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Abstract: The escalating demand for the cost-effective synthesis of valuable fine chemicals has fueled
the search for sustainable heterogeneous catalysts. Among these catalytic reactions, Knoevenagel
condensation has emerged as a very demanding reaction due to its involvement in the synthesis of
new C–C bond formation. Porous metal phosphates have attracted significant attention in catalysis
due to their unique surface properties. In this study, we report the synthesis of a novel porous
magnesium aluminum phosphate (MALPO) material through a hydrothermal template-free approach.
MALPO exhibited very promising specific surface area and hierarchical porosity. Moreover, the
plate-like morphology of the material can enhance the exposure of the catalytic sites located at the
surfaces, leading to enhanced catalytic activity. MALPO demonstrated excellent catalytic performance,
yielding a series of Knoevenagel products with up to 99% yield. Notably, the catalyst displayed
remarkable recyclability, retaining its structural integrity throughout multiple reaction cycles. The
findings highlight the potential of porous mixed-metal phosphates, exemplified by MALPO, as
sustainable and efficient base catalyst for the synthesis of value-added chemicals, contributing to
the growing demand of the chemical industry. Further investigations are warranted to explore
their catalytic potential in diverse chemical transformations and optimize their performance for
large-scale operations.

Keywords: porous metal phosphate; heterogeneous catalysis; Knoevenagel condensation; base catalysis

1. Introduction

In the midst of a relentless surge for the green chemical synthesis, the chemical in-
dustry experiences an extraordinary upswing in the demand for suitable heterogeneous
catalysts. Thus, the search for sustainable and cost-effective catalytic routes for synthesizing
value-added chemicals has become a major concern for scientists worldwide. Knoevenagel
condensation has been one of the most famous reactions in organic synthesis since its
discovery (1890) [1] due to its massive importance in synthesizing valuable reactive organic
building blocks [2,3]. In a typical Knoevenagel reaction a carbonyl compound reacts with
active methylene groups to generate a new C–C bonds [4,5]. The reaction is found to
be highly applicable for synthesizing various fine chemicals [6], hetero-Diels–Alder reac-
tions [7,8], and carbocyclic as well as heterocyclic compounds with significant bio-active
behavior [9]. Furthermore, the various kinds of intermediates, such as α, β-unsaturated
esters; α-cyanocinnamates [10]; α, β-unsaturated nitriles; and cinnamic acid, involved
in the Knoevenagel reaction are considered to be the major platform chemicals [11] for
the pharmaceutical industry, the cosmetic industry, the production of perfumes, and the
antihypertensive and polymer industries [12,13]. The Knoevenagel condensation reaction
can proceed through an acid- or base-catalyzed pathway. So far, several attempts have been
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made to understand the mechanistic pathway for this reaction. Initially, the methodologies
were developed via homogeneous routes [14,15], but in the context of the long-term usage
of catalysts, the homogeneous approach has serious short comings. In this context, the het-
erogeneous path is considered to be the most convenient due to the scope of the recyclability
of catalyst, the ease of catalyst separation, and the cost-effectiveness of the process. Several
heterogeneous catalysts displayed good performances in Knoevenagel condensation reac-
tions such as the surfactant–mesoporous silica composite [16], functionalized MCM-41 [17],
indium-doped AlMCM-41 [18], mesoporous carbon nitride [19], zeolites [20,21], porous or-
ganic polymers [22], metal–organic framework [2], phosphate complexes [23], coordination
polymers [24], etc. However, use of these materials as catalysts may often lead to metal
contamination in the final product.

Today, porous nanomaterials play very crucial role in the field of heterogeneous
catalysis due to their enhanced surface activity, pore size tenability, and ease of surface
modifications. Previously, Gascon et al. reported AlMIL-53-NH2 and IRMOF-3 in the
Knoevenagel condensation of benzaldehyde with ethyl cyanoacetate [25]. On the other
hand, Fischer et al. identified catalytic activities on several functionalized porous materials
like Fe-MIL-101-NH2, CAU-1-NH2, and Al-MIL-101-NH2 catalysts in the Knoevenagel
condensation reaction of benzaldehyde with malononitrile and ethyl cyanoacetate [26].
Porous metal phosphates have emerged as a captivating class of materials [27] that has
garnered significant interest within the realm of material science and engineering. These
unique materials embody the fusion of advantageous properties exhibited by metals and
phosphates, offering a broad spectrum of applications across diverse industries. Active cat-
alytic sites in these porous metal phosphates are located at the surface of the interconnected
pores [28] and can thus offer impressive catalytic activities.

