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Abstract: Asymmetric enamine base activation of carbonyl compounds is a well-known and widely
used strategy for providing functionalization of organic compounds in an efficient way. The use
of solely organic substances, which in most cases are commercially available primary or secondary
amines that are easy to obtain, avoids the use of hazardous substances or metal traces, making this
type of catalysis a highly convenient methodology from a sustainable point of view. In many cases,
the reactivity or the stereoselectivity obtained is far from being a practical and advantageous strategy;
this can be improved by using a hydrogen bonding co-catalyst that can help during the activation of
one species or by using a bifunctional catalyst that can direct the approximation of reagents during
the reaction outcome. In this review, we describe the most efficient methodologies that make use
of a dual activation of reagents for performing α-functionalization (enamine activation) or remote
functionalization (such as dienamine or trienamine activation) of carbonyl compounds.

Keywords: dual activation; aminocatalysis; asymmetric synthesis; enamine; dienamine

1. Introduction

In 2000, List, Lerner and Barbas III presented the intermolecular cross aldol reaction
between acetone and diversely substituted aldehydes promoted by the simple and natural
amino acid (S)-proline [1] (Scheme 1a). This was not the first time that this amino acid
was employed as the catalyst in an organic transformation [2,3], but it was presented as a
powerful and broad-in-scope catalyst for performing intermolecular cross aldol reactions,
also comparable to the best organometallic catalysts for carrying out the same reaction. In
this report, based on a previous reaction mechanism of aldolases described by Barbas III [4]
and confirmed by computational studies carried out by Houk and List [5], the proposed
mechanism included a dual behavior of the catalyst: firstly, it formed an intermediate
enamine that increased the nucleophilicity of the α-carbon in acetone, and secondly, it was
also involved in the activation of the aldehyde, the second carbonyl unit (Scheme 1b). This
catalyst could also provide excellent yields and enantioselectivities using a simple reaction
design: stirring the aldehyde and 30 mol% of (S)-proline in a mixture of acetone/DMSO
(1:4) for 2–48 h.

The use of proline as catalyst, together with the well-known MacMillan imidazolidi-
none introduced the same year [6,7], represented the starting point in a new research area
of great interest: aminocatalysis. This type of catalyst has emerged as a valuable tool for the
alleviation of some problems associated with metal catalysis related to trace contamination
of those elements. In fact, aminocatalysis [8–11] and other types of organocatalysis [12–18]
have been recognized by researchers as one of the most important strategies aligned to
green and sustainable catalysis [19]. Aminocatalysis also represents the strategy of choice
in many asymmetric transformations, especially when carbonyl compounds are involved,
offering good results in terms of yields and enantioselectivities.
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Scheme 1. (a) Proline-catalyzed asymmetric aldol reaction and (b) proposed transition state. 
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In this area, numerous examples of successful reactions have made extensive use of 
the incorporation of an H-bond donor entity either as an external additive or as a compo-
nent of a bifunctional aminocatalyst [20–26]. In bifunctional H-bond donor/aminocata-
lysts, the H-bond donor reagent typically plays a role in the activation of an electrophile 
that reacts with an enamine-type intermediate. As a result, it becomes a potent ste-
reodirecting component (Scheme 2). 

 
Scheme 2. Illustration of dual activation of reagents in enamine base catalysis. 

Alternately, the H-bond donor moiety can also play an important role in events that 
occur prior to or after the stereogenic center’s installation, either as part of a bifunctional 
reagent or as an external cocatalyst. This occurs when a Brønsted acidic cocatalyst or stoi-
chiometric additive is added to the reaction mixture to speed up the rate of catalyst turn-
over during the hydrolysis step or to make it easier to activate the carbonyl group of the 
aldehyde or ketone substrate during the condensation with the aminocatalyst in the acti-
vation stage. This science is beyond the scope of this paper and will not be examined ex-
haustively. 

  

Scheme 1. (a) Proline-catalyzed asymmetric aldol reaction and (b) proposed transition state.

In this area, numerous examples of successful reactions have made extensive use of the
incorporation of an H-bond donor entity either as an external additive or as a component
of a bifunctional aminocatalyst [20–26]. In bifunctional H-bond donor/aminocatalysts,
the H-bond donor reagent typically plays a role in the activation of an electrophile that
reacts with an enamine-type intermediate. As a result, it becomes a potent stereodirecting
component (Scheme 2).
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Scheme 2. Illustration of dual activation of reagents in enamine base catalysis.

Alternately, the H-bond donor moiety can also play an important role in events that
occur prior to or after the stereogenic center’s installation, either as part of a bifunctional
reagent or as an external cocatalyst. This occurs when a Brønsted acidic cocatalyst or stoi-
chiometric additive is added to the reaction mixture to speed up the rate of catalyst turnover
during the hydrolysis step or to make it easier to activate the carbonyl group of the alde-
hyde or ketone substrate during the condensation with the aminocatalyst in the activation
stage. This science is beyond the scope of this paper and will not be examined exhaustively.

2. Dual H-Bonding and Enamine Activation

An excellent illustration of the involvement of an H-bond donor site in the structure
of the aminocatalyst during the aldol reaction between the intermediate enamine and the
external aldehyde reagent is the pioneering proline-catalyzed aldol reaction (Scheme 3). As
a result, outstanding levels of both diastereo- and enantioselectivity are achieved as the
reaction progresses through a cyclic chair-like transition state with reduced conformational
mobility. This generated H-bond during the C-C bond forming step has been used as a
general strategy during experimental and computational studies [5,27–34]. In fact, the
conformational restricted transition state does not just record the extremely high facial
selectivity; this situation restricts the E diastereoisomer formed in the transient enamine
species, as the presence of serious dynamic and thermodynamic restrictions in the less
favored Z diastereoisomer (see Scheme 2).
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Scheme 3. General proline-catalyzed cross-aldol reaction.

This transformation is rather wide in scope with respect to the possibility of using
different aldehydes in combination with acetone [35–56], α-hydroxyketones [57,58] or
cyclic ketones [59] as the pronucleophile source, including the possibility of performing the
reaction at multigram or even kilogram scale. Moreover, the reaction can also be carried out
in open air and without the need for degassed or dry solvent, which is an important benefit
in terms of operational simplicity. In addition, the cross-aldol reaction between two different
aldehydes can also be carried out under slightly modified conditions [60], also enabling
the use of polyhydroxylated aldehydes as either pronucleophiles or electrophiles [61],
which also opens the possibility for the stereoselective synthesis of sugars through this
methodology [62].

The same stereochemical model can be applied to structurally related electrophiles,
thus expanding the portfolio of organic transformations in which this approach can be
applied [63,64]. In particular, proline has been demonstrated to be an outstanding catalyst
for performing the Mannich reaction (Scheme 4) [65–69]. In this case, the availability of a
single electron pair at the nitrogen atom available to engage in the H-bonding interaction
with the carboxylate group of the proline leads to the formation of the syn diastereoisomer
as a consequence of the (E) geometry of the azomethine moiety, in contrast to the anti
diastereoselection previously observed in the parent aldol reaction (see Scheme 4). Also,
the possibility of performing the challenging cross-Mannich reaction using acetaldehyde as
the pronucleophile should be highlighted, providing acceptable yields of the corresponding
α-unsubstituted β-aminoaldehydes and minimizing to a great extent the presence of
byproducts arising from competitive polymerization through self-aldol condensation [70].

