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Abstract: With an increase in energy consumption globally, Fischer-Tropsch (FT) synthesis is a good
alternative for producing fuels and chemicals from coal, natural gas or biomass. Among them, coal to
liquids has been put into production in countries that have large coal reserves. In this process, Fe-based
catalysts are commonly used due to their earth abundance, comparatively wide operation range and
ready availability to handle low H2/CO ratio from coal. Despite their extensive applications, the kinetic
and mechanistic understandings of Fe carburization and FT reaction on Fe-carbides are relatively limited
due to the complexity of the phase composition of the applied catalysts. This review summarizes the
current state of knowledge of FT synthesis on Fe-carbide with an emphasis on the underlying mechanism.
Specifically, the employment of a model catalyst, such as Raney Fe, could provide a convenient way to
furnish kinetic information regarding Fe carburization and subsequent FT reaction. A major challenge
for further understanding catalytic reactions occurring at the Fe-carbide surface is correlating FT activity
and selectivity to a specific active site. To address this issue, the advancements of both DFT calculations
and surface science techniques are highly demanded.

Keywords: Fischer-Tropsch synthesis; Fe-carbide; mechanism; synthesis gas; Fe carburization

1. Fischer-Tropsch Synthesis

Fischer-Tropsch (FT) process has been widely investigated for almost 100 years. In
the 1920s, German scientists Franz Fischer and Hans Tropsch first developed this process,
in which a mixture of H2 and CO (synthesis gas) can be converted to valuable long-chain
hydrocarbons like gasoline, diesel fuel and chemicals (olefins, alcohols or acids) [1,2]. The
FT process was first commercialized in Germany prior to the Second World War. It could
offer synthetic fuel for the German war machine due to the abundant domestic coal supplies
used for producing synthesis gas [3]. After the Second World War, the development of
this process stalled because low crude oil prices led to a strong growth and dominance
of the petroleum oil industry [4]. The interest in the FT synthesis was revived in South
Africa during the Apartheid regime in the 1970s. During this period, the supply of oil
in South Africa was cut off due to international sanctions, but through the FT synthesis,
South Africans were still able to produce the required fuels and chemicals from coal. At
the same time, the energy crises in 1973 and 1978 have also stimulated the global interest
and exploration of alternative fuel production by expanding the commercialization of
FT processes [5]. Besides coal, natural gas and biomass are also considered as important
alternatives. The process to convert these carbon sources to valuable chemicals is often
referred to as “X to liquid” (XTL), in which X stands for the feedstock from which synthesis
gas is derived, e.g., coal (CTL), natural gas (GTL) or biomass (BTL) [6]. Although most of
these embodiments still rely on fossil resources, CTL and GTL enable the production of
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clean transportation fuels that are free of heavy metals, aromatics or contaminants such as
nitrogen and sulfur. Currently, large XTL processes are operated in Malaysia by Shell, in
Qatar by Shell and SASOL, and in South Africa, Uzbekistan and Nigeria by SASOL. Among
them, CTL is of large interest in areas with abundant coal resources, for example China and
South Africa. Currently, a large number of CTL demonstration plants and industrialization
projects are commissioned in China using Fe-based catalysts [7].

The CTL process generally consists of four chemical conversion steps (Figure 1). In the
first step, coal gasification is performed in gasifiers to produce synthesis gas, a mixture of
CO and H2. Due to the low H/C ratio of coal, the derived synthesis gas has a typical H2/CO
ratio below 1 [8]. In the second step, the water-gas shift (WGS) reaction (Equation (1))
is used to increase the H2/CO ratio tailored for the desired product distribution in the
subsequent FT synthesis step. Usually, a constant amount of CO2 is removed in the overall
CTL process, either in a WGS step prior to the FT synthesis or in the FT synthesis reactor
itself when a catalyst is used that exhibits sufficient WGS activity. CO2 produced in the FT
reactor not only decreases CO conversion, but also leads to a higher energy consumption for
separating the gas effluent from the reactor. When the main WGS conversion is conducted
in a separate WGS reactor, CO2 capture becomes more viable [9]. After cooling and
purification, the synthesis gas is introduced into the FT synthesis reactor and converted
into long-chain hydrocarbons (Equation (2)). Traditionally, these processes are realized in
either fixed and fluidized bed reactors or slurry bubble reactors. Fixed beds are suitable for
wax production, as for instance is conducted in Shell FT plants in Malaysia and Qatar [10].
The separation of products from catalysts are more cost-effective in fixed bed reactors. On
the other hand, the pressure drop in such reactors leads to higher operational costs than
other reactors. Moreover, as it is costly to replace the catalyst inventory, catalysts should
exhibit a long lifespan. As the FT reaction is highly exothermic, it is important to rapidly
remove the heat of reaction in order to avoid overheating the catalyst [11]. Compared to
fixed bed reactors, fluidized bed reactors can realize a very homogeneous temperature
distribution because of the rapid and turbulent gas/liquid movement. Another important
advantage of fluidized bed reactors is that a deactivated catalyst can be removed from the
bottom of the reactors by gas flushing, and new catalysts can be added to replenish the
spent ones for longer production runs. A drawback of such reactors is the difficulty in
separating the catalyst from the products. Fluidized bed reactors are considered to be a
promising technology for the production of lower-molecular-weight products on Fe-based
catalysts at high temperature [12]. Similar to fluidized bed reactors, slurry bubble reactors
can meet the requirement of an online removal/addition of a catalyst and can be operated
under isothermal conditions. Catalysts that feature high mechanical strength and attrition
resistance are required for slurry bubble reactors. As the catalysts are suspended in the
wax, separating the catalyst from wax is a major challenge [13].
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The final step of the overall XTL process is product upgrading. The mixture of products
formed during the FT process (e.g., long-chain hydrocarbons or oxygenates) need to be
processed in order to obtain high-value transportation fuels and base chemicals using
processes such as hydrotreating, hydrocracking and hydro-isomerization. The in-reactor
upgrading of the products of FT reactions by adding zeolites to Fe-based catalysts has
also been investigated [14,15]. Among a variety of hydrocarbons, linear α-olefins (LAOs)
production and separation are gaining widespread attractions. LAOs are highly valuable
intermediates for the chemical industry [16]. Lower olefins (C2–C4 LAOs) are mainly
used as building blocks, commonly produced by the steam cracking of ethane or naphtha
and the dehydrogenation of propane [17]. The process to produce lower olefins via FT
reaction is referred to as “Fischer-Tropsch to olefins” (FTO). A substantial amount of work
has been conducted to develop highly efficient catalysts to directly convert synthesis gas
to lower olefins [18,19]. However, traditional FTO is limited by ASF distribution and
suffers from high CH4 selectivity. To address these issues, recently, the development of
oxide–zeolite bifunctional catalysts to selectively convert synthesis gas to lower olefins
has seen significant progress. The separation of CO activation and C–C coupling onto
two different types of active sites can tune C2–C4 LAOs selectivity as high as 80% at a fair
CO conversion [20,21]. LAOs with more than four carbon atoms, especially in the C5–C10
range, are even more valuable than lower olefins because of their use as co-monomers
in polymerization and as feedstocks for lubricants and detergents [22]. Currently, there
remains no commercial process for directly converting synthesis gas to higher LAOs which
do not meet consumer demand, thus hampering industrial development globally.