Since the discovery of the aluminophosphate molecular sieve in 1982 by Wilson and
coworkers [29], significant attention has been paid to the development of microporous
aluminum phosphate molecular sieves [30–32]. Aluminum phosphate, a crystalline inor-
ganic compound, is widely recognized for its diverse applications. Its similarities with
zeolite make it a promising material in fields like gas separation [31], sensing, and het-
erogeneous catalysis. The framework of ALPO composed of AlO4 and PO4 moieties, due
to the electronically neutral skeleton and the lack of sufficient acidic site results in a very
weak catalytic activity [33]. Over the past few years, significant strides have been made
in the synthesis and characterization of porous metal phosphates. Advanced techniques,
including solvothermal and hydrothermal methods [34,35], have been harnessed to pro-
duce materials with well-defined porosity and desirable properties. Moreover, researchers
have focused their efforts on designing and modifying these materials to enhance their
performance and expand their potential applications. Significant focus is directed towards
the development of highly active ALPO materials, while considerable attention has been
dedicated to the synthesis of ALPO materials incorporating different metal ions [36].

Over past few decades, porous metal phosphates containing transition metals have
garnered significant attention due to the high catalytic activity associated with the metal
sites. The low-cost synthetic approach, as well as easiness in bulk synthesis, followed by
significant reproducibility, make this class of materials a promising contender among the
other member of the porous material family. Thus, immense effort is paying off in the
fabrication of these materials, both in academia and industry. So far, a large number of
different metal-incorporating aluminum phosphate catalysts have been reported. Acid
properties can be significantly affected by introducing Ga, Si, and Co in the ALPO frame-
work [37–39]. Generally, the synthesis of porous nanomaterials involves the use of structure
directing agents (SDA) like amines or ionic/nonionic surfactants [38,40,41]. However, the
removal of SDA can sometimes be very challenging, as the calcination process requires
high temperatures, which often result in the collapse of the porous framework. Moreover,
the emission of toxic gas during the calcination process is hazardous to nature. Thus, the
template-free synthesis of surface-active porous metal phosphates has garnered significant
attention in recent times. The scientific community is highly focused on the controlled
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fabrication of crystalline porous frameworks with specific morphologies. This approach
holds great promise due to the wide availability of active sites, resulting in remarkable
outcomes. Researchers are actively exploring the synthetic process, recognizing its potential
and the immense interest associated with it. Thus, the pursuit of morphology-controlled
fabrication and the accessibility of active sites in transition metal phosphates have become
a subject of immense scientific interest and investigation.

Herein, we report the synthesis of a new magnesium aluminum phosphate (MALPO)
through a template-free hydrothermal synthesis approach. The resulting catalyst, MALPO,
exhibited a good BET surface area and hierarchical porosity. The electron microscopic anal-
ysis revealed the plate-like morphology of the material, which facilitated enhanced surface
exposure and improved catalytic activity. MALPO has been employed as a heterogeneous
catalyst for the Knoevenagel condensation reaction under mild reaction conditions. Re-
markably, MALPO demonstrated excellent catalytic performance, resulting in high yields
of the desired products and significantly reduced reaction times. Moreover, the catalyst
exhibited exceptional recyclability, retaining its structural integrity throughout multiple
reaction cycles. These findings highlight significant potential of MALPO as a valuable
catalyst for efficient and sustainable synthesis of organic value added chemicals. The
further exploration and optimization of MALPO’s catalytic properties are warranted to
unlock its full potential for various chemical transformations and large-scale applications.