Other electronically similar electrophiles such as azodicarboxylates or nitrosoarenes
also perform excellently in the α-amination [71–76] and the α-hydroxylation [77–83] (or
nitroso-aldol reaction) of aldehydes and ketones under proline catalysis, providing an
efficient and direct entry to enantioenriched α-aminocarbonyl or α-hydroxycarbonyl com-
pounds or related derivatives (See Scheme 4). In the latter case, the participation of such an
H-bonding interaction with the electrophile also conditions the chemoselectivity of the reac-
tion, observing that Jørgensen–Hayashi catalysts that do not contain any H-bond donor mo-
tif also efficiently catalyze the reaction between aldehydes and nitrosobenzene but lead to
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the formation of the opposite N-addition isomer, thus resulting in the α-hydroxyamination
of the starting material [84].
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There are still a few situations in which the reaction is limited due to either poor
enantiocontrol or low conversion, despite the fact that proline performs exceptionally well
in many of these reactions and has a rather broad substrate scope. This has been credited by
and large to the unfortunate dissolvability of proline in the normal natural solvents utilized
for the response. A possible solution has been found through the incorporation of achiral
H-bond donor additives able to engage in H-bonding interactions with the carboxylate
moiety that can increase the solubility of the catalyst and also contribute to the activation
of the electrophile through the H-bonding interactions. This is the case of the combined
use of L-proline and chiral BINOL 6, which, used in the correct matched combination and
under optimized ratio, provided a remarkable improvement in the aldol reaction between
acetone and several aromatic aldehydes compared to the parent reaction without any
additive (Scheme 5) [38]. Further research on this behavior has led to improved systems
that combine the use of L-proline with an external achiral thiourea cocatalyst [47,85–87] as
H-bond donor.
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Obviously, proline is not a universal catalyst for this type of transformation, and
a wide variety of structurally related catalysts based on the proline scaffold have been
studied and employed with different degrees of success in aldol [88], Mannich [89–91],
α-amination [92] or α-aminoxylation [93] involving the enamine activation of aldehydes
and ketones. The logical evolution of the initial system relied on the modification of
the hydrogen-bond donor moiety, also tuning its acidity and availability or incorporat-
ing multiple additional H-bond donor units within its structure [94,95]. Some selected
examples that provide an overall view of the different directions taken in this area are
displayed in Figure 1. For instance, simply changing from the carboxylate moiety on
proline to the corresponding N-arylamide 7 [96–98] or N-sulfonylamide 8 [99–105] leads
to competent catalysts in such transformations. The same applies to the substitution of
the carboxylate with other related motifs, as in the case of prolinamide 9 [106–109] or
pyrrolidine-tetrazole catalyst 10 [110–114] or the possibility of using modified versions of
trans-4-hydroxyproline as in the case of compound 11 [115,116]. As alternatives, several
authors have also surveyed the incorporation of substituents with additional stereogenic
elements like α-amino acids [117–120], sugar moieties [121] or other, more complex al-
kaloids [122–124] (see, for example, catalysts 12, 13 and 14). Another strategy has also
relied on incorporating functionalities with additional H-bond donor motifs that lead to
the formation of a transition state in which both reagents, the enamine intermediate and
the electrophile are connected through a network of H-bonding interactions that turn into
reduced conformational mobility. Some examples include the use of aminoalcohol-derived
prolinamide 15 [96,125,126] or diamine-based catalysts such as 16 [127,128] or 17 [129–131]
that also incorporate additional stereogenic elements on the N-substituent or even with
a terminal thiourea moiety that provides enhanced H-bond donor ability [132–136] (see
catalyst 18 for a representative example). Alternatively, dipeptide-type catalysts [137–139]
with a terminal secondary amide moiety (like in catalysts 19 [140] or 20 [141]) or more
complex polypeptidic scaffolds (see catalysts 21 [142] and 22 [143] as examples), which are
based on either natural or unnatural [144] amino acid scaffolds, have also proved to be
useful in this type of reaction (23) [145].
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Figure 1. Selected examples of bifunctional proline-based aminocatalysts incorporating H-bond
donor moieties employed in aldol, Mannich and related reactions.

Interestingly, moving the carboxylate group in the pyrrolidine core from the 2-position
to the 3-position leads to a huge difference in how the electrophile and the enamine inter-
mediate organize in the transition state. For instance, the use of pyrrolidine-3-carboxylate
24 in the Mannich reaction leads to a complete change in the simple diastereoselection of
the reaction, moving from the syn-selectivity reported for the proline-catalyzed reaction
(see Scheme 4) to provide the anti Mannich adducts in excellent yield and stereocontrol
(Scheme 6) [146]. This behavior was explained through the formation of an H-bonded
intermediate in which the chair-like TS operating in the L-proline-catalyzed reaction—in
which the H-bonded imine approaches the reactive (E)-s-trans enamine conformer—was no
longer operating, thus moving to a situation in which—while the carboxylate still directs
the incoming electrophile from the same face of the (E)-enamine intermediate—this enam-
ine has changed its reactive conformation to s-cis, thus exposing the opposite diastereotopic
face. A similar behavior has also been described for related catalyst systems based on
trans-4-hydroxyproline [147,148] or trans-3-aminoproline [149,150].
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A similar effect in which internal H-bonding changes the reactive conformation of
the enamine intermediate in order to provide opposite simple diastereoselection to those
observed in the archetypical L-proline-catalyzed aldol or Mannich reactions has been
explored by Maruoka and coworkers with bifunctional catalyst 25a based on the binaphthyl
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core (Scheme 7) [151–156]. In this case, an acidic sulfonamide substituent at the 3-position of
the binaphthyl core plays the role of the stereodirecting element as an H-bond donor motif.
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Primary amines have been demonstrated to perform well in aldol, Mannich, α-
amination and α-aminoxylation reactions [133,157,158]. The enamine formed after conden-
sation with a primary amine has a reduced degree of steric congestion around the enamine
moiety and, therefore, enables the activation of more sterically demanding substrates such
as, for example, acyclic ketones or α,α-disubstituted aldehydes. In addition, the NH moiety
of the secondary enamine is able to engage in H-bonding interactions with the incoming
electrophile or with additional Lewis basic sites of the catalysts, facilitating the formation
of a geometrically defined intermediate and, therefore, a higher degree of stereocontrol.
In fact, the smallest natural chiral α-amino acid, L-alanine (27), has demonstrated its pro-
ficiency in catalyzing the aldol reaction (Scheme 8) [159], and other reports afterwards
demonstrated that several other proteinogenic α-amino acids were also good catalysts for
aldol and related reactions [160].

There are also several other bifunctional catalysts involving primary amines that
incorporate additional H-bond donor entities reported for these transformations (see
Figure 2 for several representative examples), starting with simple modifications of the
a-amino acid core like, for example 28 [161]), chiral diamine-based compounds like 29 [162]
or 30 [163] and also dipeptides, tripeptides or even longer peptide compounds (illustrative
cases: 31 [164], 32 [165,166] and 33 [167]).
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aldol, Mannich and related reactions.

The use of α,β-unsaturated carbonyl compounds as electrophiles in the Michael reac-
tion with aldehydes and ketones under enamine catalysis deserves special attention [168].
The fact that the Lewis basic site at the Michael acceptor that has to interact with the
H-bond donor motif of the catalyst is placed at a longer distance in comparison with the
previously discussed electrophiles entails that most of the bifunctional hydrogen bond
donor/aminocatalysts that perform well in the aldol, Mannich, α-hydrazination or α-
aminoxylation tend to provide poor results in the Michael reaction. For example, the
L-proline-catalyzed Michael reaction between cyclohexanone and β-nitrostyrene proceeds
and provides the corresponding Michael adduct in excellent yield and diastereoselectivity
but with poor enantiocontrol [169], and the same applies to tetrazole analogue 10 [170], but
increasing the distance between the secondary amine moiety and the H-bond donor site,
as in homoproline/tetrazole catalyst 34, led to a significant improvement in the enantios-
electivity (Scheme 9) [171]. In this sense, the well-known ability of thioureas to establish
persistent interactions through double H-bonding events with the nitro group also has
been applied to the design of efficient bifunctional pyrrolidine/thiourea catalysts such
as 35 [172,173], which also performs well in the Michael reaction using nitroalkenes as
electrophiles [174–178].
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Scheme 9. The Michael reaction between cyclohexanone and β-nitrostyrene catalyzed by proline and
tetrazolylpyrrolidine vs. functionalized pyrrolidines 34 and 35. As an alternative, trans-4-hydoxy-
L-prolinamide 36 has also been described to promote very efficiently the enantioselective Michael
reaction between aldehydes and nitroalkenes (Scheme 10) [179]. In this case, the facial selectivity
is reversed with respect to the reactions catalyzed by L-proline or the related derivatives shown
in the previous scheme, which results from the internal activation of the nitroalkene by the 4-OH
moiety of the enamine intermediate. The bulky amide substituents also contribute to enhance the
enantioselectivity of the reaction through favoring the selective formation of the (E)-s-trans conformer
in which steric interactions are minimized.
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hydroxyprolinamide 36.

