
Citation: Zhang, Y.; Li, L.; Shang, Z.;

Xu, H. Application of a Response

Surface Method for the Optimization

of the Hydrothermal Synthesis of

Magnetic NiCo2O4 Desulfurization

Catalytic Powders. Catalysts 2023, 13,

1119. https://doi.org/10.3390/

catal13071119

Academic Editor: Haralampos N.

Miras

Received: 24 June 2023

Revised: 12 July 2023

Accepted: 15 July 2023

Published: 18 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Article

Application of a Response Surface Method for the Optimization
of the Hydrothermal Synthesis of Magnetic NiCo2O4
Desulfurization Catalytic Powders
Yinke Zhang 1, Lu Li 1, Zihan Shang 2 and Hang Xu 2,*

1 School of Mathematics and Statistics, Henan University of Science and Technology, Luoyang 471023, China
2 School of Chemistry and Chemical Engineering, Henan University of Science and Technology,

Luoyang 471023, China
* Correspondence: xhinbj@126.com

Abstract: In this study, nickel cobaltate (NiCo2O4) powders are employed as a catalyst in conjunction
with persulfate for the development of a catalytic oxidation system to enhance fuel desulfurization.
The hydrothermal synthesis conditions of NiCo2O4 powders, which significantly influenced the
desulfurization efficiency, were optimized using a response surface methodology with a Box–Behnken
design. These conditions were ranked in the following order: calcination temperature > hydrother-
mal temperature > calcination time > hydrothermal time. Through the optimization process, the
ideal preparation conditions were determined as follows: a hydrothermal temperature of 143 ◦C,
hydrothermal time of 6.1 h, calcination temperature of 330 ◦C, and calcination time of 3.7 h. Under
these optimized conditions, the predicted desulfurization rate was approximately 85.8%. The experi-
mental results closely matched the prediction, yielding a desulfurization rate of around 84%, with
a minimal error of only 2.1%. To characterize the NiCo2O4 powders prepared under the optimal
conditions, XRD, SEM, and TEM analyses were conducted. The analysis revealed that the micro-
scopic morphology of NiCo2O4 exhibited a rectangular sheet structure, with an average particle
size of 20 nm. Additionally, fan-shaped NiCo2O4 particles were observed as a result of linear and
bundle agglomerations. Thus, this work is innovative in its ability to synthesize nano-catalysts
using hydrothermal synthesis in a controllable manner and establishing a correlation between the
hydrothermal synthesis conditions and catalytic activity.

Keywords: response surface methodology; hydrothermal synthesis; nickel cobaltate; desulfurization;
optimization

1. Introduction

Hydrothermal synthesis is widely utilized in the preparation of nano-powders due to
its distinct advantages. It offers high particle dispersion, uniform and easily controllable
particle size distribution, as well as good particle purity. This method operates under
subcritical conditions with temperatures ranging from 100–240 ◦C and pressures from
0.3–4 MPa [1]. In 1996, Qian successfully synthesized GaN nanocrystals using benzene
thermal synthesis, which marked a significant milestone in the field of the hydrothermal
(solvent heat) synthesis of nanomaterials [2]. Since then, the hydrothermal synthetic
method has gained popularity in various fields, including crystalline materials [3], ceramic
materials, molecular sieve materials [4], nanomaterials, electrode materials [5], catalytic
materials, and more.