2. Results

Herein, we haave synthesized porous magnesium aluminum phosphate (MALPO)
using a template-free hydrothermal approach. The material was thoroughly characterized
via different experimental tools. The bonding connectivity inside the material network
was evaluated by carrying out a Fourier transform infrared (FTIR) spectroscopic analysis
in a solid state by preparing the sample in the KBr pallet. The FTIR spectrum shown in
Figure 1 indicates the presence of different bonding inside the material architecture. The
peak at 3425 cm−1 could be attributed to the O–H stretching vibration [42]. On the other
hand, peaks at the region of 1700–1550 cm−1 (1705, 1655, 1580 cm−1) could be assigned to
different H–O–H bending vibrations. The signals at 982, 1017, and 1053 cm−1 indicates the
presence of phosphate groups. The 769 and 717 cm−1 peaks indicate the presence of metal
oxygen bonds in the material [43,44].
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Figure 1. FTIR spectrum of MALPO.

The unit cell parameters and the crystalline phase of the MALPO was evaluated
using the powder X-ray diffraction (PXRD) analysis. Prominent sharp crystalline peaks
are observed at 10.08, 11.04, 12.77, 13.21, 18.96, 21.12, 23.13, 25.29, 26.72, 28.79, 30.56, 31.88,
35.48, 37.53, and 42.58 degrees of 2θ (Figure 2a). These aforementioned peaks were indexed
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using the Expo2014 software [45], and these are assigned as 001, 101, 201, 210, 311, 30-2,
020, 021, 51-2, 711, 003, 91-1, 82-1, 812, and 31-4 planes, respectively (Table S1, ESI). The
corresponding unit cell parameters of this phase of MALPO were a = 27.652 Å, b = 7.683 Å,
c = 8.866 Å, α = 90.00◦, β = 98.56◦, and γ = 90.00◦. The unit cell volume of MALPO was
calculated as 1862.59 Å3. The space group of this triclinic phase was assigned to P1 (1). A
structural model of MALPO (Figure 2b) was developed using VESTA 4.5.0 software [46] in
order to understand the connectivity and porosity in the framework. The refined simulated
PXRD of the model was generated, which matched well with the experimental PXRD
pattern with a low ESD value of 0.072.
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Figure 2. (a) Wide-angle powder XRD patterns: experimental (black), simulated (red), and difference
(blue). (b) Ball and stick model of MALPO.

In order to investigate the porous nature of the as-prepared sample, nitrogen
adsorption–desorption analysis was carried out at 77 K. The result is displayed in Figure 3.
The isotherm indicated a mixture of type I and type IV isotherms, according to IUPAC
convention [47]. A small rise in low pressure indicates the presence of microporosity and
a steady rise in the N2 uptake, along with a mild desorption hysteresis in the relative
pressure region of 0.4 to 0.8 reflects the presence of mesoporosity. The pore size distribution,
as observed in the inset Figure 3, obtained through non-local density functional theory
analysis (NLDFT), reveals the presence of maximum pores with diameters of 1.6 to 2.6 nm.
This finding suggests the existence of a dominant pore size within this range. The calcu-
lated BET surface area is measured to be 71 m2g−1. This N2 sorption result indicates the
significance of these specific pore sizes in the material, potentially influencing its properties
and applications. Further investigation and characterization is warranted to explore the
implications of this pore size distribution on the overall behavior and performance of
the material.
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The MALPO’s morphological characteristics were meticulously assessed utilizing
ultra-high resolution transmission electron microscopy (UHR-TEM). The acquired TEM
images, obtained at different resolutions, unveiled a compelling plate-like morphology ex-
hibited by MALPO. Notably, Figure 4 vividly depicts the presence of rectangular sheets [48]
in varying sizes, effectively highlighting the material’s intricate structure. Remarkably,
upon closer examination at a high resolution (Figure 4d), the TEM image uncovers the
presence of crystalline fringes, aligning impeccably with the expected outcomes from its cor-
responding X-ray diffraction pattern. This observation strongly suggests the presence of a
well-defined crystal lattice within the material, underscoring its inherent structural integrity.
The identified two-dimensional (2D) morphological feature holds tremendous potential
for enhanced surface activity [49], primarily attributable to the significantly augmented
surface exposure that it offers. This unique characteristic opens up exciting prospects for
applications where improved [50] surface reactivity and accessibility are critical factors.
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selected area image under elemental mapping (e), elemental mapping of MALPO and the distribution
of magnesium (Mg, (f)), aluminum (Al, (g)) and phosphorus (P, (h)).