On the other hand, tripeptide 38a has been demonstrated to be, up to date, the best
performing catalyst in this transformation, being able to catalyze the transformation in a
remarkably low 1 mol% catalyst loading (Scheme 11) [180]. The reaction can be carried
out on a remarkably wide set of aldehyde donors and nitroalkene Michael acceptors, in-
cluding the highly challenging nitroethylene [181] and also α,β- and β,β-disubstituted
nitroalkenes [182,183]. In addition, the reaction proceeds under almost equimolar amounts
of both Michael donor and acceptor, in deep contrast with most reported methodologies
that typically required a large excess of the nitroalkene. Several key elements are required
for the high performance of this catalyst. On one hand, the presence of the secondary pyrro-
lidine from the initial D-proline residue is crucial for both activity and enantioselectivity,
and the configuration of the other two L-amino acid residues has also been recognized as
the matched combination that provides the highest enantiocontrol [184]. On the other hand,
the terminal carboxylic acid moiety of the final glutamic acid residue was also identified
to be key for both activity and enantioselectivity [185]. Interestingly, reducing the size of
this final carboxylate-containing side chain (from glutamic acid to aspartic acid) also led
to a slight decrease in yield and enantioselectivity. A series of in-depth mechanistic stud-
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ies [186–192] indicate that this carboxylic acid moiety is engaged in H-bonding interactions
with the nitroalkene during the Michael addition between the intermediate enamine and
the nitroalkene, but this acidic moiety is also crucial for promoting the fast protonation of
the nitronate intermediate formed after the conjugate addition step. This favors catalyst
turnover and leaves the C-C bond-forming step as the stereodefining event in the catalytic
cycle [193]. Further studies in this area by other authors have shown that other structurally
related tripeptides [194–196] or smaller dipeptides [197,198] also can catalyze this reaction
with success.
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Scheme 11. The D-Pro-Pro-Glu-NH2 (38a)-catalyzed Michael reaction between aldehydes and ni-
troalkenes.

As an interesting variant, catalyst 38b, in which steric bulk at C4 of the active proline
residue has been increased through the introduction of two methyl substituents, is an out-
standing catalyst for the same Michael reaction, providing the opposite anti diastereoisomer
with excellent yield and enantioselectivity (Scheme 12) [199]. The basis for this change in
diastereoselectivity relies on the change in reactive conformation of the enamine intermedi-
ate, which in this case adopts a s-cis conformation in order to avoid steric clash between the
alkene moiety and the two methyl substituents.
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The use of acyclic ketones as Michael donors typically makes use of primary amines
as catalysts in order to favor the enamine intermediate with a lower degree of steric conges-
tion compared to the situation when secondary amines are used. In this field, bifunctional
primary amine/thioureas have gained a prominent position among the different systems
reported to promote the Michael reaction between ketones and nitroalkenes. For exam-
ple, 1,2-diphenylethylenediamine-based thiourea 40a has demonstrated its proficiency
in this transformation with both acetone and other substituted acyclic ketones [200,201],
in the latter case leading to the diastereoselective formation of the anti γ-nitro ketone
diastereoisomer with high enantioselectivity (Scheme 13). This is explained in terms of the
preferential participation of the Z enamine intermediate that avoids destabilizing steric
interactions between the two alkyl substituents across the C=C bond. Moreover, in this case
the reaction was also found to be completely regioselective, providing α-branched adduct
41e and without observing the formation of the potential regioisomer arising through the
competitive formation of an unsubstituted enamine intermediate upon condensation of the
substrate with the catalyst. Further progress in this field has evolved into a wide variety
of structurally related primary amine/thiourea catalysts that also perform well in this
transformation [144].
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The same situation shows up when α,α-disubstituted aldehydes are to be used as
Michael donors [202], in which the problems associated with the high degree of steric con-
gestion around the nucleophilic carbon of the enamine are circumvented through the use of
a primary amine catalyst instead of the archetypical pyrrolidine-based secondary amines. A
particularly efficient approach comprises the use of bifunctional trans-cyclohexanediamine-
derived thiourea 42a (Scheme 14) [203]. As can be seen in this scheme, this reaction
performs excellently for a variety of situations, including challenging β-alkyl substituted
nitroalkenes and also functionalized aldehydes, providing generally excellent yields and
stereocontrol. It should also be pointed out that this catalyst is also particularly efficient in
the Michael reaction between acyclic ketones and nitroalkenes [204].
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As can be seen across the different examples of Michael reactions shown before, the
weakly nucleophilic nature of the enamine intermediate requires a strongly electrophilic
Michael acceptor such as a nitroalkene for the reaction to proceed with high yields. How-
ever, there are several reports, although much more limited in number, that disclose
the possibility of using other types of highly activated alkenes in this reaction. For in-
stance, maleimines [205–208], alkylidenemalonates [209–212] or acrylates and related com-
pounds [213,214] also have been found to react efficiently in several examples of Michael
reactions under bifunctional amine/H-bond donor catalysis, as can be seen from the ex-
amples shown in Scheme 15, although in many cases the scope of the reaction is rather
limited in terms of the potential Michael donor, mostly being effective when cyclohexanone
is involved as the pronucleophile.

The ability of external H-bond donor cocatalysts to activate the Michael acceptor
moiety can be used for the intramolecular Michael reaction shown in Scheme 16 [215] that
involves α,β-unsaturated esters, which are typically unreactive electrophiles toward the
Michael reaction under enamine activation. In this case, Schreiner thiourea 47 [216,217]
is incorporated into the reaction scheme in which O-TMS protected diarylprolinol cat-
alyst 48 is employed for the activation of the aldehyde moiety [218–224]. This catalyst
is known to exert an excellent facial selectivity in many other reactions that involve the
a-functionalization of aldehydes through a very effective steric shielding of one of the
prostereogenic faces of the enamine intermediate [225–227], without being involved in any
H-bonding interaction event; therefore, the reaction in the presence only of this catalyst
provided only traces of the intramolecular Michael reaction product, while the incorpora-
tion of thiourea 47 led to the clean formation of 49 in high yield and diastereoselectivity,
also minimizing the presence of side products arising from the competitive intermolecular
aldol reaction between two molecules of the substrate. As an illustrative example of the
potential of the methodology in synthesis, the authors also accomplished the total synthesis
of natural product (−)-yohimbane 50 in only three additional steps from 49 and with an
overall 25% yield from the starting material.
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3. Dual H-Bonding and Dienamine Activation

