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Abstract: The dual Z-scheme heterojunction CuBi2O4/Bi2Sn2O7/Sn3O4(CBS) was successfully con-
structed through in situ growth methods, and its photocatalytic performance was evaluated via
degradation of tetracycline hydrochloride under visible light. Out of all samples, CBS-2 exhibited
the highest photocatalytic activity, with an apparent rate constant of 2.34, 20.16, and 44.17 times that
of Bi2Sn2O7, CuBi2O4, and Sn3O4, respectively. Even after four cycles, the photocatalytic efficiency
remained above 85%. The improvement can be attributed to the construction of the Z-scheme hetero-
junction, which effectively promotes the separation and migration of photogenerated carriers. The
possible photocatalytic degradation mechanism of dual Z-scheme heterojunction CBS was deduced
based on the theory of free radical capture and energy band.

Keywords: dual Z-scheme; photocatalysis; tetracycline; visible light

1. Introduction

In recent years, antibiotics have been widely used in many fields, but at the same
time, they are difficult for the human body to completely metabolize, and a large quantity
of them enter the water environment through the digestive system, causing increasing
water pollution. Furthermore, they are reabsorbed by the human body through the water
environment, which is harmful to human health [1–4]. Therefore, antibiotic pollution has
become a major problem in water pollution control. Among them, tetracycline, as a class
of common broad-spectrum antibiotics, is widely used in animal husbandry and animal
medicine, but due to years of overuse, its residues exist in the water environment for a long
time and are difficult to degrade [5]. Therefore, safe and effective removal methods have
received extensive attention.

Commonly used methods for the removal of antibiotics are adsorption [6,7] and
biodegradation [8,9], but their shortcomings are also obvious: the enrichment transfer
process producing secondary pollution, the low removal efficiency, the high price, the
more toxic by-products, and the large energy consumption. Photocatalysis can be used
as a safe, effective, and environmentally friendly method to degrade tetracycline [10–13].
Mukhtar et al. prepared dual Z-scheme core–shell PANI-CeO2-Fe2O3-NiO heterojunctions
to remove MB and MO dyes, with removal rates of 99% and 98%. Increased photocat-
alytic activity can be attributed to dual Z-scheme formation and the core–shell morphol-
ogy of PANl, which effectively promote the separation of photogenerated carriers [14].
Munawar et al. prepared a dual Z-scheme Sm2O3-WO3-La2O3 nanocomposite to remove
MB and MO dyes, with removal rates of 99% and 96% [15]. However, its photocatalytic
stability, absorption spectrum range, and degradation capability limit its further application.
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Therefore, the development of stable, efficient, and visible light photocatalysts is one of the
most important objectives in the field of photocatalysis.

Bi2Sn2O7(BSO) is a Bi-based pyrochlore structure photocatalyst with the advantages
of a moderate band gap (2.7 eV), adjustable structure, low cost, easy doping modifi-
cation, and non-toxicity [16–20]. However, the high recombination rate of photogen-
erated electrons and holes and poor quantum efficiency limit the improvement of its
photocatalytic performance [21–23]. Among many methods for improving photocatalytic
performance, the construction of heterojunction structures is one of the most effective
methods [24–26]. The Z-scheme heterojunction couples two semiconductors with matching
band gaps, based on maintaining the light absorption range, by which the separation
efficiency and redox capacity of carriers are improved, therefore improving the photocat-
alytic performance [19,23,27]. Considering the relatively positive CB potential of BSO, it is
necessary to select photocatalysts with better matching energy band structures to form a
Z-scheme structure.

CuBi2O4(CBO), a novel Bi-based photocatalyst with a relatively negative CB poten-
tial and narrow band gap (1.7 eV), has attracted much attention due to its wide light
absorption range and high light absorption efficiency. At the same time, it also has the
disadvantage of a high carrier recombination rate [28–30]. Hence, CuBi2O4 can be selected
as suitable semiconductors to construct a heterojunction structure with a matched energy
band structure.

Sn3O4(SNO) is also a promising candidate for the construction of Z-scheme hetero-
junctions due to the ideal band gap (2.5 eV) and relatively negative CB potential [31–33].
Therefore, we can speculate that the construction of a dual Z-scheme heterojunction struc-
ture CBS can promote carrier separation while retaining redox capability, which is a feasible
method to improve photocatalytic performance.