In addition to the morphological evaluation, an elemental distribution (Figure 4f–h)
analysis was performed using energy-dispersive X-ray spectroscopy (EDAX) on the TEM
images. Notably, the results obtained demonstrate that a strikingly uniform presence off
elements throughout MALPO. CO2–TPD analysis was carried out under an inert He gas
flow, and the corresponding CO2 desorption profile of MALPO is shown in Figure 5. As
can be seen from this CO2–TPD profile, a broad CO2 desorption peak with maxima at
a very high temperature of 670 ◦C can be observed. The presence of no significant CO2
desorption peaks at lower temperatures suggests that CO2 molecules are strongly bound
at the MALPO surface. The observed total basicity was 3.15 µmol g−1. On the other
hand, to measure the surface acidity of MALPO, we performed acid–base titration (see the
Supporting Information), which suggested a total acidity of 0.71 mmol g−1. The presence
of defect phosphate groups are responsible for this surface acidity in MALPO.

Catalytic Activity of MALPO

Knoevenagel condensation is a classical organic transformation in which an active
methylene molecule reacts with a carbonyl compound to produce an α,β-conjugated enone.
As these intermediates are extensively used in perfumes, polymers, fine chemicals, cosmet-
ics, medicines, and pharmaceuticals, many research groups are concentrating on developing
heterogeneous solid catalysts for this organic reaction to generate relevant products. Basic
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or acidic nature-based catalysts are often used to carry out the condensation reaction, but
this requires high reaction temperatures or microwave irradiation [51,52]. Although many
catalytic systems have been reported for this reaction, it is very challenging to develop
a catalyst which can promote this reaction without the formation of by-products due to
the consecutive self-condensation and oligomerization reactions of the primary reaction
product [53,54]. The type of catalyst used has a significant impact on product selectiv-
ity. In the presence of a Brønsted-base, it results in benzylidene malononitrile, while in
presence of Lewis’s acid, benzaldehyde reacts with ethanol solvent to produce the desired
product (Figure 6). To investigate the catalytic activity of the MALPO, the Knoevenagel
condensation reaction was performed by taking benzaldehyde and malononitrile as model
substrates in ethanol as the solvent. The reaction yielded the desired benzylidene malonon-
itrile through the activation of a methylene group followed by aldol condensation under
the present experimental conditions. As previously discussed, ethanol is considered as the
best solvent when compared to MeCN, benzene, toluene, and DCM; thus, we performed
our reaction with ethanol [55]. Before confirming the catalytic activity, a blank test was
performed without using catalyst, which did not provide the suitable results after 2 h of
reaction (17% conversion) in ethanol at room temperature.
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In the same experimental conditions, a 99% conversion of benzaldehyde was accom-
plished using MALPO in ethanol at room temperature after only 100 min. The results
clearly reveal the contribution of catalysts towards the activation of this reaction. As we ob-
served that the reaction proceeds smoothly in ethanol within 100 min, we further identified
the actual required time for this conversion. Then, we performed the reaction at different
time intervals, which is shown in Figure 7a, and while it was observed for 100 min, the
reaction was completed within 60 min.
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To verify that the observed reaction was solely stimulated by a solid catalyst and
not due to active sites leaching into the solution, a leaching experiment was conducted
under identical conditions. Specifically, the benzaldehyde and malononitrile reaction was
initiated in the presence of MAPLO under the same circumstances. After 30 min, an aliquot
was extracted from the reaction mixture and filtered in order to eliminate the solid catalyst,
allowing the resulting solution to continue reacting for an additional 30 min. The outcomes
of this leaching experiment are presented in Figure S1 of the Supplementary Materials,
which clearly demonstrate that the reaction rate experienced a substantial reduction in
the absence of the catalyst following the filtration step. These results indicate that the
presence of MALPO exclusively catalyzes the reaction, without any active sites leaching
from the solid catalyst into the solution. However, the slight increase in the conversion of
benzaldehyde after the catalyst’s removal may be attributed to the contribution from the
blank reaction, as indicated.