The combination of the enamine activation manifold with the principle of vinyl-
ogy [228] allows the extension of nucleophilic reactivity to remote locations of the initial
nucleophile [229–231]. Following Jørgensen’s pioneering example of the use of dien-
amine intermediates in the catalytic enantioselective γ-amination of alkenals [232], this
methodology has been extended to the use of simple dienamines [233,234] trienamines and
tetraenamines. Apart from the possibility of enamine intermediates, this possibility has
received considerable attention [235]. However, the fact that new stereocenters are installed
away from where the chiral information of the amine catalyst forces a high conformational
control of the dienamine, trienamine, or tetraenamine systems. For catalysts endowed
with facet selectivity only by steric effects, such as the prototypical Jørgensen–Hayashi
type catalysts, the level of steric control can be challenging [218]. Thus, the use of bifunc-
tional amine/H-bond donor catalysts that can interact with the introduced electrophile can
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provide a useful solution to this problem and lead to a more conformationally restricted
reagent during the formation of new stereocenters (see Scheme 17).
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A good example of this strategy is the cycloaddition reaction using bifunctional
pyrrolidine/squaramide catalyst 55a developed by Jørgensen, which has been successfully
applied to formal enantioselectivity (2 + 2) between nitroalkenes and in situ generated
dienes (Scheme 18) [236]. The reaction is a Michel/Michael cascade in which hydrogen-
bonding interactions between the nitro substituents of the nitroalkene reagents control the
proximity between the reagents. This reaction afforded a large number of tetrasubstituted
cyclobutanes in excellent yields as single diastereomers and enantiomers. This catalyst
was also later used successfully by the authors in several examples of inverse electron-
demanding Diels–Alder cycloaddition reactions involving the remote alkene moiety of a
dienamine as the electron-rich dienophile moiety [237,238].
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Furthermore, the same type of catalyst has also been shown to be useful in formal
1,3-dipolar cycloaddition chemistry. In particular, the (5 + 2) cycloaddition between in
situ generated pyrylium ylides and enolized enols proceeds via dienamine activation of
the latter, also in the presence of pyrrolidine/squaramide 55b with excellent yield and
stereocontrol (Scheme 19) [239]. These reactions consist of a stepwise process in which
1,2-addition of the dienamine to the oxonium moiety occurs once the oxidopyrylium
reagent is formed via an elimination of AcOH facilitated by DABCO. Due to both H-
bonding interactions between the oxidopyrylium reagent and the squaramide moiety and
interactions between the former and the (bistrifluoromethyl)benzyl substituent at one



Catalysts 2023, 13, 1091 15 of 33

of the squaramide’s N-atoms, the initial step is rigid [240]. The use of the Jørgensen–
Hayashi catalyst 48, in addition to providing high yields and e.e., failed to provide high
diastereoselectivity in relation to the relative arrangement of the two reagents.
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The bifunctional pyrrolidine/thiourea 34 that is structurally related to this type of
squaramide catalysts 55 has been identified to operate through a similar manifold in the cy-
clocondensation reaction between enolizable aldehydes and α-acetoxymethyl nitrostyrenes
(Scheme 20) [241]. This reaction takes place through initial Michael reaction between the
terminal position of the nucleophilic dienamine intermediate and the nitroalkene Michael
acceptor, in which the bifunctional thiourea establishes a well-defined trajectory for the
reagents through the formation of a network of H-bonding interactions. Next, elimina-
tion of AcOH regenerates a terminal nitroalkene moiety ready to participate in a second
intramolecular Michael reaction that forms the final densely substituted cyclohexenecar-
baldehyde adducts. Initially, the reaction produced the cyclocondensation adducts 57
with high enantioselectivities but as mixtures of diastereoisomers with respect to the NO2-
containing stereocenter. This could be solved by adding an external Brønsted base such
as Na2CO3, which provided the thermodynamic products 57 as single diastereoisomers,
also indicating that the bifunctional catalyst had performed excellently in providing a high
degree of diastereo- and enantiocontrol in the first Michael reaction.

There are also several examples in which external H-bond donor additives are incorpo-
rated together with the aminocatalyst in order to interact with the electrophile with the aim
of increasing its reactivity and/or modulating the stereochemical outcome of the reaction.
For example, the incorporation of Schreiner thiourea 47 as cocatalyst in combination with
diphenylprolinol derivative 48 is key for the success of the formal (2 + 2) cycloaddition
between a-hydroxymethyl-substituted nitroalkenes and enals (Scheme 21) [242]. This reac-
tion, which is closely related to the reaction displayed in Scheme 18 in which a bifunctional
catalyst was employed, provided direct access to the 3-oxabicyclo [4.2.0]octane scaffold
in a single step after intramolecular hemiacetalization with the pendant hydroxymethyl
substituent of the nitroalkene reagent. This final hemiacetal formation step contributes to
the stabilization of the final product and provides an additional thermodynamic driving
force for the overall process. Remarkably, poor yields were typically observed for a variety
of conditions tested in the absence of this cocatalyst 47, which shows the key role played
by the H-bond donor additive in both the activation of the nitroalkene electrophile and in
the stabilization of the nitronate intermediate formed after the initial Michael reaction step.
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Several authors have explored the simple γ-functionalization of enones or enals that
does not involve formal cycloaddition chemistry and in which bifunctional aminocatalysts
containing H-bond donor units provide a solution for solving stereoselectivity issues. A
representative example is shown in Scheme 22, in which quinidine-based primary amine
59 has been identified as a good catalyst for the γ-alkylation of α-substituted enals with
benzhydryl alcohols through SN1 reaction [243]. Key features of this reaction involve
the incorporation of a BINOL-based phosphoric acid for the generation of the required
carbocation via dehydration and the presence of a 6′-hydroxy substituent at the quinolone
moiety of the catalyst. This phenolic H-bond donor site is proposed to be involved in
H-bonding with the phosphate counterion of the carbocationic intermediate, thus directing
the approach of the electrophile to the γ-position of the dienamine and leading to high
enantiocontrol. For this reason, the matched combination between the two chiral compo-
nents of the catalyst salt employed had to be identified, observing that the combination
of quinidine-derived catalyst 59 with (S)-BINOL-based phosphoric acid 60 resulted in the
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highest enantiocontrol. A similar combination between the same types of phenolic cinchona
alkaloid-based primary amine catalysts and achiral Brønsted acids has also been employed
in the γ-functionalization of enones through Michael reaction with nitroalkenes [244–249].
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In another example of the ability of this type of reactivity to achieve selective g-functionalization
of α,β-unsaturated carbonyl compounds, bifunctional primary amine/thiourea 50b emerges as an
excellent catalyst for the aldol reaction between β-methylcyclohexenones and α-ketoesters [250].
This reaction takes place with complete γ-selectivity and with an excellent degree of enantiocontrol,
directly related to the ability of the thiourea moiety to interact with the electrophilic ketone moiety,
directing its approach to the, on the other hand, highly conformationally rigid exocyclic dienamine
intermediate (Scheme 23).
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sition with the maleimide reagent, detailed mechanistic studies showed that the true 
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The reactivity of this type of cyclic enone toward dienamine activation can also be
directed to the formation of an endocyclic dienamine intermediate that enables the function-
alization of the cyclic scaffold at the 4-position. In this case, diamine 61a has been identified
as an excellent catalyst for the formal vinylogous Michael reaction between cyclopen-
tenones and cyclohexenones with maleimides, resulting in an interesting methodology
for the formation of densely functionalized carbocycles (Scheme 24) [245]. Even though
the formation of the products can be envisaged to take place at first sight through direct
conjugate addition of the dienamine intermediate at the terminal nucleophilic position
with the maleimide reagent, detailed mechanistic studies showed that the true mechanism
of the reaction involved a Diels–Alder cycloaddition followed by retro-Mannich reaction.
This provided a plausible explanation for the fact that when α-substituted maleimides
were employed as substrates, the reaction delivered the regioisomer with a quaternary
stereocenter at the maleimide moiety.
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instead of the linear dienamines that are generated when enals are employed. This is the 
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Scheme 24. Cascade Diels–Alder/retro-Mannich reaction between cycloalkenones and maleimides
catalyzed by diamine 62a.