Nickel cobaltate (NiCo2O4) exhibits an excellent performance as a material in superca-
pacitors [6], direct catalytic oxidation [7], photocatalysis [8], electrocatalysis [9], and other
applications. Particularly, it is often employed as a catalyst coupled with oxidants, such as
hydrogen peroxide, ozone, or persulfate, forming Fenton-like oxidation systems for the
degradation of organic pollutants [10]. Zhou et al. utilized a co-precipitation hydrothermal
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method to synthesize NiCo2O4, which acted as a catalyst for peroxymonosulfate (PMS) in
the degradation of citric acid in water [11]. It is indeed challenging to achieve the precise
control of particle morphology using the co-precipitation method. The sol-gel method is a
commonly used approach for synthesizing nanostructured NiCo2O4 materials. However,
this method also faces challenges in controlling the morphology and size of the resulting
particles. Additionally, the sol-gel method often leads to significant product non-uniformity,
which hinders large-scale industrial production [12]. Similarly, Xu et al. employed a simple
hydrothermal method to load NiCo2O4 onto expanded graphite, creating a catalyst that
was coupled with PMS to decompose sulfamethoxazole, focusing on the oxidizing agent
properties of the species involved [13]. Tian et al. also used a straightforward hydrothermal
method to synthesize dandelion-shaped NiCo2O4 microspheres, which were coupled with
PMS to form a Fenton-like system for the degradation of humic acids in water, exhibit-
ing an excellent performance [14]. In a previous study, we successfully synthesized sea
urchin-shaped NiCo2O4 using a simple hydrothermal method, and coupled it with PMS
to catalyze the oxidative removal of dibenzothiophene (DBT) from octane, demonstrating
excellent activity [15]. The NiCo2O4 as a catalyst can also be applied in various aspects,
such as methanol conversion and combustion [16,17], propane oxidation [18], electrode
materials [19], and so on.

Based on the literature analysis, it is evident that previous studies focused primarily on
determining specific conditions for hydrothermal synthesis to achieve desired microstruc-
tures of NiCo2O4. The hydrothermal synthesis of NiCo2O4 in an aqueous solution offers
the advantage of efficient mixing and heat transfer, leading to the uniform dispersion of
reactants and precise control over the reaction process. This results in the generation of
high-quality materials with consistent properties. Moreover, this approach enables the
manipulation of product morphology, size, and structure, thereby influencing the catalytic
activity of NiCo2O4. The hydrothermal synthesis method can also be utilized for synthesiz-
ing various oxides, such as ZnMoO4 [20], NiMoO4 [21], Sn3O4 [22], and SAPO-18 [23], and
can be applied in specific catalytic processes.

To address the scarcity of studies focusing on optimizing hydrothermal synthesis
conditions, this study employs a response surface methodology (RSM). RSM is a statistical
method widely utilized in experimental optimization processes across various fields, in-
cluding chemistry, food, environment, and materials [24]. In the context of desulfurization,
dibenzothiophene (DBT) is used as a representative sulfur-containing compound, octane is
used as a simulated oil, peroxymonosulfate (PMS) serves as the oxidant, and acetonitrile
acts as the extractant. The four hydrothermal synthesis conditions, hydrothermal tem-
perature, hydrothermal time, calcination temperature, and calcination time are optimized
using RSM to determine the optimal preparation conditions for achieving the highest
desulfurization activity with the NiCo2O4 catalyst. The goal of this study is to establish the
relationship between the powder preparation conditions and the resulting catalytic activity.

2. Results and Discussion
2.1. Desulfurization Experimental Results and Modeling

Table 1 shows 29 sets of experiments arranged by the Box–Behnken design principle
on Design Expert 8.0.6. The desulfurization experiments were performed according to the
experimental conditions arranged by the design to obtain the corresponding desulfurization
rates. A second-order model of the desulfurization rate (Y) versus the four conditions of
hydrothermal temperature (A), hydrothermal time (B), calcination temperature (C), and
calcination time (D) for the preparation of NiCo2O4 powders was established as shown in
Equation (1):

Y = 83.80 + 1.78A + 0.80B−4.68C − 1.59D + 0.075AB + 0.52AC + 1.05AD +
1.3BC − 2.52BD − 0.5CD − 4.50A2 − 6.85B2 − 5.54C2 − 5.09D2 (1)
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Table 1. Box–Behnken experimental arrangement and desulfurization rates [25,26].