CO + H2O→ CO2 + H2 (1)

nCO + (2n + 1)H2 → CnH2n+2 + nH2O (2)

2. Catalysts

A general aspect of FT chemistry is the dissociation of CO in atomic C and O on metal
surfaces [23], although there are also pathways that involve the hydrogenation of CO prior
to C–O bond cleavage. Group VIII metals with unoccupied d-orbitals are capable of CO
dissociation. Based on Brønsted-Evans-Polanyi (BEP) relations, transition metals with a
lower d-band filling that will bind the dissociated C and O atoms strongly will lead to low
activation barriers for CO dissociation [24]. The termination of the chain-growth reactions
are also important as they determine the length of the hydrocarbons obtained [23].

From left to right in the periodic table, the d band of transition metals is filled [25].
Catalysts with a lower C and O binding energy to the right will hardly produce long-chain
hydrocarbons, because the CHx growth monomers are easily hydrogenated by H2, resulting
in high CH4 selectivity. Therefore, CO hydrogenation on Ni mainly produces CH4. For
Cu- and Rh-based catalysts, the main products for CO hydrogenation are alcohols due to
their low CO dissociation ability. Metals such as Ru, Co and Fe bind C and O stronger
than Ni, Cu and Rh, resulting in a higher probability for CHx intermediate to couple to
long-chain hydrocarbons. Hence, Ru-, Co- and Fe-based catalysts are the most suitable for
the FT reaction [26]. The product distribution of CO hydrogenation on transition metals is
shown in Figure 2.

Ru-based catalysts display outstanding performance for CO hydrogenation in terms
of activity, selectivity and stability. Despite this, Ru cannot serve as a base for catalysts at
the industrial scale because of the high price of this cheapest of noble metals [27]. So far,
only Co and Fe have been used as the active phase for industrial FT catalysts.
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Co-based catalysts outperform Fe-based catalysts at low temperature (200–240 ◦C),
often referred to as low-temperature Fischer-Tropsch (LTFT). Moreover, the WGS activity of
Co is much lower than that of Fe, limiting undesired CO2 formation. On the other hand, the
higher CH4 selectivity on Co-based catalysts restricts its application at high temperature
(250–350 ◦C), which is referred to as high-temperature Fischer-Tropsch (HTFT). In HTFT, Fe-
based catalysts are preferred to reduce the amount of CH4 formed [17]. Another advantage
of Fe catalysts is that they can handle the low H2/CO ratio of synthesis gas derived from
coal and biomass, owing to the substantial WGS activity [28]. On the other hand, Co-based
catalysts are typically used in combination with natural gas as a source of the synthesis
gas feedstock. Overall, the operation conditions for Fe-based catalysts are more flexible
and they can also be used in LTFT. Paraffins, such as wax, is the main product for Co-based
catalyst in LTFT, whereas Fe is mainly used for producing olefins and oxygenates in HTFT.
Metallic Co is regarded as the active phase for the FT reaction, while Fe has a high tendency
to form Fe-carbide because of a strong Fe–C bond. The most significant differences between
Co- and Fe-based catalysts are shown in Table 1.

Table 1. Comparison of Co- and Fe-based FT catalysts [29,30].

Property Co Fe

Cost expensive cheap
Reaction temperature 200–240 ◦C 250–350 ◦C

FT activity high relativley low
WGS activity neglible active

Carbon source Natural gas Coal and biomass
H2/CO ratio ~2 0.5–2.5
Active phase Metallic Co Fe-carbides

Methane selectivity high low
Products Wax (paraffins) C1–C15, olefins, oxygenates

Sulfur tolerance Very sensitive sensitive

In addition to mono-Co or Fe-based catalysts, the construction of bimetallic catalysts
incorporating both Co and Fe has attracted a wide range of attention. Yang et al. revealed
that adding Co in χ-Fe5C2 enhances the FT performance because Co is more capable of
dissociating CO [31]. The synergistic effect of Co–Fe alloy not only leads to a higher FT
activity, but is also conducive to grow long-chain hydrocarbons [32]. It was also reported
that bimetallic catalysts were more stable against deactivation compared to pure Co-based
catalysts, even though they still suffered from deactivation at high CO conversion due to
high H2O partial pressure [33].
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3. Fe-Based Catalysts