In this paper, we successfully synthesized Z-scheme CBS photocatalysts using the
hydrothermal method. Then, the photocatalytic performance of the CBS composite was
tested via degradation of tetracycline under visible light irradiation. Heterojunction ma-
terials can effectively broaden the spectral response range of the photocatalyst, promote
carrier separation, inhibit recombination, and enhance photocatalytic activity. Finally, the
possible mechanism of photocatalytic degradation of tetracycline was proposed based on
our analysis.

2. Results and Discussion
2.1. Characterization

The phase of the BSO, CBO, SNO, and CBS-2 composites was characterized via XRD.
Figure 1 displays the XRD patterns of pure BSO, CBO, SNO, and CBS-2. For pure BSO, the
distinct diffraction peaks at 28.8◦, 33.4◦, 48.0◦, 56.9◦, 59.7◦, and 77.6◦ are in good agreement
with the (222), (400), (440), (622), (444), and (662) crystal planes of BSO (JCPDS NO. 87-0284).
For pure CBO, the principal peaks at 14.7◦, 20.9◦, 28.0◦, 30.7◦, 33.2◦, 37.4◦, 43.2◦, 45.1◦,
46.7◦, 47.8◦, 53.0◦, 55.6◦, 57.9◦, 60.7◦, 64.3◦, 66.0◦, 73.0◦, 74.4◦, and 78.2◦ are consistent with
the (110), (200), (211), (220), (310), (202), (222), (330), (411), (420), (213), (332), (422), (521),
(512), (413), (541), (602), and (622) crystal planes of CBO (JCPDS NO. 72-0493). For pure
SNO, the main peaks at 27.0◦, 32.3◦, 37.0◦, 50.0◦, and 51.7◦ are well-matched with the (111),
(−121), (130), (−301), and (−1−32) crystal planes of Sn3O4 (JCPDS NO. 16-0737). There
are no extra peaks from the SnO2 or SnO phase appearing in the XRD pattern of SNO,
implying that the as-synthesized sample is pure SNO. The sharp feature peaks of the pure
sample represent high crystallinity, and no extra impurity peaks indicate its high purity.
Because of the low content and overlapping characteristic peaks, the main diffraction peaks
of the composite samples are similar to BSO; however, they are consistent with the (111)
crystal plane of SNO at 27◦ and the (202) crystal plane of CBO at 37.5◦, which proves the
coexistence of BSO, CBO, and SNO phases in the CBS composites. In summary, the double
Z-scheme CBS-2 was successfully obtained.
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Figure 1. XRD patterns of BSO, CBO, SNO, and CBS-2 composite samples.

TEM and HRTEM indicate the morphology and crystalline structure of the as-prepared
photocatalyst. As shown in Figure 2a–c, pure BSO is composed of many microspheres,
CBO presented rod-like morphology, and SNO exhibited the flower structure. Figure S1
shows the TEM image of composite CBS-2, in which CBO and SNO can be identified; parts
of BSO microspheres were successfully distributed on the surface of SNO and CBO due
to the in situ generation method. In Figure 2d, we can display the 0.31 nm crystal lattice
corresponding to the (222) crystal plane of BSO, the 0.24 nm crystal lattice corresponding
to the (211) crystal plane of CBO, and the 0.32 nm crystal lattice corresponding to the
(111) crystal plane of SNO, respectively. BSO, CBO, and SNO are observed to be closely
combined. Therefore, the TEM and HRTEM images prove the existence of CBO and SNO
in the composite material and they are in close connection with the basal BSO material and
jointly construct the heterojunction structure.
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The micro-strain variation is linked with the crystallite size changes, and δ (δ = 1/D2)
has a direct impact on lattice imperfection. We can calculate the average crystalline size
from the XRD results using the Debye–Scherrer formula [34]:

D = K λ/β cosθ

The average crystalline size of BSO, CBO, SNO, and CBS-2 is about 17.5 nm, 11.6 nm,
10.3 nm, and 17.2 nm, respectively, which also supported TEM results.