Runs Hydrothermal
Temperature (A)/◦C

Hydrothermal
Time (B)/h

Calcination
Temperature (C)/◦C

Calcination
Time (D)/h

Deslufrization
Rate (Y)/%

1 160 6 400 4 71.6
2 140 6 350 4 85.1
3 160 6 300 4 80.7
4 140 3 300 4 75.2
5 140 9 400 4 68.7
6 120 6 350 6 68.3
7 140 9 350 6 67.2
8 140 6 300 2 78.3
9 160 6 350 2 76.5
10 120 9 350 4 73.2
11 160 3 350 4 72.6
12 160 6 350 6 73.3
13 140 6 350 4 82.5
14 140 6 300 6 77.8
15 120 3 350 4 69.7
16 160 9 350 4 76.4
17 120 6 400 4 66.2
18 140 9 300 4 75.3
19 140 6 400 6 68.1
20 140 3 400 4 63.4
21 140 6 350 4 85.8
22 120 6 300 4 77.4
23 120 6 350 2 75.3
24 140 6 350 4 81.9
25 140 6 350 4 83.7
26 140 3 350 2 71.9
27 140 9 350 2 75.4
28 140 3 350 6 73.8
29 140 6 400 2 70.6

Figure 1 shows a comparison between the predicted desulfurization values (regression
values) calculated using the second-order model, Equation (1), and the corresponding
experimental values. The plot demonstrates that the regression and experimental values
are primarily distributed along the diagonal of the coordinate system. There is a lack of
data points that significantly deviate from the diagonal line, indicating that the residuals of
the model are small and the model itself is reasonable. This observation suggests that the
second-order model adequately represents the relationship between the desulfurization rate
and the four experimental conditions for the preparation of NiCo2O4 powders. The close
alignment of the regression values with the experimental values supports the accuracy
and validity of the model in predicting the desulfurization rates based on the chosen
hydrothermal synthesis conditions.

Figure 2 displays the internally studentized residuals corresponding to the 29 ex-
perimental runs. The plot reveals that the residuals exhibited irregular characteristics,
indicating that the experimental errors stemmed from random fluctuations rather than
systematic errors. Notably, the range of the internally studentized residuals remained
within −2 to 2, suggesting that there were no significant outliers or faulty measurements in
the experimental results. No residuals exceed −3 and 3, indicating the correctness of the
fitting formula and the absence of significant residuals. This further supports the reliability
and validity of the obtained data. The absence of residuals outside the −2 to 2 range
indicates that the experimental results are consistent with the predicted values from the
second-order model, confirming the overall robustness of the experimental setup and the
accuracy of the desulfurization rate measurements.
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Figure 1. Comparison of predicted and experimental values based on the second-order model.
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Figure 2. The internally studentized residuals at run number from 1 to 29.

2.2. Analysis of Variance (ANOVA)

Table 2 provides the analysis of variance (ANOVA) for the response surface second-
order model. The F-value was 21.8, with a p-value (<0.0001) significantly less than 0.01,
indicating that the model obtained through the response surface method was highly signifi-
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cant. Analyzing Table 2 reveals that the desulfurization rate (Y) is primarily influenced by
hydrothermal temperature (A), calcination temperature (C), and calcination time (D), as
evidenced by their low p-values (<0.05). In contrast, hydrothermal time (B) had a relatively
lower impact, as its p-value exceeded 0.05. This observation was further supported by the
coefficient values in Equation (1), where the coefficients associated with hydrothermal tem-
perature (A), calcination temperature (C), and calcination time (D) were significantly greater
than the coefficient for hydrothermal time (B). The interaction between hydrothermal time
(B) and calcination time (D), represented by the BD term, was found to be significant
(p-value = 0.0108), while other interactions, such as AB, AC, AD, BC, and CD, could be
considered negligible. This suggested that the interaction between the four conditions
was not substantial. Based on the mean square data and F-values, it was observed that
calcination temperature (C) had the highest impact on the desulfurization rate, followed
by hydrothermal temperature (A), calcination time (D), and hydrothermal time (B). Addi-
tionally, the squared terms A2, B2, C2, and D2 were all extremely significant, indicating a
non-linear relationship between the desulfurization rate (Y) and the respective factors A,
B, C, and D. The residual term’s sum of squares and mean square values were relatively
low at 41.37 and 2.96, respectively, indicating that the fitted desulfurization rate was not
significantly different from the experimental desulfurization rate. The misfit term’s F-value
was 1.104 with a p-value of 0.5034, suggesting no significant correlation between the model
misfit and the pure difference, indicating a good fit for the model. The mean value of the
desulfurization rate was reported as 74.7. The precision of the model measurement was
15.5 (>4), and the coefficient of variation was 2.3% (<4%), both indicating the high accuracy
of the experiments. The fitted correlation coefficient R2 = 0.95 indicated the correctness
of the obtained model. The difference between Adj R2 and Pred R2was 0.12, which was
less than 0.2, implying the reasonableness of the obtained second-order model. Overall,
the ANOVA results established the correctness and significance of the second-order model
derived using the response surface method.

