition in response to a series of catalysts
at different time intervals under UV irradiation [69,70].

4. Conclusions

In summary, we have effectively synthesized a unique hybrid photocatalyst using
several bimetallic sulphide combinations and characterized it by XRD, SEM, EDS, FTIR, and
UV-Vis analysis. In this article, experimental data confirm that metal organic frameworks
with specific surface areas such as MOF-5 can be synthesized by combining double sulfides
of bi-metals (nickel and molybdenum). There is a substantial difference in photocatalytic
activity between GO modified with sulfides of a single metal (molybdenum or nickel)
and GO modified with sulfides of both metals. The hybrid composite Ni/Mo.S2/MOF-
5/GO displayed excellent visible light-driven photocatalytic activity in contrast to the
other hybrids, Ni.S2/MOF-5/GO, Mo.S2/MOF-5/GO, and Ni-Mo.S2/MOF-5. This was
due to the improved photocatalytic performance related to the development of the best
junction of the Ni/Mo.S2/MOF-5/GO composite. When photodegradation occurs, GO,
with its outstanding conductivity, and MOF, with its specific adsorption action, are both
involved. The separation and resettlement of photo-generated carriers benefit from this
synergistic action. Consequently, Ni/Mo.S2/MOF-5/GO has good recycling performance,
as demonstrated by the cyclic experiment, and its photodegrading efficiency is estimated
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to be 95%. The improved photocatalytic activity of the Ni/Mo.S2/MOF-5/GO hybrid was
attributable to a significant rise in the overall number of photogenerated electron/hole pairs
(e−/h+), and the active species (OH•) and (O2

•−). Results of scavenger tests confirmed
that the OH• and O2

•− radicals were vital to the photodegradation of MOX. The h+ radical,
on the other hand, appeared to be a relatively inactive species for degradation. Based on
this research, it can be concluded that the modification of the bimetallic sulphide MOF-
5 by using GO (electron acceptor) was effective and can serve as an inspiration for the
development of other MOF-5/GO composite photocatalysts to increase their applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13060984/s1, Figure S1: Optimization of reaction parameters
using Ni/Mo.S2/MOF-5/GO, Ni.S2/MOF-5/GO, Mo.S2/MOF-5/GO, Ni/Mo.S2/MOF-5 (a) MOX
concentration, (b) photocatalyst dosage (c) Effect of pH of on degradation of moxifloxacin (d) MOX
degradation by all catalysts as a function of time under sunlight irradiation; Figure S2: Fourier trans-
form infrared (FTIR) spectra of sample (a) Ni/Mo.S2/MOF-5/GO, (b) NiS2/MOF-5/GO, (c) Mo.S2/
MOF-5/GO, (d)Ni/Mo.S2/MOF-5 nanocomposites of the used catalysts after cycling to verify their
structural stability.
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