XPS testing was used to further confirm the elemental composition and valence state
of the prepared materials. The XPS survey spectra of BSO and CBS-2 are reproduced in
Figure S2. The BSO contains Bi, Sn, and O elements, while the composite samples contain
Bi, Sn, O, and Cu elements, which suggest the coexistence of CBO in CBS-2. In Figure 3a,
the Bi 4f high-resolution spectrum, the peaks near 164.7 eV and 159.4 eV correspond to the
orbital binding energies of Bi 4f5/2 and Bi 4f7/2, respectively, which proves that in BSO and
composites, Bi exists in the form of Bi3+ [35,36]. In Figure 3b, the Sn 3d high-resolution
spectrum of BSO, the orbital binding energies of 3d3/2 and 3d5/2 correspond to the peaks
near 486.9 eV and 495.6 eV, respectively, which proves that it exists in the form of Sn4+ [37].
In the Sn 3d high-resolution spectrum of the complex, 3d3/2 and 3d5/2 can be deconvoluted
into four peaks, indicating that there is more than one valence state of Sn in the sample.
The peaks near 486.8 eV and 495.5 eV correspond to Sn4+, and the peak at 486.3 eV and
494.8 eV corresponds to Sn2+ [38]. In Figure 3c, the Cu 2p high-resolution spectrum, the
binding energies of Cu 2p3/2 and Cu 2p1/2 peaks are 934.7 eV and 954.8 eV, represent-
ing Cu2+ [39]. In Figure 3d, the O 1s high-resolution spectrum, the binding energy of
529.8 eV corresponds to the Bi-O bond, 531.7 eV corresponds to the Sn-O bond, and
532.2 eV corresponds to the surface adsorbed oxygen [40].
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We measured the average particle size using dynamic light scattering. The average
particle size of BSO, CBO, and SNO is 1142 nm, 463.1 nm, and 287.6 nm, CBO/BSO is
522.1 nm, and CBS-1, CBS-2, and CBS-3 is 207.3 nm, 208.6 nm, and 211.5 nm, respectively,
which is similar to the TEM images. Although the average crystalline size of CBS-2 is similar
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to that of BSO, its average particle size is smaller, and the particles are more dispersed,
which means that it has a larger specific surface area and more active sites.

The light absorption range of a photocatalyst is closely related to its photocatalytic
capacity. The as-prepared samples were characterized via UV–Vis diffuse reflectance spec-
troscopy to investigate their optical absorption characteristics. According to Figure 4a,
the absorption edge range of BSO is about 450 nm–500 nm, CBO is about
750 nm–800 nm, and that of SNO is about 500–550 nm. The composite photocatalyst
CBS-2 is slightly red-shifted on the base of pure BSO, which confirms the visible-light
response ability of CBS-2. Their band gaps can be obtained from the following formula [41]:

Ahν = A(hν − Eg)n/2

where α, h, ν, and Eg represent proportionality constant, Planck constant, and optical
frequency, and n is related to semiconductor type. According to the literature, BSO and
SNO are indirect semiconductors, n = 4, and CBO is a direct semiconductor, n = 1 [35,39,42].
Therefore, it can be roughly deduced that the Eg of BSO is 2.76 eV, the Eg of CBO is
1.55 eV, and the Eg of SNO is 2.39 eV. The calculation results are shown in Figure 4b,c,
which is consistent with the previous literature.
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In addition, the band structure of photocatalysts is also one of the important factors
affecting the photocatalytic ability of photocatalysts. We can implement the Mott–Schottky
(M–S) curves to measure its flat-band potential, then estimate the position of the energy
band of the photocatalytic materials. As illustrated in Figure 4d–f, the slopes of BSO and
SNO tangents are positive, indicating that both BSO and SNO are n-type semiconductors.
The slope of the CBO tangent is negative, indicating that CBO is a p-type semiconductor.
The tangents of BSO, CBO, and SNO are extended, and the flat band potential (Efb) of BSO,
CBO, and SNO is about 0.3 eV, 0.63 eV, and −0.85 eV, respectively (Efb|Ag/AgCl). We can
obtain standard hydrogen electrode values by using the following equation [43]:

Efb|NHE = Efb|Ag/AgCl + 0.197

The minimum value of the n-type conduction band (CB) semiconductor is about 0.1 eV
higher than the flat-band potential, and the maximum value of the p-type semiconductor
valence band (VB) is about 0.1 eV lower than the flat-band potential. Therefore, the ECB
values of BSO and SNO are calculated as 0.40 eV and −0.75 eV, and the EVB values of CBO
are calculated as 0.93 eV. Then, we calculate their corresponding potential according to the
following formula:

EVB = ECB + Eg

Therefore, it can be concluded that the EVB values of BSO and SNO are calculated as
3.16 eV and 1.64 eV, and the EVB values are calculated as −0.92 eV [30,40,44].