Table 2. ANOVA table for the response surface second-order model of the desulfurization rate.

Source Sum of Squares df Mean Square F-Value p-Value Significance

model 901.5708 14 64.39792 21.7933 <0.0001 **
A 38.16333 1 38.16333 12.91509 0.0029 **
B 7.68 1 7.68 2.599037 0.1292 Not Significant
C 262.2675 1 262.2675 88.75559 <0.0001 **
D 30.40083 1 30.40083 10.28814 0.0063 **

AB 0.0225 1 0.0225 0.007614 0.9317 Not Significant
AC 1.1025 1 1.1025 0.373104 0.5511 Not Significant
AD 4.41 1 4.41 1.492416 0.2420 Not Significant
BC 6.76 1 6.76 2.287694 0.1526 Not Significant
BD 25.5025 1 25.5025 8.630461 0.0108 *
CD 1 1 1 0.338416 0.5700 Not Significant
A2 131.5947 1 131.5947 44.53379 <0.0001 **
B2 304.7325 1 304.7325 103.1265 <0.0001 **
C2 199.2005 1 199.2005 67.41268 <0.0001 **
D2 168.1626 1 168.1626 56.90897 <0.0001 **

Residual 41.36917 14 2.95494
Lack of fit 30.36917 10 3.036917 1.104333 0.5034 Not Significant
Pure error 11 4 2.75
Cor total 942.94 28

Std. Dev. 1.72 R2 0.9561
Mean 74.7 Adj R2 0.9123
C.V.% 2.3 Pred R2 0.7963
PRESS 192.11 Adeq precisior 15.507

* Significant (p < 0.05), ** extremely significant (p < 0.01).
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2.3. Response Surface Analysis

Figure 3 illustrates the response surface plots depicting the effects of hydrothermal
temperature (A), hydrothermal time (B), calcination temperature (C), and calcination time
(D) on the desulfurization rate. From the figure, it is evident that these factors exhibit
a trend of an increasing and then decreasing impact on the desulfurization rate. This
suggests the presence of optimal experimental conditions within the selected range. The
color gradient from the edge to the center of the surface signifies a gradual increase in the
response value (desulfurization rate). The highest point of the response surface, denoted
by the center of the minimum ellipse, represents the optimized preparation conditions
achieved through the response surface method.
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Figure 3. Response surface plot of the effect of hydrothermal temperature (A), hydrothermal time
(B), calcination temperature (C), and calcination time (D) on the desulfurization rate.