In the Earth’s crust, Fe is the fourth most abundant element, mainly existing in the
form of Fe-oxide. This abundance means that Fe is very cheap and an excellent choice for
the FT catalysis. For the industrial FT synthesis, precipitated or fused Fe in unsupported
form are mainly used as catalyst precursors [34]. Practically, precipitated Fe is employed in
fixed bed or slurry bed reactor in LTFT, predominately producing long-chain hydrocarbons,
e.g., wax [35]. On the other hand, fused Fe is mainly consumed in fluidized beds in
HTFT for olefins production [12]. The poor mechanical strength of unsupported catalysts
may lead to the plugging of the catalyst bed in fixed bed operation or to the fouling of
downstream equipment in fluidized bed operation. Supported Fe catalysts display an
enhanced dispersion of the active phase and may withstand the mechanical degradation
that threatens unsupported catalysts.

Upon activation, the Fe-oxide precursor is usually converted into a mixture of metallic
Fe, Fe-carbides and Fe-oxides and the composition of catalyst depends on many parameters
such as the catalyst precursor, catalyst pretreatment and the FT reaction conditions [36].
Despite the complexity of the composition in the working condition, a correlation between
Fe-carbide content and FT activity has been widely observed and Fe-carbide formation is
believed to be the necessary step to obtain good FT activity [37]. Fe-oxide, on the other
hand, is considered to be active for the WGS reaction, which leads to the production of
excessive CO2 [38]. In itself, CO2 production represents a loss of valuable carbon products.
As some WGS operation is needed in CTL and BTL processes, it can be worthwhile to
remove CO2 to reduce the greenhouse gas emissions of the process. A distinct feature of
Fe-carbide is that it is air sensitive [39] and readily oxidized in air at room temperature,
leading to the formation of Fe-oxide [40]. Thus, activation or carbide formation is preferably
performed in situ before starting the FT reaction [41]. For research purposes, the passivation
of the catalyst in diluted O2 is usually employed [42].

During FT reaction, ε(’)-carbide, χ-Fe5C2 and Θ-Fe3C are commonly observed in Fe-
based FT catalysts [43,44]. They are classified as interstitial carbides, because C atoms
occupy the interstices of the Fe lattice. According to the way in which C atoms occupy the
hexagonally close-packed (hcp) lattice, their structure can be divided into two categories.
In ε(’)-carbide, C atoms occupy Fe octahedral interstices ascribed to octahedral carbides,
while the C atoms in Θ-Fe3C and χ-Fe5C2 are situated in trigonal prismatic interstices. The
main differences between these three Fe-carbides are listed in Table 2.

Table 2. Comparison of ε(′)-carbide, χ-Fe5C2 and Θ-Fe3C.

ε(′)-Carbide χ-Fe5C2 Θ-Fe3C

Space group P63/mmc C2/c pnma
Crystal structure hexagonal monoclinic orthorhombic

C/Fe 0.45~0.5 0.4 0.33
Required carbon

chemical potential
High (low T,

high H2/CO)
Low (high T,
low H2/CO)

Low (high T,
low H2/CO)

Among these three carbides, ε(′)-carbide is the generic term for ε-Fe2C and ε’-Fe2.2C.
ε-Fe2C and ε’-Fe2.2C share the same space group and lattice parameter, but differ in the
chemical environment of Fe atoms [45]. The site occupancy of C in ε-Fe2C and ε′-Fe2.2C
is 0.5 and 0.45, respectively. ε(′)-carbide formation is favored at a high carbon chemical
potential, which represents the condition of low temperature and high CO partial pressure [36].
However, kinetic factors (lattice deformation, carbon diffusion) can prevent its formation at low
temperature. Hence, they are commonly observed in catalysts with relatively small particles
and in the presence of a support material or chemical promoters [46,47]. If temperature
exceeds 250 ◦C, ε(′)-carbide will transform to χ-Fe5C2 [48,49]. χ-Fe5C2 is the most observed
carbide phase in the context of FT catalysis. Several works show that χ-Fe5C2 is the main
active phase constituent at moderate FT conditions, owing to its relative thermodynamic
stability at low carbon chemical potential. When the temperature is further increased, χ-Fe5C2
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will transform to Θ-Fe3C [50]. The less active Θ-Fe3C can also evolve into a more active χ-
Fe5C2 [51]. The common feature of carbon-poor Θ-Fe3C is that it can contribute to the buildup
of carbonaceous deposits because of its near-metallic nature [36,52]. Excessive carbonaceous
deposits like graphite will cause the deactivation of the catalyst [53,54].

Despite extensive research, it is still uncertain which phase is the most active in the
FT reaction. The intrinsic activity comparison between ε(′)-carbide and χ-Fe5C2 is widely
investigated. Usually, a mixture of several Fe-carbides is obtained during reaction, making
it impossible to correlate activity with a specific phase [36,55]. Chang et al. found that the
intrinsic activity of χ-Fe5C2 is higher than ε(′)-carbide through changing the pretreatment
condition [56]. However, Chun et al. found that ε(′)-carbide performs better than χ-
Fe5C2 by introducing CO2 in the feed, which increased the amount of ε(′)-carbide [57].
Lu et al. also found that the content of ε(′)-carbide is more active than χ-Fe5C2 [58]. Another
exploration by Wezendonk et al. pointed out that the weight-normalized activities (FTY)
of χ-Fe5C2 and ε(′)-carbide are virtually identical [59]. There are also some controversial
conclusions in terms of the product distribution on different Fe-carbide phases within an
FT reaction [36,55,59,60]. The observed differences are probably caused by various factors,
such as particle size, exposed facet (phase morphology), surface carbon deposition, support
effect and the interference of other phases. To overcome these difficulties, surface-sensitive
techniques were applied to in situ measure the chemical and structural composition of well-
defined catalysts (single-crystal or flat-model catalysts) under operating conditions [61,62].
These systems were mainly focused on studying time-, pressure-, temperature-dependent
Fe carburization kinetics. To further establish a structure-activity relationship on Fe-carbide
in the FT reaction and study the underlying mechanism, synthesizing specific pure Fe-
carbide and realizing that the catalyst suffers from no phase change or deactivation during
FT reaction is of paramount importance.