2.2. Photocatalytic Activity

We tested the photocatalytic performance of the photocatalyst via the degradation
efficiency of the model pollutant, tetracycline solution, under visible light. Results are as
shown in Figure 5a,b: pure samples reveal poor photocatalytic activities, the photocatalytic
activities of BSO, CBO, and SNO are only 56.2%, 10.3%, and 5%, and the CWO/BSO het-
erojunction material showed higher photocatalytic activity than pure samples, but lower
than the CBS Z-scheme heterojunction under the same conditions. The best photocatalytic
activity of CBS-2 is 89.7% under the same conditions. This may be because, due to the
increase in CBO and SNO content, more heterojunction structures were generated, thus
improving the photocatalytic activity. However, with the further increase in CBO and
SNO content, the photocatalytic activity of the composite decreases, which may be be-
cause the decrease in active reaction sites reduces the optical adsorption capacity of the
composite catalyst [45,46].
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Figure 5. (a) Dynamic degradation curves of TC by different samples under visible light illumination,
(b) dynamic degradation curves of TC by CBS with different composite proportions, (c) the apparent
kinetic constants corresponding to BSO, CBO, SNO, CBO/BSO, and CBS-2 TC degradation, (d) the
apparent kinetic constants corresponding to CBS with different composite proportions TC degrada-
tion, (e) XRD patterns comparison before and after photocatalytic cycling, (f) photocatalytic cycling
tests for TC degradation.

The comparison of the tetracycline degradation activity of CBS-2 and other photocat-
alytic materials is shown in Table 1.

Table 1. Comparison of the photocatalytic performance of different photocatalysts.

Photocatalysts Quality TC Content Light Source Efficiency Ref

Bi2Sn2O7/UiO-66-NH2 10 mg 50 mL
25 mg/L

400 W Xe lamp
λ > 400 nm

86%
(120 min) [47]

Bi2Sn2O7/Bi2MoO6 35 mg 100 mL
20 mg/L

300 W Xe lamp
λ > 400 nm

99.4%
(100 min) [37]

BiOBr/Bi2Sn2O7 20 mg 20 mL
20 mg/L

500 W Xe lamp
λ > 400 nm

51.3%
(80 min) [48]

C3N4/Bi2Sn2O7 200 mg 100 mL
20 mg/L

300 W Tungsten
Halogen lamp

80.4%
(90 min) [49]

SnO2/Bi2Sn2O7 25 mg 50 mL
20 mg/L

300 W Xe lamp
λ > 400 nm

88.4%
(180 min) [50]

Ag/Bi2Sn2O7-C3N4 200 mg 200 mL
20 mg/L

400 W Tungsten
Halogen lamp

89.1%
(90 min) [51]

BiOBr/Bi2Sn2O7 10 mg 30 mL
10 mg/L

300 W Xe lamp
λ > 400 nm

50.4%
(60 min) [27]

Ag@ZnO/Bi2Sn2O7 50 mg 100 mL
10 mg/L

300 W Xe lamp
λ > 400 nm

74%
(60 min) [20]

Nd2Sn2O7/Bi2Sn2O7/Ag3PO4 20 mg 50 mL
15 mg/L

45 W lamp
λ > 400 nm

97.1%
(120 min) [23]

CuBi2O4/Bi2Sn2O7/Sn3O4 50 mg 100 mL
5 mg/L

300 W Xe lamp
λ > 400 nm

89.7%
(100 min) This work

Figure 5c,d shows the apparent kinetic constants of different catalysts degrading
tetracycline solution, which can be calculated according to the following equation [52]:

−ln(Ct/C0) = kt

C0 represents the concentration of the tetracycline solution before illumination starts
after dark treatment, and Ct represents a concentration of the tetracycline solution at t min.
As illustrated in Figure 5c,d, the apparent rate constant values of BSO, CBO, and SNO are
0.1674, 0.0195, and 0.0089 min−1, that of CBO/BSO is 0.2572 min−1, and those of CBS-1,
CBS-2, and CBS-3 are 0.3381, 0.3931, and 0.2852 min−1. The composite CBS-2 possessed the
highest k value, about 2.34, 20.16, and 44.17 times those of pure BSO, CBO, and SNO.