Having observed that the MALPO catalyst achieves an impressive 99% conversion
of benzaldehyde to benzylidene malononitrile at room temperature, further experimen-
tation at higher temperatures was deemed unnecessary. Subsequently, upon successfully
optimizing the catalytic performance of MALPO for the Knoevenagel reaction, the scope of
substrates was expanded to include aromatic-substituted aldehydes (Figure 8, 1a–1e) and
biomass-derived heterocyclic aldehydes (Figure 8, 1f). Notably, the catalyst demonstrated
the efficient conversion of various substrates, including those with electron-withdrawing
groups in the para position and furfural, yielding their corresponding derivatives with
high efficiency. However, para-fluoro benzaldehyde (Figure 8, 1c) proved to be an excep-
tion, as it did not undergo conversion under the same reaction conditions. The catalyst
was also probed for a different active methylene group, such as ethyl cyanoacetate with
benzaldehyde (Scheme 1), which showed a 94% conversion (Figure S6. ESI) regarding the
condensation reaction under refluxing conditions. These findings highlight the unique
catalytic prowess of MALPO and its broad substrate compatibility, thereby showcasing its
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potential for diverse synthetic applications, ranging from aromatic substituted aldehydes
to biomass-derived heterocyclic aldehydes.
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Scheme 1. Schematic representation of the Knoevenagel condensation of ethylcyanoacetate and
benzaldehyde.

After the initial experiment, we ran a recyclability test for consecutive fourth cycle
to verify the heterogeneity of the catalyst. The catalyst was collected after each cycle,
properly washed with methanol, and activated at 120 ◦C for two hours to conduct the
recyclability test. The catalyst was utilized for four successive cycles after it had been
activated, and the conversion/selectivity plot is shown in Figure 7b. Up to the fourth cycle,
no discernible difference in conversion or O2 at acid–base paired sites on the catalyst surface
that effectively catalyze the deprotonating aldol-dehydration processes was observed. The
powdered X-ray diffraction pattern was taken after the fourth cycle (Figure S8, ESI) to assess
the stability of the MALPO, and it reveals that there was no structural change. According
to Figure 8a, the high catalytic activity of MALPO could be attributed to the basic sites,
which promote the abstraction of the protons and activate the malononitrile. This active
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methylene attacks the -C=O bond of benzaldehyde, which further eliminate the water via
aldol condensation, resulting in the final benzylidene malononitrile product.

After the Knoevenagel reaction, we further extended the procedure to produce tetrahy-
drobenzo[b]pyrans. This is a good example of tandem Knoevenagel–Michael cycloconden-
sation [56] reaction (Scheme 2). To perform the reaction, we chose malononitrile, aromatic
aldehyde, and dimedone as model substrates in ethanol. The overall reaction was carried
at room temperature, which resulted in a 99% conversion after 1 h of reaction. The reaction
follows the same pathway, which follows the Knoevenagel in the first step and further
reacts with dimedone to form the pyran derivative via cyclo condensation. The plausible
mechanism is shown in Figure 9 In the first step, the MALPO catalyst activates the mal-
ononitrile to form the active methylene group, which reacts with the carbonyl group of the
aldehyde to form the intermediate I via the removal of one molecule of H2O. On the other
hand, dimedone favors the enol form after tautomerization, which attacks the cyano-olefin
compound I and which behave as a Michael acceptor to produce intermediate II. After the
formation of intermediates II, it follows the cyclo-condensation via the bond shifting of
-C=O to the corresponding nitrile group to form intermediate III. This intermediate III gives
the final product by abstracting protons from the reaction mixture. After the successful
conversion of the pyran derivatives of benzaldehyde, we examined the catalytic activity on
the substrate scope for p-bromo derivatives, which provide 99% conversion. p-nitro derives
also give higher yields. From the above mentioned results, it can be concluded that the
catalyst is very efficient for both types of Knoevenagel condensation reactions as well as
Knoevenagel–Michael cyclo-condensation. The higher activity of MALPO is due to the
presence of basic sites as well as acidic sites in the framework.
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Figure 9. Probable mechanistic pathway for the Knoevenagel condensation reaction (a) and
Knoevenagel–Michael cyclo-condensation (b).