Some endeavors have been made to synthesize oxide-free Fe-carbides. By using a
rapid quenched skeletal iron precursor, Xu et al. prepared a catalyst that mainly consists of
ε(′)-carbide and it showed excellent FT activity at relatively low temperature [45]. Peng
et al. took advantage of Raney Fe, which is porous and support-free and can be used as a
model catalyst to successfully synthesize phase-pure ε(′)-carbide by tuning carburization
conditions. The obtained ε(′)-carbide showed low CO2 selectivity in LTFT reaction, as
shown in Figure 3 [9]. The formed ε(′)-carbide is also stable at higher temperature and the
phase composition does not change after operating at 250 ◦C. By stabilizing ε(’)-carbide into
graphene layers, it can also catalyze HTFT reaction without transforming to χ-Fe5C2 [63].
Single-phase χ-Fe5C2 was synthesized by Yang et al. using a facile wet-chemical route with
the help of a Br agent [64]. In their following work, a range of phase-pure metallic Fe and
Fe-carbide nanoparticles were utilized in illustrating the FT mechanism [60].
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increased to 250 ◦C and kept constant for 24 h, followed by a decrease to 235 ◦C [9].
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4. Product Distribution

The formation of long-chain hydrocarbons is a key part of the FT chemistry involving
polymerization-like events of C1 monomers. The ideal product distribution follows the
Anderson-Schulz-Flory (ASF) statistics [26]. The fraction of the carbon number within
the hydrocarbon chain containing n carbon atoms with respect to total carbon numbers is
expressed in Equation (3):

Sn =
Cn

∑∞
1 Cn

=
n (1− α)αn−1

∑∞
1 α

i−1 = n(1− α)2·αn−1 (3)

where α is the chain-growth probability. Assuming it is independent of chain length, it
can be expressed as the rate of chain propagation (rp) over the rate of chain termination (rt)
plus chain propagation (rp), as shown in Equation (4):

α =
rp

rp + rt
(4)

Depending on the catalyst and operation conditions, α value varies, which in turn
results in different product distributions. The theoretical product distribution as a function
of chain-growth probability is shown in Figure 4. The lower temperature regime at which
the selectivity toward higher hydrocarbons is favorable where mainly Co-based catalysts
are used for producing wax as a precursor to high-quality transportation fuels. On the other
hand, at the high temperatures used in the HTFT process, C5–20 hydrocarbons or lower
olefins (C2–4) are the major products, and Fe is most often used as a catalyst [12]. Notably,
the undesired CH4 selectivity monotonously decreases with increasing α. However, there
is some deviation from the ASF distribution with regard to CH4 selectivity. The higher-
than-predicted CH4 selectivity by ASF distribution can have different origins, such as a
thermodynamic preference to form CH4, the kinetic preference for CHx hydrogenation
compared to C–C coupling or the involvement of specific surface sites that are selective to
CH4 [65–67]. On the other hand, C2 selectivity is often lower than predicted by ASF, which
is explained by the strong binding of ethylene with the catalyst surface [68]. Moreover, it
has been observed that the chain-growth probability of C7+ products is higher than that
of C1–7 ones. The chain-length-dependent chain-growth probability was discussed [69]. It
was revealed that, compared to higher LAOs, lower LAOs are more easy to be reinserted
into growing chains, leading to the deviation of ASF distribution. Hydrogenolysis, on the
other hand, could shorten produced long hydrocarbons by successive demethylation [70].
A high reversibility of chain growth on Co catalysts has been described by Chen et al. [71].
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5. Reaction Mechanism

FT reaction has been widely studied for almost 100 years, but there is still debate
with regard to the reaction mechanism. Generally, it can be divided into a sequence of
elementary reaction steps characteristic for a polymerization reaction: (i) chain initiation,
(ii) chain propagation and (iii) chain termination.

Chain initiation involves CO dissociative adsorption. Two types of mechanisms were
proposed. The adsorbed CO on metal sites can directly dissociate into C and O atoms,
referred to as direct CO dissociation. The C atoms will participate, following chain-growth
reactions as preliminary intermediates, while O atoms will be removed as H2O or CO2 as FT
by-products [72]. In addition to direct CO dissociation, hydrogen-assisted CO dissociation
pathways were also proposed. Such pathways can provide HCO or COH intermediates
originating from the hydrogenation of adsorbed CO before the C–O bond breaks [73]. It
is likely that the CO dissociation pathway depends on the surface coverage, the lateral
interactions of intermediates and the relative occurrence of different sites on the catalyst
surface [74]. On metallic Fe, it is believed that direct CO dissociation is the dominant
pathway because of its low CO dissociation barrier [75]. H-assisted CO dissociation mainly
proceeds on surface with a large occupancy of sub-surface C atoms, while direct CO
dissociation takes place on the stepped sites of χ-Fe5C2 [43]. On the most stable (510)
phase of χ-Fe5C2, the direct CO dissociation is suggested to be the preferred pathway,
while the H-assisted CO dissociation mainly takes place on other phases [76]. Therefore,
it is reasonable to be deduced that both pathways could contribute to the cleavage of CO
molecules on Fe-carbide.