Analyzing Figure 3 further reveals that the contours formed between the hydrothermal
temperature (A) and calcination temperature (C) are elliptical, but with small curvature. On
the other hand, the contours between hydrothermal time (B) and calcination time (D) also
appear elliptical, but with a larger curvature. This indicates that the interaction between
hydrothermal temperature (A) and calcination temperature (C) is not significant, while
the interaction between hydrothermal time (B) and calcination time (D) is pronounced.
Hydrothermal temperature (A) and calcination temperature (C) can be considered indepen-
dent of each other, without needing to account for their mutual influence. However, when
dealing with the time conditions, attention should be given to the interaction between
hydrothermal time (B) and calcination time (D), as it has a noticeable impact. Since the
influence of hydrothermal time (B) on the desulfurization rate is relatively low, greater
emphasis should be placed on considering the influence of calcination time (D) when
determining the optimal preparation time conditions.
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The reasons behind these observations can be analyzed as follows: during the hy-
drothermal synthesis of NiCo2O4 powders, they undergo a nucleation–growth–agglomeration
process. This formation process occurs rapidly, requiring only a relatively short time to
complete the hydrothermal process. Consequently, the influence of hydrothermal time
(B) on the desulfurization rate is relatively minor. Hydrothermal temperature (A) exerts a
greater impact on particle morphology. Increasing the temperature enhances the molecu-
lar movement, facilitating particle nucleation but hindering growth and agglomeration,
thereby significantly affecting the desulfurization effectiveness of the powders. Calcination
temperature (C) plays a crucial role in removing inorganic and organic substances from
the powder surface during the hydrothermal process. It directly affects the formation
and transformation process of NiCo2O4 crystalline structures, as well as the particle size.
Consequently, it has a significant influence on the desulfurization rate. The pronounced
effect of calcination time (D) can be attributed to inadequate removal rates of inorganic
and organic matter from the powder surface in shorter durations. Additionally, slower
NiCo2O4 crystalline formation and the time required for temperature conduction to the
powder in the muffle furnace contribute to the notable influence of calcination time (D) on
the desulfurization process.

2.4. Optimal Experimental Conditions from RSM and NiCo2O4 Characterization

Figure 4 presents the optimized NiCo2O4 preparation conditions obtained through
the response surface method. These conditions included a hydrothermal temperature of
143 ◦C, hydrothermal time of 6.1 h, calcination temperature of 330 ◦C, and calcination time
of 3.7 h. The predicted desulfurization rate corresponding to these conditions was 85.8%.
The synthesis results achieved using the optimized NiCo2O4 preparation conditions are
displayed in Figure 5. The XRD characterization results of the synthesized NiCo2O4, as
shown in Figure 5, precisely match the JCPDS card (20–0781). The characteristic peaks
of 2θ are located at 18.90◦, 31.15◦, 36.70◦, 38.40◦, 44.62◦, 55.43◦, 59.09◦, 64.98◦, and 77.54◦,
corresponding to the (111), (220), (311), (222), (400), (422), (511), (440), and (533) crystal
planes of cubic NiCo2O4. This indicates the successful synthesis of pure NiCo2O4 powders.
Furthermore, the excellent magnetic separation properties of the material can be observed
in Figure 5, where the powders can be separated from acetonitrile using a magnet. This
suggests that the material possesses strong magnetic separation capabilities. The SEM
image presented in Figure 4 illustrates that the particles of NiCo2O4 are at the nano-level
and arranged in a linear agglomeration pattern.
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Figure 5. XRD (a) and SEM (b) images of NiCo2O4 powders.

Figure 6 displays the TEM analysis of NiCo2O4 powders, providing a further insight
into the agglomeration mechanism of the particles. The analysis revealed a clear progression
in the formation process of NiCo2O4 powders. Initially, NiCo2O4 nuclei were observed to
nucleate, resulting in the formation of rectangular-shaped particles with an average particle
size of approximately 20 nm. These nuclei served as the initial building blocks for further
agglomeration. Subsequently, the nuclei underwent primary linear agglomeration, leading
to the formation of nanowires. This primary agglomeration process involved the alignment
and connection of the individual rectangular-shaped particles, resulting in the elongated
structure of the nanowires. Following primary agglomeration, the nanowires underwent
a secondary bundled agglomeration. This process involved the bundling or clustering
of multiple nanowires together, leading to the formation of larger structures. Finally,
the agglomeration process culminated in the formation of fan-shaped NiCo2O4 powders.
These powders exhibited a distinctive fan-like morphology, which was the result of the
secondary bundled agglomeration of the nanowires. Overall, the TEM analysis provided a
comprehensive view of the agglomeration mechanism of NiCo2O4 powders, illustrating the
sequential progression from nuclei formation to primary linear agglomeration, followed
by secondary bundled agglomeration, and ultimately resulting in the formation of fan-
shaped powders.
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2.5. Desulfurization Cycle Experiment of NiCo2O4 Powders