The R2 value of BSO, CBO, and SNO are 0.8455, 0.8397, and 0.994, that of CBO/BSO is
0.967, and those of CBS-1, CBS-2, and CBS-3 are 0.9389, 0.9475, and 0.9785. The R2 value of
most photocatalysts is greater than 0.9, except for BSO and CBO.
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In addition to photocatalytic activity, the stability and reusability of photocatalysts
are also key considerations restricting their applications [53]. XRD tests were carried
out before and after the photocatalytic cycling experiment, respectively. Figure 5e shows
that the crystal structure of the photocatalyst has no obvious change after four cycles of
photocatalysis. In Figure 5f, the degradation efficiency remained stable after four cycles,
the degradation rates of the four repeated experiments were 88.9%, 87.2%, 86.1%, and
85.6%, and the photocatalytic activity of CBS-2 was only slightly decreased by about 4.3%
after four photocatalytic cycling experiments. The decrease in activity may be due to
the adsorption of TC by the active site of the catalyst. In short, the composite material
can be reused.

2.3. Photocatalytic Mechanism

To investigate the transfer and separation efficiency of photogenerated carriers, pho-
tocurrent cycle experiments were carried out on samples. A high photocurrent intensity
reflects high separation efficiency [54]. As shown in Figure 6a, the photocurrent intensity
of CBS-2 is higher than that of the pure samples, which indicates that the CBS-2 composite
material has the strongest carrier transfer and separation efficiency.
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impedance spectroscopy of BSO, CBO, SNO, and CBS-2, (d) effects of different trapping agents on TC
degradation of CBS-2, (e) the ESR signals of •O2

− of pure BSO and CBS-2 photocatalysts, (f) the ESR
signals of •OH of pure BSO and CBS-2 photocatalysts.
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The relatively weak PL intensity represents a high separation efficiency [55]. In
Figure 6b, the high PL emission peaks of BSO, CBO, and SNO imply a high photogenerated
carrier recombination rate, while CBS-2 shows a lower emission peak. Constructing a
double Z-scheme heterostructure between BSO, CBO, and SNO, the carrier separation effi-
ciency is higher than that of the pure sample, and the recombination of electron–hole
pairs can be suppressed effectively so that the composite material exhibits enhanced
photocatalytic activity.

To confirm the difference in the charge transfer separation efficiency and impedance
between different samples, electrochemical impedance spectroscopy (EIS) tests were per-
formed on BSO, CBO, SNO, and the composite material. The smaller radius of the circle
in the diagram means lower resistance, and faster electron migration rate [56]. Figure 6c
shows the relative radius of the pure and composite photocatalyst, sorted by size as
CBO > SNO > BSO > CBS-2.

According to characterization results, due to the successful construction of the hetero-
junction, the average particle size was reduced, the optical absorption range of CBS was
widened, the carrier separation efficiency was improved, and the photogenerated carrier re-
combination rate was reduced; therefore, the photocatalytic activity was
significantly improved.

To inspect the main active radicals in the photocatalytic process of the CBS-2 composite,
we performed a radical trapping experiment. The experimental results are shown in
Figure 6d: the addition of IPA has almost no effect on the degradation efficiency, but the
degradation efficiency is significantly inhibited by the addition of BQ, and the addition
of AO also has a certain inhibitory effect on the degradation efficiency. The degradation
efficiency dropped slightly from 88.9% to 32.8% and 68.8% when BQ and AO were added.
These results indicate that •O2

− and h+ act synergistically in the photocatalytic process of
CBS-2, of which •O2

− is more important.
To elucidate the possible mechanism, ESR characterization and trapping experiments

were used to detect the main active radicals. From Figure 6e, •O2
− characteristic signals of

pure BSO cannot be obtained under visible light or in the dark, while that of CBS-2 can,
which illustrates the presence of •O2

− and its participation in the photocatalytic process.
As shown in Figure 6f, both BSO and CBS-2 can receive •OH characteristic signals after
irradiation. Trapping experiments also illustrate that h+ and •O2

− play critical roles in the
degradation of TC.