During chain propagation, carbide mechanism and CO insertion mechanism are
differentiated in terms of whether the chain-growth monomer is CHx or CO. The carbide
mechanism, first proposed by Fischer and Tropsch, entails CHx species inserted into the
growing hydrocarbon chain [1]. Although Kummer et al. later proved that chemisorbed
C is the dominant reactive intermediate rather than bulk carbide [77], the mechanism is
still referred to as the carbide mechanism. However, the formation of oxygenates during
FT reaction is not in keeping with this mechanism. Accordingly, Pichler et al. proposed a
CO insertion mechanism, in which an HCO intermediate or adsorbed CO can be inserted
into the hydrocarbons chain [78]. In this mechanism, the C–O bond scission occurs after
the C–C coupling, whereas for the carbide mechanism, it is believed that the cleavage of
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the C–O bond precedes the C–C coupling [79]. It has been reported that a CO insertion
mechanism is not the dominant pathway to the reaction since there is no appreciable
molecularly adsorbed CO on an Fe surface at 700 mbar [62]. The absence of chemisorbed
CO on Fe-carbide was also observed when an FT reaction was running at relatively low
pressure [80]. On the other hand, the high pressure needed for FT reactivity and the
resulting high CO coverage indicate the existence of a CO insertion mechanism [81]. The
rate between oxygenate removal versus C–O bond cleavage determines whether the chain
growth proceeds via CO or CHx insertion mechanism [82]. These two mechanisms are
schematically presented in Figure 5.
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In the view of carbide mechanism, the chain termination of the adsorbed alkyl group
can occur in two different ways. It can either be hydrogenated to form n-paraffin or undergo
β-H elimination to form α-olefin [83]. Govender et al. proposed that olefins and paraffins
grow on different active sites and do not share the same surface intermediates [84]. The
reversibility of β-H elimination could cause the re-insertion of α-olefin into a different
growing chain, thereby deviating from the theoretical product distribution [85]. In addition,
the re-adsorption of the α-olefins could lead to the formation of more paraffins and isomers
by secondary hydrogenation and isomerization reactions, respectively [70]. In the carbide
mechanism, termination by CO insertion into a growing hydrocarbon chain is claimed to be
the source of oxygenates [82]. In the CO insertion mechanism, the formation of a growing
hydrocarbon chain is followed by the cleavage of C–O bond [86]. The formation of alcohols
and aldehydes are terminated by hydrogenation and β-H elimination of the CxHyOads
species, respectively. Acids are formed via the insertion of CO2 into the growing chains.

6. Fe Carburization Kinetics and C Hydrogenation Mechanisms on Fe-Carbide

Usually, Fe-carbide is regarded as the active phase for FT reaction. The formation of
Fe-carbide is accompanied by hydrocarbon production [87]. It suggests that the C atoms
from CO dissociation can either be inserted into the bulk Fe structure or be hydrogenated
to CHx, which is either hydrogenated to CH4 or evolved into a chain–growth reaction. The
tuning carburization behaviors of Fe-based catalysts are indispensable to realize optimized
FT performances. A higher degree of carburization causes the Fe atoms to be in a more
electron-deficient state, which enhances the σ donation from CO to the surface and weakens
the π back-donation for CO adsorption [88]. Surfaces with more reduced Fe atoms exhibit
a lower activation energy for CO dissociation and bind adsorbed C stronger, which are
unfavorable for CH4 formation [89–91]. Carburization rate is highly dependent on reaction
conditions and the composition of the catalyst [56,92]. Ribeiro et al. found that adding alkali
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promotors could shorten the carburization time span, because it provided a higher CO
surface coverage for a higher carburization rate [93]. By using colloidal methods, various
Fe-carbide nanoparticles can be synthesized through controlling the use of hetero-halide
ions. The introduction of Cl− from NH4Cl on the Fe surface weakened the bonding between
Fe and C atoms, thus inhibiting the diffusion of C atoms into the Fe structure in favor of
the formation of C-poor Fe-carbide [94]. The strong interaction between highly dispersed
Fe-oxide and an oxidic support impedes the conversion of Fe-oxide into Fe-carbide [95].
Zhou et al. found that Fe carburization rate was faster when Fe is supported on a silicon
substrate than on a silica substrate, because the former could provide an alternative way
for O-removal [96]. Butt et al. found that increasing H2 partial pressure promoted the
carburization of metallic Fe [97]. Similar results were observed by Niu et al. that H2/CO
has a higher carburization capability than CO alone on α-Fe [56]. It was further revealed
that adding H2 could promote the removal of O atoms, which could free vacancies for CO
dissociation. The resulting high C coverage is kinetically favorable for the formation of
ε(′)-carbide [75]. The detailed mechanism is shown in Figure 6. The rate of the carburization
of Fe-oxide is typically controlled by O diffusion from the oxide core to the surface [98].
The pretreatment environment can influence the initial catalytic activity. It was observed
that a precipitated Fe-based catalyst pretreated in H2 was more active and reached steady
state more rapidly than the corresponding catalyst treated in CO [99]. The initial and
steady-state catalyst activities were inextricably correlated with the carburization rates to
form active surface carbide nodules [100].
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Lohitharn et al. pointed out that the FT activity on Fe-carbide is dependent on the
number of active intermediates [101]. Temperature-programmed hydrogenation (TPH)
was used to establish the correlation between the structural type and reactivity of C species
in the Fe-based samples [102]. In the order of decreasing reactivity, the following were
distinguished: (i) adsorbed atomic C species and surface carbide; (ii) polymeric, amorphous
C species; (iii) bulk C and (iv) graphitic C. Xu et al. revealed that the initial catalytic
activity of FePtK/SiO2 was positively correlated with the amount of adsorbed atomic C
species [103]. An atomic C species could also convert to polymeric carbonaceous species
on the surface. Herranz et al. suggested that the polymeric surface carbonaceous species
was more closely related to the FT activity than atomic C species [51]. It was revealed
that polymeric species representing C2+ hydrocarbons intermediates has a lower surface
coverage than the CH4 intermediates [104]. Ding et al. found that the combination of
atomic C species and polymeric surface carbonaceous species resulted in graphitic-type C
species, restricting active sites for the FT activity [105]. Reactive adsorbed C, graphitic C
and carbidic C in the bulk of the Fe-carbide could also be distinguished by electron energy
loss spectroscopy (EELS) [106].
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Govender et al. found two active pools of C on the surface of Fe-based catalysts
to be responsible for the formation of CH4. The less active pool occupied the majority
of total CHx coverage, while the more active pool was scarce on the surface. The C–C
coupling reaction involved both C pools [107]. Graf et al. also suggested that multiple
pools existed on the Fe-based catalyst for CH4 formation and the addition of K would block
the fast channel [108]. It was suggested that the slow pool is from C atoms that diffuse
from the interior of the Fe-carbide [109]. The involvement of lattice C can be described by a
Mars-van Krevelen (MvK) mechanism, which has initially been described for oxidation
catalysis by Mars and Van Krevelen [110]. This mechanism was also used for describing the
reaction cycle of CH4 on the carbon-terminated Fe5C2 (100) surface [111]. The hypothesis
entails the threefold hydrogenation of a lattice carbide, followed by the creation of a surface
vacancy (fourfold site) where a CO molecule from the gas phase can dissociate. The reaction
pathways are shown in Figure 7.
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Kummer et al. first partially carburized a catalyst by 12CO and then fully by radioactive
14CO, leading to a 14C-enirched surface. By carrying out the FT reaction in 12CO/H2, it was
found that the hydrocarbons produced at 260 ◦C contained only 10% 14C, as established by
measuring their radioactivity. It indicates that the pathway following an MvK mechanism
has a minor contribution to hydrocarbon formation [77]. Ordomsky et al. later found that
C atoms in Fe-carbide are involved in the chain-growth initiation events of the FT reaction
via isotope-labeling experiments [112]. The slow evolution of C2+ products in steady-
state isotopic transient kinetic analysis (SSITKA) also suggests that a less-reactive C pool
might be involved in chain growth [84]. The Langmuir-Hinshelwood (L-H) mechanism
is currently favored in describing the FT reaction on Co and Ru catalysts [113,114], where
the metal–carbon bond is not as strong as on Fe [115]. Catalytic reactions predominantly
occur between adsorbed species. Typically, the intrinsic activity of Co and Ru is higher than
that of Fe-carbide [116], suggesting that reaction pathways that follow the L-H mechanism
are faster than those involving MvK steps. The presence of two reactive species (Cα,ads
and Cβ,ads) were also proposed on Co-based catalysts by Van Dijk et al., however, with
comparable surface coverage and rate constants for CH4 formation [117]. Strikingly, the
reaction pathways expand several orders in rate for CH4 formation on Fe-carbide. The
fast reaction paths dominate the CH4 formation rate but run over only about 10% of the
catalyst surface via an L-H mechanism. The slowest pathway contributes to CH4 formation
involving the extraction of lattice C following an MvK mechanism. The comparison of
these two pathways on Fe-carbide is illustrated in Figure 8 [80].
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7. Promoters