Figure 7 presents the experimental results of the desulfurization cycle using the pre-
pared NiCo2O4 powders. The figure demonstrates that the desulfurization rate achieved
with the NiCo2O4 powders is approximately 84%. Additionally, it can be observed that
the activity of the powder remains consistent, even after six cycles, indicating its excellent
recycling performance. Comparing the experimental desulfurization rate of 84% with
the predicted value of 85.8% (red dash line), it can be deduced that the error between
the predicted and actual values is only around 2.1%. This suggests that the predicted
desulfurization rate obtained through the response surface method is highly accurate.
The close agreement between the predicted and experimental results further validates the
effectiveness and reliability of the response surface model in optimizing the preparation
conditions for NiCo2O4 powders. The minimal error indicates the success of the optimiza-
tion process and reinforces the suitability of the obtained conditions for achieving high
desulfurization rates.
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3. Experimental
3.1. Preparation of NiCo2O4 Powders by Hydrothermal Synthesis

Dissolve 1.1897 g of CoCl2, 0.5942 g of NiCl2, 0.9109 g of cetyltrimethyl ammonium
bromide, and 1.35 g of urea in 37.5 mL of deionized water. Stir the mixture magnetically
for 20 min. Transfer the solution to a hydrothermal kettle with a PTFE liner. Subject the
solution to different hydrothermal times and temperatures. Collect the resulting powders
by magnetic separation. Purify the collected powders by washing with ethanol. Dry the
purified material under vacuum at 70 ◦C for 4 h. Calcine the dried material at different times
and temperatures to obtain NiCo2O4 powder. It is worth mentioning that the reagents
used for the experiments were purchased from Shanghai Aladdin Reagent Company
(Shanghai, China).

3.2. Designing Experiments by Response Surface Method

The experimental ranges for the four hydrothermal synthesis conditions were deter-
mined based on pre-experiments in the previous section. These ranges were as follows:
hydrothermal temperature (A) of 120–160 ◦C, hydrothermal time (B) of 3–9 h, calcination
temperature (C) of 300–400 ◦C, and calcination time (D) of 2–6 h. To design the experiments,
a Box–Behnken design (BBD) was implemented using Design-Expert 8.0.6 software. The
BBD design involved setting up four experimental levels and codes, which are shown in
Table 3. For each factor, three levels were designed, including a cubic point with coded
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values of 1 and −1, and a central point with a coded value of 0. Additionally, five replicate
experiments were conducted at the center point (coded 0) to test repeatability, rationality,
random error, and reduce systematic errors. In total, 29 desulfurization experiments were
performed using the response surface method based on the experimental levels arranged
by the Box–Behnken design. This approach aimed to establish the nonlinear relationship be-
tween the experimental results (desulfurization rates) and the four experimental conditions.
The accuracy of this relationship was tested using analysis of variance (ANOVA).

Table 3. Level setting table of experimental factors for response surface method.