3. Experimental
3.1. Characterizations

The bonding connectivity in the as-synthesized MALPO was analyzed using Fourier
transform infrared (FTIR) spectroscopy and a Spectrum 100 spectrophotometer was used
for the FTIR analysis (PerkinElmer, Cambridge, MA, USA). The crystalline nature of the
phosphate materials was investigated using a Bruker D8 advance X-ray diffractometer,
with Cu Kα (λ = 0.154 nm) is used as an X-ray source (Bruker AXS, Karsruhe, Germany).
The surface area of the material was investigated by analyzing the Brunauer–Emmett–Teller
(BET) surface through N2 sorption analysis at 77 K using a Quantachrome Autosorb iQ
surface area analyzer (Quantachrome Inc., Boynton Beach, FL, USA). In order to analyze
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the data, the samples were activated in a hot air oven at 80 ◦C, followed by the gassing
of the materials at 120 ◦C under continuous vacuum for 3 h. The pore size distribution
was investigated using the non-local density functional theory (NLDFT) method. The
morphological analysis of the materials was investigated by analyzing the images obtained
from ultrahigh resolution transmission electron microscopy (UHR-TEM, JEOL, Tokyo,
Japan). The conformation of the catalytic products was evaluated through nuclear magnetic
resonance (NMR) spectroscopy using a Bruker Avance NMR spectrometer (Bruker AXS,
Germany). The elemental distribution in the material architecture was analyzed using
the elemental distribution images obtained through energy dispersive spectroscopy (EDS).
The JEOL 2010 TEM (JEOL, Japan), operated at 200 kV, was utilized to capture ultrahigh-
resolution transmission emission microscopy (UHR-TEM) images. For the TEM analysis,
the sample was dispersed in methanol and then drop-cast onto a copper grid coated with
a carbon polymer. For the temperature programmed desorption analysis of CO2 (CO2-
TPD), the MALPO sample was activated at 250 ◦C under a He flow of 2 h. Then, after
cooling the sample to room temperature, CO2 was purged in the absence of a carrier gas
flow for 30 min. Then, the sample temperature was raised in a step-wise manner with
a heating rate of 10 ◦C min−1. The desorbed CO2 in the temperature range 50 to 875 ◦C
was analyzed using a thermal conductivity detector fitted in a AMI-300 Chemisorption
Analyzer (Altamira Instruments, Pittsburgh, PA, USA).

3.2. Chemicals

Magnesium nitrate hexahydrate (Mg(OH)2 6H2O) (Spectrochem, Mumbai, India), and
aluminum nitrate nonahydrate (Al(NO3)3 9H2O) and 28% ammonium hydroxide solutions
were purchased from Merck, Bengaluru, India. Phosphoric acid (H3PO4) was purchased
from TCI Chemicals, India. Benzaldehyde was purchased from Spectrochem, India, Fur-
fural was purchased from Sigma-Aldrich (St. Louis, MO, USA), and 4-chlorobenzaldehyde
and 4-bromobenzaldehyde were purchased from Merck, India. Dimedone and malononi-
trile were purchased from Sigma-Aldrich (USA). Of the solvents, ethanol was purchased
from Bengal Chemicals (Kolkata, India); acetone and methanol were purchased from Finar
Chemicals (Mumbai, India); and the NMR solvent CDCl3 was purchased from Sigma-
Aldrich (USA). All the reagents and solvents were used without any further purification.

3.3. Synthesis of MALP

Magnesium aluminum phosphate was synthesized via a typical hydrothermal [39]
method. In the synthetic procedure, 1.54 g of phosphoric acid was dissolved in 10 mL of
distilled water, 1.28 g of magnesium nitrate hexahydrate (Mg(NO3)2 6H2O; 0.005 mmol)
and 1.87 g of aluminum nitrate nonahydrate (Al(NO3)3 9H2O, 0.005 mol) were separately
placed in 5 mL distilled water. The metal precursor solutions were added simultaneously
drop-wise, followed by the addition of 28% ammonium hydroxide solution (NH4OH) in
order to maintain a fixed pH of 7. The final solution was kept under vigorous stirring at
room temperature for another 3 h. Finally, the solution was transferred to a stainless steel
hydrothermal autoclave and kept static for 72 h at 180 ◦C in a hot air oven. After that,
the white precipitate obtained was filtered, followed by washing with water, methanol,
and tetrahydrofuran. Finally, the product was dried at 80 ◦C under vacuum. The material
was then characterized using X-ray diffraction, Fourier-transform infrared spectroscopy,
transmission electron microscopy, and nitrogen sorption isotherm analysis.