In the preparation of Fe-based catalysts, various promoters are generally required to
reasonably modulate the catalyst properties. Depending on the effect of promoters on the
FT reaction, they are usually divided into electronic promoters and structural promoters.
Electronic-type promoters usually contain alkali metals, transition metals and rare earth
metals. Structural promoters generally refer to inorganic oxides that are difficult to be
reduced, such as SiO2 or Al2O3.

K, Na, Mn, Cu and S are the most reported chemical promoters for Fe-based catalysts.
Among them, K and Na could suppress CH4 selectivity and enhance olefins selectivity
because they can donate electrons to Fe to inhibit the hydrogenation of C-containing in-
termediates and hamper the re-adsorption of olefins [93,118]. K is also known to facilitate
carburization during catalyst activation due to an increased CO adsorption [93]. S might
lower H coverage on Fe-carbide, thereby suppressing CH4 formation [17]. Cu could pro-
mote Fe-oxide reduction, which is favorable for carburization and shortens the pretreatment
period [119]. Mn-promoted catalyst also enhances olefins selectivity and suppresses CH4
selectivity [120]. Mn was also found to promote the dispersion of Fe and increase the active
surface area [121]. A solid solution compound is formed when Mn was added, similar to
the role of Zn, La, Zr, V, Cr or Ce. The mixed-oxide phase tends to inhibit crystallite growth
and thus, smaller Fe particles are retained. Lohitharn et al. reported that the introduction
of Mn had no influence on the intrinsic activity of Fe rather than increasing the number
of active sites with SSITKA [122]. The same holds true for K-promoted catalysts [123].
Jensen et al. found that a Mn-containing catalyst was 2 times as active as Fe on a basis
of specific rate, whereas it was less than half as active on a basis of weight [124]. They
proposed that MnO can electronically or chemically alter the nature of Fe as an electron
donor. Liu et al., however, found that the addition of Mn will lead to a lower degree of
carburization, and accordingly, a relatively lower activity [125]. Ribeiro et al. also found
that Mn hinders Fe carburization and that the carburized catalyst displays a higher Fe3O4
content than the catalyst without Mn [126]. Strikingly, an increasing Mn content led to a
higher CH4 and lower light olefins selectivity. They attributed this trend to higher WGS
rates observed on the FeMn catalysts because of a high oxidation degree. Zhang et al.
suggested that Mn could also migrate to the catalyst surface and that the enrichment of
MnO on the catalyst surface would retard Fe reduction [127].