Factors
Levels

Units
−1 0 1

Hydrothermal temperature (A) 120 140 160 ◦C
Hydrothermal time (B) 3 6 9 h

Calcination temperature (C) 300 350 400 ◦C
Calcination time (D) 2 4 6 h

3.3. Characterization of NiCo2O4 Powders

The characterization of the NiCo2O4 powders was conducted using three different
instruments: X-ray diffractometer (XRD): XRD is used to study the crystal structure of ma-
terials by analyzing the diffraction pattern produced when X-rays interact with the sample.
This technique provides information about the crystalline phases present in the NiCo2O4
powders. When performing tests using the PANalytical X’Pert Powder X-ray diffractometer
(Almelo, Netherlands), we utilized the following conditions: CuKα/Graphite monochro-
mator as the X-ray source, with a tube voltage of 40 KV and a tube current of 40 mA. The
step angle was set to 0.1◦, and a scan rate of 5◦/min was employed within the range of
10◦ to 80◦. Scanning electron microscope (SEM): the SEM analysis was conducted using a
Hitachi Regulus 8100 instrument from Japan (Tokyo). SEM allows for the high-resolution
imaging of the surface morphology and topography of materials. It provides detailed
information about the particle size, shape, and distribution of the NiCo2O4 powders. Trans-
mission electron microscope (TEM): TEM analysis was conducted using a Thermo Fisher
FEI Tecnai G2 F20 instrument from the USA (Hillsboro, OH). TEM enables the observation
of materials at a very high resolution, allowing for the examination of their atomic-level
structure. It provides valuable information about the internal structure, lattice defects,
and individual particle characteristics of the NiCo2O4 powders. These characterization
techniques were employed to gain insights into the structural and morphological properties
of the synthesized NiCo2O4 powders.

3.4. Desulfurization Experiment

To perform the catalytic oxidative desulfurization, the following procedure was fol-
lowed: diphenylthiophene (DBT) was dissolved in n-octane to create a simulated oil with
an initial sulfur content of 600 ppm. A total of 0.5 g of NiCo2O4 powders was added to
6 mL of simulated oil. To this mixture, 2 mL of acetonitrile was added. The mixture was
vigorously stirred for 30 min to allow for the equilibrium of adsorption and extraction
to be reached. The catalytic oxidative desulfurization was initiated by adding 0.5 mL of
PMS (20 wt. %) to the mixture. The reaction was performed at 40 ◦C for a duration of
60 min. After this reaction time, the desulfurization process was considered complete. The
supernatants from the reaction were then measured for sulfur content in n-octane using a
UV-Vis spectrophotometer (Shimadzu UV-2700, Kyoto, Japan). By measuring the sulfur
content in the supernatants, the extent of desulfurization achieved by the catalytic process
could be determined.



Catalysts 2023, 13, 1119 11 of 12

4. Conclusions

In this study, response surface methodology was utilized to optimize the hydrothermal
preparation process of NiCo2O4 powders. The desulfurization activity of the synthesized
powders was also investigated. Among the factors considered, hydrothermal temperature
(A), calcination temperature (C), and calcination time (D) had a significant impact on the
desulfurization rate. However, hydrothermal time (B) did not exhibit a substantial effect.
The order of significance for the factors was determined as follows: calcination temperature
(C) > hydrothermal temperature (A) > calcination time (D) > hydrothermal time (B). Based
on the response surface method, the optimal preparation conditions were determined
as follows: hydrothermal temperature of 143 ◦C, hydrothermal time of 6.1 h, calcination
temperature of 330 ◦C, and calcination time of 3.7 h. The predicted desulfurization rate for
the NiCo2O4 powders prepared under these conditions was 85.8%. In the experimental
evaluation, the desulfurization rate achieved was approximately 84%, with an error of
only 2.1% compared to the predicted value. The NiCo2O4 powders obtained exhibited
a rectangular particle shape with an average size of 20 nm. During the agglomeration
process, the particles underwent linear and bundled agglomerations, resulting in the
formation of fan-shaped NiCo2O4 powders. Furthermore, the desulfurization rate of
the NiCo2O4 powders remained stable throughout six cycles of catalytic oxidation and
magnetic separation experiments. This demonstrated the excellent recycling performance
of the prepared powders. Overall, the utilization of response surface methodology allowed
for the optimization of the hydrothermal preparation process of NiCo2O4 powders, leading
to high desulfurization rates. The synthesized powders exhibited desirable morphological
characteristics and demonstrated an effective desulfurization performance over multiple
cycles of operation.
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