Another possibility to generate this type of dienamine intermediate relies on the use
of α,β-unsaturated ketones as the starting materials, which, upon condensation with the
aminocatalyst, generate exactly the same dienamine intermediate that is formed when the
parent α,β-unsaturated ketone is employed. This strategy has the evident benefit of the
higher reactivity of the unconjugated starting material toward the condensation with the
catalyst in the initial step of the reaction [251,252]. Scheme 25 shows the use of this strategy
for the enantioselective synthesis of 3,4-disubstituted cyclohexenones, in the presence
of bifunctional catalyst 63 [253]. The H-bond donor element directs the approach of the
Brønsted acid during the selective g-protonation of the dienamine intermediate, forming
an α,β-unsaturated iminium ion that, upon hydrolysis, releases the catalyst and the final
conjugated product, which was obtained as highly enantioenriched material. This reaction
was applied as the key step in the total synthesis of natural product (−)-isoacanthodoral.
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However, when enones are used as the substrate with a primary or secondary amine
catalyst, they can offer the possibility to form cross-conjugated dienamine intermediates
instead of the linear dienamines that are generated when enals are employed. This is the
typical behavior observed when cyclohexanones are employed, which, when not biased
toward the formation of linear dienamines (as in the case of β-methylcyclohexenone shown
in Scheme 23), can form a 2-aminodiene intermediate with potential to participate as
electron-rich diene in Diels–Alder-type reactivity. In those cases, bifunctional catalysts with
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H-bond donor moieties able to interact with the dienophile containing Lewis basic sites
can be used to unveil interesting reactivity. A good example of this behavior is shown in
Scheme 26, in which the reaction of cyclohexenones with nitrosobenzene in the presence of
pyrrolidine-tetrazole catalyst 10 provides a variety of bicyclic adducts with excellent yield
and enantioselectivity [50,104,254]. Despite the mentioned possibility for a Diels–Alder
[4 + 2] pericyclic reaction to occur, further studies have demonstrated that this reaction is a
stepwise process that consists of an initial highly enantioselective O-nitroso-aldol reaction
controlled by the H-bond donor ability of the tetrazole stereodirecting element followed by
intramolecular conjugate addition [255].

Catalysts 2023, 13, x  20 of 35 
 

 

as electron-rich diene in Diels–Alder-type reactivity. In those cases, bifunctional catalysts 
with H-bond donor moieties able to interact with the dienophile containing Lewis basic 
sites can be used to unveil interesting reactivity. A good example of this behavior is shown 
in Scheme 26, in which the reaction of cyclohexenones with nitrosobenzene in the pres-
ence of pyrrolidine-tetrazole catalyst 10 provides a variety of bicyclic adducts with excel-
lent yield and enantioselectivity [50,104,254]. Despite the mentioned possibility for a 
Diels–Alder [4 + 2] pericyclic reaction to occur, further studies have demonstrated that 
this reaction is a stepwise process that consists of an initial highly enantioselective O-ni-
troso-aldol reaction controlled by the H-bond donor ability of the tetrazole stereodirecting 
element followed by intramolecular conjugate addition [255]. 

 
Scheme 26. The pyrolidine-tetrazole 10-catalyzed nitroso-Diels–Alder reaction. 

This type of reactivity is amenable to being further extended to electronically related 
electrophiles with potential to undergo the same type of cascade a-functionalization fol-
lowed by intramolecular conjugate addition. For instance, in situ-generated formaldehyde 
N-arylimines also undergo formal aza-Diels–Alder reaction with cyclohexenones and cy-
cloheptenone in the presence of L-proline 1, providing the corresponding bicyclic adducts 
in excellent yields and enantioselectivity (Scheme 27a) [256–259]. The use of cyclopente-
none as substrate, which requires the formation of a strained cyclic dienamine intermedi-
ate, did not provide any formal cycloaddition product. In addition, 4,4-disubstituted cy-
clohexenones also react efficiently with nitroalkenes, providing bicyclic adducts 69 in high 
yield, single endo-diastereoisomers and excellent enantiomeric excess (Scheme 27b), in 
this case using the pyridinium salt of compound 68 as the best performing catalyst. Inter-
estingly, this reaction afforded the highest performance when it was carried out in brine 
[260–263]. 

DMSO, 50篊
1 (30 mol%)

N
H

67a, n= 1, 82%, 99% ee
67b , n= 2, 90%, 98% ee

OH

O

N

O

O

+
O

H

OMe

NH2

H
( )n

+

MeO

( )n

(a)

brine, r.t.

68 (20 mol%)
4-CF3C6H4CO2H (20 mol%)

N
H

69a, Ar= Ph, 99%, 96% ee
69b , Ar= 4-FC 5H4, 97%, 95% ee
69c, Ar= 4-MeOC 5H4, 98%, 93% ee
69d , Ar= 2-furyl, 96%, 92% ee

S

O

O

+
(b)

Ar
NO2

NO2
Ar

N

 
Scheme 27. Comparison between (a) proline and (b) pyrolidine-tetrazole 10 in the nitroso-
Diels–Alder reaction. 

Scheme 26. The pyrolidine-tetrazole 10-catalyzed nitroso-Diels–Alder reaction.

This type of reactivity is amenable to being further extended to electronically related
electrophiles with potential to undergo the same type of cascade a-functionalization fol-
lowed by intramolecular conjugate addition. For instance, in situ-generated formaldehyde
N-arylimines also undergo formal aza-Diels–Alder reaction with cyclohexenones and cyclo-
heptenone in the presence of L-proline 1, providing the corresponding bicyclic adducts in
excellent yields and enantioselectivity (Scheme 27a) [256–259]. The use of cyclopentenone
as substrate, which requires the formation of a strained cyclic dienamine intermediate,
did not provide any formal cycloaddition product. In addition, 4,4-disubstituted cyclo-
hexenones also react efficiently with nitroalkenes, providing bicyclic adducts 69 in high
yield, single endo-diastereoisomers and excellent enantiomeric excess (Scheme 27b), in this
case using the pyridinium salt of compound 68 as the best performing catalyst. Interestingly,
this reaction afforded the highest performance when it was carried out in brine [260–263].
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Alternatively, and as happened in the reactions proceeding through enal-derived
dienamines, there are also some examples involving 2-aminodiene-type intermediates
in which the H-bond donor is added as an external additive or cocatalyst instead of
being part of a bifunctional catalyst. This is the situation shown in Scheme 28, in which,
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again, Schreiner thiourea 47 is added as an external additive to assist in the formal (4 + 2)
cycloaddition between enones and isatins catalyzed by quinine-derived primary amine
70, and with the H-bond donor ability of 47 contributing to enhance the reactivity of
the heterodienophile [264]. The reaction also proceeds more efficiently when a modified
threonine derivative is incorporated as Brønsted acid additive, which is proposed to
participate in the formation of a carboxylate salt with the quinuclidine scaffold of the
catalyst, enhancing its ability to exert stereodifferentiation between the two prostereogenic
faces of the 2-aminodiene intermediate.
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Finally, it should also be mentioned that, in addition to the ability of the H-bond donor
group to govern the stereoselectivity of the process, this type of element incorporated as part
of a bifunctional catalyst can also be employed to direct the regioselectivity of the reaction,
taking into account the polydentate nucleophilic nature of the dienamine intermediate. For
instance, L-proline 1 catalyzes the Mannich reaction between enolizable enals and imines
(Scheme 29), providing clean α-addition products that, upon isomerizaton of the C=C
bond in the presence of one equivalent of a Brønsted base such as imidazole, provide a
direct entry to aza-Morita-Baylis-Hilman-type adducts 72 [265–267]. Other authors have
extended this reaction platform to the use of aldehydes as the electrophilic counterparts
using proline as catalyst [115] and also employing a bifunctional primary amine/thiourea
in the intramolecular Rauhut Currier reaction [268].
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4. Dual H-Bonding and Trienamine/Tetraenamine Activation