SiO2 and Al2O3 are used as structural promoters to increase the surface area of the
catalyst and promote the dispersion of the active site. The increased structural integrity
and larger surface area of active sites is beneficial for a higher FT activity. The promotion of
these supports could also enhance the mechanical strength of catalysts and prevent catalyst
attrition. On the other hand, the strong interaction of Si or Al hydroxyls with Fe could
inhibit Fe reduction or carburization, owing to the difficulties in O removal [128].
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8. Deactivation of Fe-Based Catalysts

As Fe-based catalysts are usually used at high temperature for the FT reaction, they
will inevitably face deactivation because of catalyst sintering, particle agglomeration and
attrition [129]. To avoid physical deterioration, a support is needed to disperse and stabilize
the active phase [130]. Strong support–metal interactions can inhibit the sintering of the
catalyst [131]. Some structural promoters are also added to enhance such interactions [132].
The change in the chemical state of the catalyst also poses a negative effect on the catalytic
activity. The oxidation of metallic Fe and/or Fe-carbide phases is believed to be one of the
factors for catalyst deactivation, especially at high CO conversion [133]. The formation of
Fe-oxide will cause a higher CO2 selectivity, owing to the WGS reaction [9]. Apart from
oxidation, the formation of coke will also lead to a decrease in FT activity. The accumulation
of graphite-like carbonaceous species on the catalyst surfaces will restrict the availability of
active sites and block the pores [36]. It may also lead to undesired side reactions [66]. A
slight increase in CH4 selectivity during deactivation was observed [134]. It was revealed
that the deposition of C during the ongoing FT reaction has a higher tendency to cover
fast sites, which is mainly responsible for long-chain hydrocarbons, than slow sites, which
mainly produces CH4. Therefore, a decrease in FT activity is accompanied with an increase
in CH4 selectivity [135]. The influence of C deposits on Fe-carbide for the FT reaction is
showed in Figure 9.
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Eliason et al. proposed two deactivation paths occurring in parallel and/or in a cou-
pled form: first, the transformation of atomic C species to amorphous polymeric C species,
followed by the formation of graphitic C and second, the transformation of high activity
χ-Fe5C2 to less active ε(′)-carbide [103]. Jung et al. found that the transformation of ε(′)-
carbide to χ-Fe5C2 is accompanied by deactivation because the decomposition of metastable
ε(′)-carbide can lead to a buildup of coke [47]. The detached C from ε(′)-carbide seems to
serve as the nucleation site for the Boudouard reaction (2CO→ C + CO2) [136]. The trans-
formation between reactive C species and graphitic C was reported to be reversible [66,137].
Increasing H coverage by increasing H2 partial pressure or decreasing CO partial pressure
will constrain the formation of amorphous/graphitic C on Fe-carbide [138]. Only elevated
total pressure in combination with a high H2/CO ratio was found to provide a sufficient H
coverage to restrict C deposition. When the H2/CO ratio is as low as unity, increasing the
total pressure can increase the C deposition rate [139]. Therefore, at H2/CO = 2, increasing
synthesis gas pressure could help remove deposited C that is formed at low reaction pres-
sure and regenerate the spent catalysts [135]. Rising temperature can retard C deposition
thermodynamically, but accelerate carburization kinetically [91]. Increasing H2O vapor
content could also inhibit C deposition by inhibiting the formation of Boudouard-type
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carbonaceous species [140,141]. However, local high H2O vapor partial pressure formed by
the WGS reaction may also irreversibly oxidize the catalyst, leading to the deactivation of
the catalyst [142]. Smaller particles showed a lower tendency to build up inactive surface
carbonaceous species on the catalyst surface [143]. The introduction of promoters (Na + S)
could result in a significant C deposition by facilitating Fe carburization over the initial
hours of the FT reaction [109]. However, the use of S, in the absence of Na, could increase
the resistance against C deposition. The support effect on carbonaceous deposits formation
was also studied by Galuszka et al. [53]. It suggested that strong metal–support interaction
might counter deactivation by maintaining a balance between active and inactive C species.

9. Structure-Activity Relationships

As in all heterogeneous catalysts in which nanoparticles are used, there is a profound
interest in establishing a structure-activity relationship for catalyst optimization. For Co-
and Ru-based catalysts, the turnover rate of the CO dissociation is dependent on particle
size [144,145]. It has been observed that the turnover rate increases with particle size and
shows maximum at intermediate size. This structure-sensitive phenomenon is usually
interpreted in terms of geometric effects of the surface metal atoms. It is predicated that
below a particle size of 6 nm, the density of step-edge sites decreases. The metal atoms
on step-edge sites are more reactive to CO dissociation, owing to a lower coordination
number. This can be understood in terms of an electronic effect, because the decrease in
the coordination number of metal atoms will back-donate electrons to the antibonding
orbital of CO, thus lowering the activation energy for CO dissociation. Geometrically, the
CO molecule can align with step-edge sites without bending, which is more favorable
for CO dissociation than on planar surfaces. CO dissociation is usually regarded as the
rate-limiting step for smaller Co particles because low-coordination sites at corners and
edges are poisoned by CO [146]. Hence, the enhanced CO dissociation ability on a larger Co
particle size will subsequently increase the overall FT activity. Generally, larger Co particles
favor chain growth, producing heavier hydrocarbons. However, a reversed phenomenon
was reported on small Co particle sizes confined in mesoporous SiO2 supports [147].