Figure 7 illustrates the possible mechanism of the photodegradation of TC. The double
Z-scheme photocatalytic is constructed with BSO, CBO, and SNO. Under visible light, they
are all motivated to generate photoproduced electron–hole pairs. According to the classic
type II heterojunction transfer mechanism, the CB of BSO (0.4 eV) is more positive, and
the electrons on the CB of CBO and SNO will transfer to the CB of BSO. Meanwhile, the h+

shift from BSO to CBO and SNO occurs because of the more positive VB of BSO. The CB
of BSO is more positive than O2/•O2

− (−0.33 eV), and the VB of CBO and SNO is more
negative than H2O/•OH (2.27 eV), so it is impossible to generate •O2

− thermodynamically.
However, that inference contrasts with the results of trapping experiments and ESR analysis.
It can be inferred that the photogenerated carrier migration follows a Z-scheme mechanism.
When BSO, CBO, and SNO are motivated to generate holes and electrons, the electrons
on the CB of BSO recombine with the holes on the VB of CBO and SNO, which not only
retains the e− of CBO and SNO with stronger reduction and the h+ of BSO with oxidation
ability in the CBS-2 system but also maintains the separation of charge carriers. Some holes
on the VB of BSO can directly degrade the TC solution, and others can react with H2O to
generate •OH to further degrade the TC solution. In addition, the electrons on the CB of
CBO and SBO can convert the adsorbed oxygen into •O2

−, thereby further oxidatively
degrading the TC solution. The construction of the double Z-scheme mechanism improves
the efficiency of carrier separation and migration while retaining the strong redox ability of
the catalyst, thereby enhancing the photocatalytic performance of the composite.
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3. Experimental
3.1. Preparation of Photocatalysts
3.1.1. Synthesis of BSO

Based on previous reports, Bi2Sn2O7 was synthesized using a simple hydrothermal
method [40]. Generally, SnCl4·5H2O (2.80 g) was dissolved in 80 mL H2O, Bi(NO3)3·5H2O
(3.88 g) was added slowly to it under rapid stirring, and 80 mL 2 M NaOH solution was
gradually dropped into it afterward. Then, the suspension was transferred to a 200 mL
stainless steel hydrothermal kettle and kept at 180 ◦C for 24 h, filtered and cleaned with a
large amount of water and absolute ethanol after the reaction to separate the powder from
the liquid, and finally dried at 60 ◦C to collect the yellow powder. The material is recorded
as BSO.

3.1.2. Synthesis of CBO/BSO

Firstly, Bi(NO3)3·5H2O (2.42 g), Cu(NO3)2·3H2O (0.60 g) and NaOH (0.87 g) were
distracted into 80 mL water and stirred for 3 h. Then, a certain amount of BSO was added
and stirred for 1 h. Finally, the mixed solution was transferred to a 100 mL stainless steel
hydrothermal kettle and kept at 180 ◦C for 24 h, filtered and cleaned with a large amount
of water and absolute ethanol after the reaction to separate the powder from the liquid,
and finally dried at 60 ◦C for use. The mass ratio between CBO and BSO in the prepared
samples was 1%, which was denoted as CBO/BSO. Pure CBO samples were prepared
through the same protocol without the addition of BSO [30].

3.1.3. Synthesis of CBS

We fully dissolved Na3C6H5O7·2H2O (2.94 g) and SnCl2·2H2O (0.90 g) in 10 mL of
water, gradually dropped 10 mL of 0.2 M NaOH into it under continuous stirring, added a
certain amount of CBO/BSO after stirring for half an hour, and stirred for another hour.
The suspension was put into a 50 mL hydrothermal reactor, and reacted at 180 ◦C for
12 h; after cooling, the product was filtered and washed with a large amount of water and
absolute ethanol, and finally dried at 60 ◦C for later use. The sample with a mass of CBO
accounting for 1% of the total mass and a mass of SNO accounting for 1% of the total mass
was labeled as CBS-1, the sample with a the mass of CBO accounting for 1% of the total
mass and a mass of SNO accounting for 2% of the total mass was labeled as CBS-2, and
the sample with a mass of CBO accounting for 2% of the total mass and a mass of SNO
accounting for 5% of the total mass was labeled as CBS-3. Pure SNO samples were prepared
through the same protocol without the addition of CBO/BSO [44].
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3.2. Characterization Methods