The combination of the principle of vinylogy with the enamine activation manifold can
be further applied to extended conjugated systems, enabling functionalization of far more
remote positions [210]. However, in this case, in addition to the stereochemical issues to be
solved, the polydentate nucleophilic nature of this extended polyconjugate enamine system
entails an additional challenge with respect to regioselectivity control. As a consequence,
the use of a bifunctional amine/H-bond donor catalysts can provide useful and very
effective solutions to many of these problems. A good example of this behavior can be
found in the Diels–Alder reaction between chromones and enolizable α,β,γ,δ-unsaturated
aldehydes (Scheme 30), in which the H-bond donor squaramide moiety plays a crucial
role in facilitating a stereodefined trienamine intermediate through establishing a selective
H-bonding interaction with the nitrile substituent that activates the dienophile [269]. The
[4 + 2] cycloaddition involving the terminal diene moiety of the trienamine that adopts
a preferential reactive s-cis/s-cis conformation across the triene scaffold takes place with
excellent endo-selectivity and provides a family of tetrahydroxanthones in excellent yields
and enantioselectivities. This reaction design has been applied in other, related [4 + 2]
cycloadditions between dienals and other dieophiles with success [270,271].
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In addition, the same catalyst has been found to perform excellently in the activation
of anthracen-9-yl-acetaldehydes toward Diels–Alder cycloaddition through the formation
of a linear trienamine intermediate (Scheme 31) [272]. This transformation takes place
together with the dearomatization of the anthracene core and using a rather low catalyst
loading in comparison with other methods reported using this type of organocatalytic
activation manifold. The stereodirecting ability of the squaramide moiety via H-bonding
interactions with the nitroalkene dienophile was key to obtaining good face selectivity,
observing that the archetypical diarylprolinol-based catalyst 48, while being also able to
catalyze this transformation, only furnished the corresponding cycloadducts in 60% e.e. In
the presence of catalyst 55a. the reaction provides a single diastereoisomer with excellent
enantioselectivity, and it was also found to be remarkably wide in scope with respect to the
possibility of using differently substituted nitroalkenes, including β-alkyl substituted ones.
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Finally, there are also some examples of reactions involving even more extended
tetraenamine intermediates in which a bifunctional secondary amine/H-bond donor has
been employed as the catalyst of choice to achieve high stereocontrol. This reactivity typi-
cally involves the use of 5-allylfurfurals as convenient substrates to undergo condensation
with a secondary amine that generates a somewhat conformationally rigid tetraenamine
intermediate in which the aromaticity of the furan moiety has been removed. In particular,
pyrrolidine/thiourea 34 has been identified to be able to catalyze the hetero-Diels–Alder
reaction of these substrates using highly activated alkylideneoxindoles as the oxodiene
counterpart reacting with the tetraenamine intermediate in which the terminal alkene is
participating as the dienophile (Scheme 32) [273]. A related report has also shown the pos-
sibility of carrying out the functionalization at the terminal carbon of this polyunsaturated
system through Michael reaction [274].
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5. Conclusions 
As demonstrated by the aforementioned examples, enamine activation is a useful 

strategy for the functionalization of carbonyl compounds. In this sense, the use of a cocat-
alyst that can interact with the reagent used for functionalizing the carbonyl compound 
can provide better conversion and yields and also better stereoselectivities. This can be 
attributed to a more rigid transition state in which the approximation of this reagent to 
the enamine (or dienamine, trienamine, etc.) is controlled by secondary interactions. 
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5. Conclusions

As demonstrated by the aforementioned examples, enamine activation is a useful
strategy for the functionalization of carbonyl compounds. In this sense, the use of a
cocatalyst that can interact with the reagent used for functionalizing the carbonyl compound
can provide better conversion and yields and also better stereoselectivities. This can be
attributed to a more rigid transition state in which the approximation of this reagent to the
enamine (or dienamine, trienamine, etc.) is controlled by secondary interactions.
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52. Kotrusz, P.; Kmentová, I.; Gotov, B.; Toma, S.; Solčániová, E. Proline-catalysed asymmetric aldol reaction in the room temperature
ionic liquid [bmim]PF6. Chem. Commun. 2002, 8, 2510–2511. [CrossRef]

53. Pidathala, C.; Hoang, L.; Vignola, N.; List, B. Direct Catalytic Asymmetric Enolexo Aldolizations. Angew. Chem. Int. Ed. 2003, 42,
2785–2788. [CrossRef]

54. Chandler, C.L.; List, B. Catalytic, Asymmetric Transannular Aldolizations: Total Synthesis of (+)-Hirsutene. J. Am. Chem. Soc.
2008, 130, 6737–6739. [CrossRef]

55. Cordova, A.; Notz, W.; Barbas, C.F., III. Direct organocatalytic aldol reactions in buffered aqueous media. Chem. Commun. 2002,
24, 3024–3025. [CrossRef]

56. Hayashi, Y.; Aratake, S.; Itoh, T.; Okano, T.; Sumiya, T.; Shoji, M. Dry and wet prolines for asymmetric organic solvent-free
aldehyde–aldehyde and aldehyde–ketone aldol reactions. Chem. Commun. 2007, 9, 957–959. [CrossRef]

57. Sakthivel, K.; Notz, W.; Bui, T.; Barbas, C.F., III. Amino Acid Catalyzed Direct Asymmetric Aldol Reactions: A Bioorganic
Approach to Catalytic Asymmetric Carbon−Carbon Bond-Forming Reactions. J. Am. Chem. Soc. 2001, 123, 5260–5267. [CrossRef]

58. Notz, W.; List, B. Catalytic Asymmetric Synthesis of anti-1,2-Diols. J. Am. Chem. Soc. 2000, 122, 7386–7387. [CrossRef]
59. List, B.; Pojarliev, P.; Castello, C. Proline-Catalyzed Asymmetric Aldol Reactions between Ketones and α-Unsubstituted Aldehydes.

Org. Lett. 2001, 3, 573–575. [CrossRef]
60. Northrup, A.B.; MacMillan, D.W.C. The First Direct and Enantioselective Cross-Aldol Reaction of Aldehydes. J. Am. Chem. Soc.

2002, 124, 6798–6799. [CrossRef]
61. Northrup, A.B.; Mangion, F.H.; MacMillan, D.W.C. Enantioselective Organocatalytic Direct Aldol Reactions of α-Oxyaldehydes:

Step One in a Two-Step Synthesis of Carbohydrates. Angew. Chem. Int. Ed. 2004, 43, 2152–2154. [CrossRef]
62. Northrup, A.B.; MacMillan, D.W.C. Two-step synthesis of carbohydrates by selective aldol reactions. Science 2004, 305, 1752–1755.

[CrossRef]
63. Notz, W.; Tanaka, F.; Barbas, C.F., III. Enamine-Based Organocatalysis with Proline and Diamines: The Development of Direct

Catalytic Asymmetric Aldol, Mannich, Michael, and Diels−Alder Reactions. Acc. Chem. Res. 2004, 37, 580–591. [CrossRef]
64. List, B. Enamine Catalysis Is a Powerful Strategy for the Catalytic Generation and Use of Carbanion Equivalents. Acc. Chem. Res.

2004, 37, 548–557. [CrossRef]
65. Cordova, A.; Notz, W.; Zhong, G.; Betancort, J.; Barbas, C.F., III. A Highly Enantioselective Amino Acid-Catalyzed Route to

Functionalized α-Amino Acids. J. Am. Chem. Soc. 2002, 124, 1842–1843. [CrossRef]
66. List, B.; Pojarliev, P.; Biller, W.T.; Martin, H.J. The Proline-Catalyzed Direct Asymmetric Three-Component Mannich Reaction:

Scope, Optimization, and Application to the Highly Enantioselective Synthesis of 1,2-Amino Alcohols. J. Am. Chem. Soc. 2002,
124, 827–833. [CrossRef]

67. List, B. The Direct Catalytic Asymmetric Three-Component Mannich Reaction. J. Am. Chem. Soc. 2000, 122, 9336–9337. [CrossRef]
68. Yang, J.W.; Stadler, M.; List, B. Proline-Catalyzed Mannich Reaction of Aldehydes with N-Boc-Imines. Angew. Chem. Int. Ed. 2007,

46, 609–611. [CrossRef]
69. Hayashi, Y.; Urushima, T.; Tsuboi, W.; Shoji, M. L-Proline-catalyzed enantioselective one-pot cross-Mannich reaction of aldehydes.