3.4. Catalytic Activity of MALPO

In order to conduct the catalytic activity test for the Knoevenagel condensation reaction,
we carried out the following experiment. A total of 2 mmol of aromatic aldehydes was
placed in a 50 mL round-bottomed flask. Then, 2 mmol of malononitrile was added, along
with the pre-activated catalyst MALPO (10 mg), followed by the addition of 10 mL ethanol.
The reaction mixture was then stirred at 400 rpm for the desired time and monitored via
thin-layer chromatography (TLC). After the completion of the reaction, the reaction mixture
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was filtered in order to separate out the solid catalyst. Thereafter, the liquid was dried
under reduced pressure to the obtain solid product. The conformation of the product was
evaluated via 1H NMR spectroscopy, where CDCl3 as used as an NMR solvent.

3.5. Catalyst Recyclability Experiment

To assess the reusability of MALPO, we performed catalytic recyclability tests. After
the catalytic performance, the MALPO material was recovered via filtration. The catalyst
was then subjected to a series of washes using distilled water, methanol, and ethanol,
followed by vacuum drying. This process regenerated the catalyst, allowing us to employ it
for up to four consecutive catalytic cycles. Through this evaluation, we aimed to determine
the extent to which MALPO could be reused as a catalyst, providing valuable insights into
its potential for sustainable and efficient applications.

4. Conclusions

In summary, herein, we successfully synthesized porous magnesium aluminum mixed-
metal phosphate MALPO using ortho phosphoric acid as a phosphate source. MALPO
synthesized through a template free approach was found to possess a high specific surface
area and a novel triclinic crystal structure. The basic sites present in the material make it a
very efficient catalyst for the heterogeneous Knoevenagel condensation reaction. The series
of substrates investigated result in excellent product yields of up to 99%. Furthermore, the
recyclability test carried out demonstrated the enhanced recyclability of MALPO without
any loss of structural integrity, which further concludes the long term applicability of the
material towards heterogeneous catalysis. In conclusion, our investigation reveals that
the novel mixed-metal phosphate material MALPO holds promise as a potential catalyst
for facilitating the Knoevenagel condensation reaction. This observation suggests that
MALPO exhibits favorable catalytic properties and could play a crucial role in meeting
the growing demand for the synthesis of value-added chemicals, involving a new C–C
bond. By offering enhanced catalytic efficiency, MALPO has the potential to contribute
significantly to the development and validation of advanced chemical synthesis strategies
in the near future. Further research and exploration are warranted in order to fully exploit
the capabilities of MALPO and optimize its performance when catalyzing the Knoevenagel
condensation reaction.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/catal13071053/s1, Figure S1: Leaching experiment indicating
no leaching of active sites during catalysis, Figure S2: 1H NMR of 2-benzylidenemalononitrile,
Figure S3: 1H NMR of 2-(4-chlorobenzylidene)malononitrile, Figure S4: 1H NMR of 2-(furan-2-
ylmethylene)malononitrile, Figure S5: 1H NMR of 2-(4-bromobenzylidene)malononitrile, Figure
S6: 1H NMR of ethyl (E)-2-cyano-3-phenylacrylate, Figure S7: 1H NMR of 2-amino-7,7-dimethyl-5-
oxo-4-((p-tolyl)-5,6,7,8-tetrahydro-4(H-chromene-3-carbonitrile, Figure S8: PXRD pattern of recycled
catalyst, Figure S9: (a) TEM image of MALPO; (b) distribution of oxygen in MALPO. Table S1:
Indexing of triclinic phase of MALPO with space group P1.
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