The composition and crystallinity characteristics of the as-prepared photocatalysts
were measured with an X-ray powder diffractometer (Shimaduz-6100, Kyoto, Japan) at
a scan rate of 10◦/min from 10◦ to 80◦. Transmission electron microscope (TEM) images
and high-resolution transmission electron microscope (HRTEM) images were used to ob-
serve the size and microstructure of the photocatalytic materials. X-ray photoelectron
spectroscopy (XPS) was carried out on a Thermo (Waltham, USA) ESCALAB 250Xi spec-
trometer, which was devoted to analyzing the elemental composition and its valence state
in the photocatalysts. The particle size of the characterized photocatalysts was analyzed
with a Malvern Zetasizer Nano ZS90. Taking BaSO4 as the reflection standard to test
the absorption edge of the sample, the UV-Vis diffuse reflectance spectra (UV-DRS) were
performed on a Shimadzu UV-3600 spectrophotometer in the range 200 nm to 800 nm.
Electrochemical tests were obtained with a CHI-660D electrochemical workstation. We used
0.1 M sodium sulfate solution as an electrolyte solution in photoelectric tests. The sample
electrode played the role of the working electrode. In the beginning, 10 mg of photocata-
lysts and microscale Nafion were uniformly dispersed in a minute quantity of ethanol via
ultrasonic treatment. Then, the mixture was spread evenly on one square centimeter area
of FTO glass. Finally, it was dried at 120 ◦C for 2 h. Photoluminescence (PL) spectra were
characterized using a fluorescence spectrometer (Cary Eclipse, Agilent, Santa Clara, CA,
USA) at an excitation wavelength of 520 nm. The electron paramagnetic resonance spectra
of the as-prepared photocatalysts were characterized with the JES FA200 EPR Spectrometer.
Radicals were measured via electron spin resonance (ESR, EOL JES-FA200 EER) using
5,5-dimethyl-1-pyrroline oxynitride (DMPO) as a spin trap.

3.3. Photocatalytic Evaluation

The photocatalytic performance of the samples was evaluated by calculating the degra-
dation rate of tetracycline under 300 W xenon lamp irradiation with a filter (λ > 400 nm).
Firstly, an aqueous solution containing tetracycline (100 mL, 5 ppm) and 50 mg photocat-
alyst was stirred uniformly in the dark for half an hour to reach adsorption–desorption
equilibrium. Then, it was placed in a 250 mL cylindrical quartz reactor cooled with cold
water circulating outside the reactor. The stirrer was used to ensure that the suspension
stayed homogeneous during the photocatalytic reaction, removing the supernatant from the
reactor at intervals. Finally, after sampling and centrifugation, the supernatant was filtered
through a 0.22 m filter membrane and then quantitatively analyzed via high-performance
liquid chromatography. The mobile phase was methanol, acetonitrile, and 0.01 M oxalic
acid in a 1:2:7 volume ratio.

4. Conclusions

In summary, we synthesized a double Z-scheme CBS-2 photocatalyst using the in
situ generation method and found that it exhibited stronger photocatalytic performance
than the constituent parts. The best sample, CBS-2 composite, achieved 89.7% degradation
efficiency of TC solution under visible light irradiation. The value of k was about 2.34,
20.16, and 44.17 times those of BSO, CBO, and SNO. The active species •O2

− and h+ all
participated in the removal of TC, in which •O2

− plays a major role. Considering the results
of the capture experiment and ESR characterization, the electron transfer pattern follows the
Z-scheme heterojunction. The Z-scheme heterojunction suppressed the recombination of
photogenerated carriers and retained the strong redox ability of the catalyst. Furthermore,
it possessed good stability after cycle experiments. Hence, the dual Z-scheme CBS-2
photocatalyst has a huge application prospect for removing wastewater under visible light.
In a word, we advance the study of Z-heterojunction photocatalysis, then provide a new
method to improve the photocatalytic activity of BSO, and finally find a photocatalytic
material that can degrade tetracycline efficiently.
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