Nat. Protoc. 2007, 2, 113–118. [CrossRef]
70. Yang, J.; Chandler, C.; Stadler, M.; Kempen, D.; List, B. Proline-catalysed Mannich reactions of acetaldehyde. Nature 2008, 452,

453–455. [CrossRef]

https://doi.org/10.1016/j.tet.2016.07.035
https://doi.org/10.1039/C6GC00792A
https://doi.org/10.1016/j.tetasy.2013.03.014
https://doi.org/10.1002/adsc.201100595
https://doi.org/10.1002/chem.201101299
https://doi.org/10.1002/chem.200902678
https://doi.org/10.1002/adsc.200800111
https://doi.org/10.1016/j.tet.2005.09.070
https://doi.org/10.1002/adsc.200404166
https://doi.org/10.1016/j.tetlet.2003.08.060
https://doi.org/10.1039/B206911C
https://doi.org/10.1002/anie.200351266
https://doi.org/10.1021/ja8024164
https://doi.org/10.1039/B207664K
https://doi.org/10.1039/B613262F
https://doi.org/10.1021/ja010037z
https://doi.org/10.1021/ja001460v
https://doi.org/10.1021/ol006976y
https://doi.org/10.1021/ja0262378
https://doi.org/10.1002/anie.200453716
https://doi.org/10.1126/science.1101710
https://doi.org/10.1021/ar0300468
https://doi.org/10.1021/ar0300571
https://doi.org/10.1021/ja017270h
https://doi.org/10.1021/ja0174231
https://doi.org/10.1021/ja001923x
https://doi.org/10.1002/anie.200603188
https://doi.org/10.1038/nprot.2006.472
https://doi.org/10.1038/nature06740


Catalysts 2023, 13, 1091 26 of 33

71. Bøgevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang, W.; Jørgensen, K.A. Direct Organo-Catalytic Asymmetric α-Amination of
Aldehydes—A Simple Approach to Optically Active α-Amino Aldehydes, α-Amino Alcohols, and α-Amino Acids. Angew. Chem.
Int. Ed. 2002, 41, 1790–1793. [CrossRef]

72. List, B. Direct Catalytic Asymmetric α-Amination of Aldehydes. J. Am. Chem. Soc. 2002, 124, 5656–5657. [CrossRef]
73. Kumaragurubaran, N.; Juhl, K.; Zhuang, W.; Bøgevig, A.; Jørgensen, K.A. Direct L-Proline-Catalyzed Asymmetric α-Amination

of Ketones. J. Am. Chem. Soc. 2002, 124, 6254–6255. [CrossRef]
74. Juhl, K.; Jørgensen, K.A. Catalytic Asymmetric Direct α-Amination Reactions of 2-Keto Esters: A Simple Synthetic Approach to

Optically Active syn-β-Amino-α-hydroxy Esters. J. Am. Chem Soc. 2002, 124, 2420–2421. [CrossRef]
75. Ashley, M.A.; Hirschi, J.S.; Izzo, J.A.; Vetticatt, M.J. Isotope Effects Reveal the Mechanism of Enamine Formation in L-Proline-

Catalyzed α-Amination of Aldehydes. J. Am. Chem. Soc. 2016, 138, 1756–1759. [CrossRef]
76. Kanzian, T.; Lakhdar, S.; Mayr, H. Kinetic Evidence for the Formation of Oxazolidinones in the Stereogenic Step of Proline-

Catalyzed Reactions. Angew. Chem. Int. Ed. 2010, 49, 9526–9529. [CrossRef]
77. Brown, S.P.; Brochu, M.P.; Sinz, C.J.; MacMillan, D.W.C. The Direct and Enantioselective Organocatalytic α-Oxidation of

Aldehydes. J. Am. Chem. Soc. 2003, 125, 10808–10809. [CrossRef]
78. Zhong, G. A Facile and Rapid Route to Highly Enantiopure 1,2-Diols by Novel Catalytic Asymmetric α-Aminoxylation of

Aldehydes. Angew. Chem. Int. Ed. 2003, 42, 4247–4250. [CrossRef]
79. Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Shoji, M. Direct Proline-Catalyzed Asymmetric α-Aminoxylation of Ketones. Angew. Chem.

Int. Ed. 2004, 43, 1112–1115. [CrossRef]
80. Hayashi, Y.; Yamaguchi, J.; Sumiya, T.; Hibino, K.; Shoji, M. Direct Proline-Catalyzed Asymmetric α-Aminoxylation of Aldehydes

and Ketones. J. Org. Chem. 2004, 69, 5966–5973. [CrossRef]
81. Bogevig, A.; Sunden, H.; Cordova, A. Direct Catalytic Enantioselective α-Aminoxylation of Ketones: A Stereoselective Synthesis

of α-Hydroxy and α,α′-Dihydroxy Ketones. Angew. Chem. Int. Ed. 2004, 43, 1129–1132. [CrossRef]
82. Hayashi, Y.; Yamaguchi, J.; Hibino, K.; Shoji, M. Direct proline catalyzed asymmetric α-aminooxylation of aldehydes. Tetrahedron

Lett. 2003, 44, 8293–8296. [CrossRef]
83. Kumar, P.; Dwivedi, N. Proline Catalyzed α-Aminoxylation Reaction in the Synthesis of Biologically Active Compounds. Acc.

Chem. Res. 2013, 46, 289–299. [CrossRef]
84. Palomo, C.; Vera, S.; Velilla, I.; Mielgo, A.; Gomez-Bengoa, E. Regio- and Enantioselective Direct Oxyamination Reaction of

Aldehydes Catalyzed by α,α-Diphenylprolinol Trimethylsilyl Ether. Angew. Chem. Int. Ed. 2007, 46, 8054–8056. [CrossRef]
85. Companyó, X.; Valero, G.; Crovetto, L.; Moyano, A.; Rios, R. Highly Enantio- and Diastereoselective Organocatalytic Desym-

metrization of Prochiral Cyclohexanones by Simple Direct Aldol Reaction Catalyzed by Proline. Chem. Eur. J. 2009, 15, 6564–6568.
[CrossRef]

86. Reis, O.; Eymur, S.; Reis, B.; Demir, A.S. Direct enantioselectivealdol reactions catalyzed by a proline–thiourea host–guest complex.
Chem. Commun. 2009, 9, 1088–1090. [CrossRef]

87. Poe, S.L.; Bogdan, A.R.; Mason, B.P.; Steinbacher, J.L.; Opalka, S.M.; McQuade, D.T. Use of Bifunctional Ureas to Increase the Rate
of Proline-Catalyzed α-Aminoxylations. J. Org. Chem. 2009, 74, 1574–1580. [CrossRef]

88. Yamashita, Y.; Yasukawa, T.; Yoo, W.-J.; Kitanosono, T.; Kobayashi, S. Catalytic enantioselective aldol reactions. Chem. Soc. Rev.
2018, 47, 4388–4480. [CrossRef]

89. Gómez Arrayás, R.; Carretero, J.C. Catalytic asymmetric direct Mannich reaction: A powerful tool for the synthesis of α,β-diamino
acids. Chem. Soc. Rev. 2009, 38, 1940–1948. [CrossRef]

90. Verkade, J.M.M.; van Hemert, L.J.C.; Quaedfliegb, P.J.L.M.; Rutjes, F.P.J.T. Organocatalysed asymmetric Mannich reactions. Chem.
Soc. Rev. 2008, 37, 29–41. [CrossRef]

91. Cai, X.-H.; Guo, H.; Bing, X. Recent progress in the asymmetric Mannich reaction. Eur. J. Chem. 2012, 3, 258–266. [CrossRef]
92. Duthaler, R.O. Proline-Catalyzed Asymmetric α-Amination of Aldehydes and Ketones—An Astonishingly Simple Access to

Optically Active α-Hydrazino Carbonyl Compounds. Angew. Chem. Int. Ed. 2003, 42, 975–978. [CrossRef]
93. Merino, P.; Tejero, T. Organocatalyzed Asymmetric α-Aminoxylation of Aldehydes and Ketones—An Efficient Access to Enan-

tiomerically Pure α-Hydroxycarbonyl Compounds, Diols, and Even Amino Alcohols. Angew. Chem. Int. Ed. 2004, 43, 2995–2997.
[CrossRef]

94. Albrecht, Ł.; Jiang, H.; Jørgensen, K.A. Hydrogen-Bonding in Aminocatalysis: From Proline and Beyond. Chem. Eur. J. 2014, 20,
358–368. [CrossRef]