For Fe-carbides, controversy also exists in terms of particle size effect on FT activity.
Some publications presented that smaller particles feature a lower TOF and higher CH4
selectivity than large particles [148,149]. Torres Galvis et al. observed an opposite particle
size effect. In the initial state, when the surfaces are relatively clean, a smaller particle size
presents a higher surface-specific activity because more corner and edge atoms reside on
small promoted Fe-carbide particles, which are beneficial for a CH4 formation [118]. The
formation of C2+ hydrocarbons is independent of particle size, whereas the TOF for CH4
formation decreases when a larger particle is used. However, small particles suffer more
from deactivation because of the loss of active surface area from sintering or C deposition.
For unpromoted Fe-carbides, the apparent TOF increases with decreasing particle size,
albeit with no difference in terms of selectivity. The fact that not all published work found
the same particle size effect for Fe may be due to the sensitivity of carbon over-layers built
up during activation. If the interference of C deposits could be excluded, compared to Co
and Ru, the opposite structure-activity relationship on Fe-carbide is probably caused by the
intrinsic nature of the chemical bonding of metal carbide. On the Fe catalysts, the binding
strength of a C atom is stronger than Co or Ru. The stronger Fe–C bond corresponds
to a lower activity on Fe-carbide because it requires more energy for C removal through
hydrogenation [68,115]. It indicates that the removal of C atoms by hydrogenation is a
rate-limiting step for Fe-carbide rather than CO dissociation [135,141].

Theoretical work pointed out that H adsorption also plays an important role in deter-
mining product selectivity [150]. Xie et al. observed that CH4 formation occurs equally fast
on edges and terrace sites for unprompted Fe-based catalysts, but it slows down on the
terrace sites of promoted catalysts. There is a linear relationship between apparent TOF
and CHx coverage, with the latter being more abundant on small particle sizes. In addition,
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an increase in particle size leads to an increase in H surface residence time and a decrease
in H coverage, indicating that hydrogenation is suppressed at large particle sizes [109].

10. Summary and Outlook

FT synthesis is an increasingly important approach for producing sulfur-free and
aromatic-free liquid fuels and valuable chemicals via synthesis gas, those generated from
coal, natural gas or biomass. Fe and Co are the only viable transition metals used in com-
mercial FT catalysts. Although Fe-based catalysts are not as active as Co-based catalysts,
they show a broader range of operation windows (pressure, temperature and feedstock
composition), and more importantly, they are much cheaper than Co. Fe-carbides are the
active phases of Fe-based catalysts in the FT reaction, while Fe-oxide is responsible for
the formation of CO2 via WGS reaction. Due to the complex changes of Fe phases during
pretreatment and FT reaction, the kinetic and mechanistic understandings of Fe carburiza-
tion and FT reaction on Fe-carbides are of paramount importance in guiding the design
of well-performed catalysts. Apart from catalyst modulation, the optimization of reaction
conditions also plays a critical role in realizing excellent FT performance. Depending on
the reaction conditions, the chain-growth probability (α) changes, which in turn results in
a different product distribution. The reaction mechanism of the FT reaction has been the
subject of many research projects since the discovery of the reaction itself. The involvement
of chain initiation, chain propagation and chain termination renders FT reaction network
as one of the most sophisticated yet intriguing systems to be studied. On top of that, the
general reaction mechanism and elementary reaction steps usually suitable to describe FT
reaction on Co- or Ru-based catalysts do not fully hold true for Fe-based catalysts. The
bond strength between C and Fe is much higher than the other mentioned transition metals.
Therefore, the dissociated C further reacts with Fe to form Fe-carbide, in which lattice C
can take part in FT reaction via an MvK mechanism. It was hypothesized that high-active
sites are related to a L-H-type mechanism, whereas the low-active sites follow MvK-like
kinetics. Due to the fact that an Fe-carbide surface is largely terminated by lattice C, it can
offer a plausible explanation for why the intrinsic activity of Fe-carbide is lower than Co. C
deposition is an integral part of the Fe-catalyzed FT reaction, making it difficult to correlate
the intrinsic activity of a specific Fe-carbide to its FT performance. Another interfering
factor is the existence of Fe-oxide, which can produce extra CO2. Running FT reaction at
high pressures appears to reverse the deactivation caused by the buildup of C deposits at
low pressure and realizes a stable FT activity. However, the high-pressure synthesis gas
could induce the surface oxidization of Fe. To some extent, the build-up of C deposits can
protect the surface Fe from oxidization. The particle size effect of Fe-carbide on the FT
reaction remains to be further explored by excluding aspects such as the phase evolution of
Fe-carbide, the presence of Fe-oxide and the influence of C deposits during reaction.

To gain more insight on the mechanistic information of FT reaction on Fe-based
catalysts, synthesizing phase-pure Fe-carbide and preserving their physical and chemical
integrity during reaction are highly demanded. Therefore, the employment of a model
catalyst, such as Raney Fe, which features a higher reducibility compared to conventional
industrial catalysts, enables studying Fe carburization and FT mechanism in the absence of
perturbing oxidic phases. It could also be interesting to compare the performance of phase-
pure Fe-carbide with a catalyst that is a mixture of Fe-carbide and Fe-oxide. The direct
measurement of the contribution of lattice C in FT reaction is still a challenge, especially
when considering chain growth. More carefully designed isotopic transient experiments
are needed to address this issue. The accurate interpretation of the occurrence of multiple
L-H reaction pathways is not yet possible and likely requires the integration of explicit
DFT calculations, which suggests that CO activation and CH4 formation rates are strongly
dependent on the exposed crystal facets and active site geometry. Moreover, the correlation
between each active site on Fe-carbide and the corresponding FT activity needs to be studied
in more detail by using advanced surface science techniques, if required, on single-crystal
or flat-model catalysts. The evolution of C and O intermediates on atomically defined
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carbide surfaces should be tracked by time-resolved spectroscopy to establish structure-
activity relationships. Another approach to systematically study the facet-dependent FT
activity and the interaction of the Fe–C bond on different carbides is the inclusion of DFT
calculations. The origin of CO2 is also worth more investigation, considering its detrimental
effect on both carbon efficiency and climate change.
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