95. Liu, X.; Lin, L.; Feng, X. Amide-based bifunctional organocatalysts in asymmetric reactions. Chem. Commun. 2009, 41, 6145–6158.
[CrossRef]

96. Tang, Z.; Jiang, F.; Yu, L.T.; Cui, X.; Gong, L.Z.; Mi, A.Q.; Jiang, Y.Z. Novel Small Organic Molecules for a Highly Enantioselective
Direct Aldol Reaction. J. Am. Chem. Soc. 2003, 125, 5262–5263. [CrossRef]

97. Tang, Z.; Jiang, F.; Cui, X.; Gong, L.-Z.; Mi, A.-Q.; Jiang, Y.-Z.; Wu, Y.-D. Enantioselective direct aldol reactions catalyzed by
l-prolinamide derivatives. Proc. Natl. Acad. Sci. USA 2004, 101, 5755–5760. [CrossRef]

98. Tang, Z.; Yang, Z.H.; Chen, X.H.; Cun, L.F.; Mi, A.Q.; Jiang, Y.Z.; Gong, L.Z. A Highly Efficient Organocatalyst for Direct Aldol
Reactions of Ketones with Aldedydes. J. Am. Chem. Soc. 2005, 127, 9285–9289. [CrossRef]

99. Yang, H.; Carter, R.G. Proline Sulfonamide Based Organocatalysis: Better Late than Never. Synlett 2010, 19, 2827–2838. [CrossRef]

https://doi.org/10.1002/1521-3773(20020517)41:10&lt;1790::aid-anie1790&gt;3.0.co;2-y
https://doi.org/10.1021/ja0261325
https://doi.org/10.1021/ja026412k
https://doi.org/10.1021/ja0175486
https://doi.org/10.1021/jacs.5b10876
https://doi.org/10.1002/anie.201004344
https://doi.org/10.1021/ja037096s
https://doi.org/10.1002/anie.200352097
https://doi.org/10.1002/anie.200353085
https://doi.org/10.1021/jo049338s
https://doi.org/10.1002/ange.200353018
https://doi.org/10.1016/j.tetlet.2003.09.057
https://doi.org/10.1021/ar300135u
https://doi.org/10.1002/anie.200703001
https://doi.org/10.1002/chem.200900488
https://doi.org/10.1039/B817474A
https://doi.org/10.1021/jo802461w
https://doi.org/10.1039/C7CS00824D
https://doi.org/10.1039/B820303B
https://doi.org/10.1039/B713885G
https://doi.org/10.5155/eurjchem.3.2.258-266.536
https://doi.org/10.1002/anie.200390283
https://doi.org/10.1002/anie.200301760
https://doi.org/10.1002/chem.201303982
https://doi.org/10.1039/B913411E
https://doi.org/10.1021/ja034528q
https://doi.org/10.1073/pnas.0307176101
https://doi.org/10.1021/ja0510156
https://doi.org/10.1055/s-0030-1259020


Catalysts 2023, 13, 1091 27 of 33

100. Berkessel, A.; Koch, B.; Lex, J. Proline-Derived N-Sulfonylcarboxamides: Readily Available, Highly Enantioselective and Versatile
Catalysts for Direct Aldol Reactions. Adv. Synth. Catal. 2004, 346, 1141–1146. [CrossRef]

101. Cobb, A.J.A.; Shaw, D.M.; Longbottom, D.A.; Gold, J.B.; Ley, S.V. Organocatalysis with proline derivatives: Improved catalysts for
the asymmetric Mannich, nitro-Michael and aldol reactions. Org. Biomol. Chem. 2005, 3, 84–96. [CrossRef]

102. Bellis, E.; Kokotos, G. 4-Substituted prolines as organocatalysts for aldol reactions. Tetrahedron 2005, 61, 8669–8676. [CrossRef]
103. Silva, F.; Sawicki, M.; Gouverneur, V. Enantioselective Organocatalytic Aldol Reaction of Ynones and Its Synthetic Applications.

Org. Lett. 2006, 8, 5417–5419. [CrossRef]
104. Sundén, H.; Dahlin, N.; Ibrahem, I.; Adolfsson, H.; Cordova, A. Novel organic catalysts for the direct enantioselective α-oxidation

of carbonyl compounds. Tetrahedron Lett. 2005, 46, 3385–3389. [CrossRef]
105. Wang, W.; Wang, J.; Li, H. A Simple and Efficient L-Prolinamide-Catalyzed α-Selenenylation Reaction of Aldehydes. Org. Lett.

2004, 6, 2817–2820. [CrossRef]
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267. Číhalová, S.; Dziedzic, P.; Cordova, A.; Veselý, J. Asymmetric Aza-Morita–Baylis–Hillman-Type Reactions: The Highly Enantiose-
lective Reaction between Unmodified α,β- Unsaturated Aldehydes and N-Acylimines by Organo-co-catalysis. Adv. Synth. Catal.
2011, 353, 1096–1108. [CrossRef]

268. Maity, S.; Sar, S.; Ghorai, P. Primary Aminothiourea-Catalyzed Enantioselective Synthesis of Rauhut–Currier Adducts of 3-
Arylcyclohexenone with a Tethered Enone on the Aryl Moiety at the Ortho-Position. Org. Lett. 2018, 20, 1707–1711. [CrossRef]

269. Albrecht, Ł.; Acosta, F.C.; Fraile, A.; Albrecht, A.; Christensen, J.; Jørgensen, K.A. Enantioselective H-Bond-Directing Approach
for Trienamine-mediated Reactions in Asymmetric Synthesis. Angew. Chem. Int. Ed. 2012, 51, 9088–9092. [CrossRef]

270. Albrecht, A.; Skrzynska, A.; Pietrzak, A.; Bojanowski, J.; Albrecht, Ł. Asymmetric Aminocatalysis in the Synthesis of δ-Lactone
Derivatives. Asian J. Org. Chem. 2016, 5, 1115–1119. [CrossRef]

271. Monleon, A.; Glaus, F.; Vergura, S.; Jørgensen, K.A. Organocatalytic Strategy for the Enantioselective Cycloaddition to Trisubsti-
tuted Nitroolefins to Create Spirocyclohexene-Oxetane Scaffolds. Angew. Chem. Int. Ed. 2016, 55, 2478–2482. [CrossRef]

272. Jiang, H.; Rodriguez-Escrich, C.; Johansen, T.K.; Davis, R.L.; Jørgensen, K.A. Organocatalytic Activation of Polycyclic Aromatic
Compounds for Asymmetric Diels–Alder Reactions. Angew. Chem. Int. Ed. 2012, 51, 10271–10274. [CrossRef]

273. He, X.-L.; Zhao, H.-R.; Duan, C.-Q.; Du, W.; Chen, Y.-C. Remote Asymmetric Oxa-Diels–Alder Reaction of 5-Allylic Furfurals via
Dearomatizative Tetraenamine Catalysis. Org. Lett. 2018, 20, 804–807. [CrossRef]

274. Xu, C.-J.; Li, H.-W.; He, X.-L.; Du, W.; Chen, Y.-C. Asymmetric Direct Remote Michael Addition Reactions of Allyl Furfurals via
Dearomative Trienamine and Tetraenamine Catalysis. Asian J. Org. Chem. 2019, 8, 1037–1040. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/chem.201102766
https://doi.org/10.1002/chem.201300595
https://doi.org/10.1002/anie.200603973
https://doi.org/10.1016/j.tetlet.2007.07.154
https://doi.org/10.1002/adsc.201000951
https://doi.org/10.1021/acs.orglett.7b03959
https://doi.org/10.1002/anie.201204790
https://doi.org/10.1002/ajoc.201600272
https://doi.org/10.1002/anie.201510731
https://doi.org/10.1002/anie.201205836
https://doi.org/10.1021/acs.orglett.7b03942
https://doi.org/10.1002/ajoc.201900197

	Introduction 
	Dual H-Bonding and Enamine Activation 
	Dual H-Bonding and Dienamine Activation 
	Dual H-Bonding and Trienamine/Tetraenamine Activation 
	Conclusions 
	References

