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Abstract: Microbial contamination of the surface of building materials and subsequent release of
microbial particles into the air can significantly affect indoor air quality. Avoiding the development
or, at least, reducing the quantity of microorganisms growing on building materials is a key point
to reduce health risks for building occupiers. In that context, the antimicrobial activity of TiO2,
ZnO and Au/ZnO was assessed by measuring log reductions of Escherichia coli and Aspergillus
niger populations both in the dark and under a light intensity close to real-life conditions. The
bactericidal activities (≥2.3 log reduction) of tested products were stronger than their fungicidal
activities (≤1.4 log reduction) after 2 h of contact. Different parameters including concentration
of photocatalyst, intensity of light (dark vs. 5 W/m2 UV-A), and duration of contact between
photocatalyst and microbial cells and spores were investigated. Results of this study confirmed
bactericidal activities of TiO2, ZnO and AuZnO on E. coli and brought new insight on their fungicidal
activity on the spores of A. niger. They also confirmed the greatest antimicrobial efficiency of ZnO
compared to TiO2 and its increased photocatalytic activity when decorated with Au, leading to the
highest log reductions detected after 2 h of contact for both tested microorganisms (4 and 1.4 for E.
coli and A. niger, respectively). The antimicrobial activity was enhanced by the duration of contact
between microorganisms and nanoparticles of the different tested photocatalytic products.

Keywords: bactericidal activity; fungicidal activity; indoor air; photocatalysis; TiO2; ZnO; AuZnO

1. Introduction

Indoor air pollution is an important cause of diverse health problems for occupants, in-
cluding respiratory diseases, allergic symptoms, cancers and cardiovascular problems [1–7].
For several years now, there is an increased awareness to the effect of indoor air quality
on human health and wellbeing [7,8]. Actually, people spend 80–90% of their times in-
doors [9,10] emphasizing the importance of understanding the main causes of indoor air
pollution and finding suitable solutions to improve indoor air quality. In 2009, The World
Health Organization (WHO) reported that biological pollution is one of the main causes of
the degradation of indoor quality [11]. Investigations on microbial contamination on the
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surfaces of building materials have highlighted that it may also have a significant impact
on the microbial communities present in indoor air [7,12]. However, the quantitative assess-
ment of this impact has been little studied. When favorable conditions (mainly humidity
and nutrient content) are present, building materials can allow growth of microorganisms
initially present or brought in by activities and environmental conditions [7,12]. Upon
their development on surfaces, microorganisms produce particles such as spores, toxins
or volatile organic compounds and other metabolites that can be aerosolized and inhaled
by occupants [13–16]. To prevent or to reduce microbial contamination on surfaces, the
antimicrobial activity of several chemical products has already been studied, i.e., semi-
conductors such as titanium dioxide (TiO2), zinc oxide (ZnO), gold zinc oxide (AuZnO),
gallium arsenide, tungsten (VI) oxide (WO3), gallium phosphide, and cadmium as well as
fatty acids and glycerol esters [17–19]. Photocatalysis approach allows the transfer of solar
energy, received by a semiconductor, into chemical energy [20]. The process occurs when
a photocatalyst is excited by light with an energy higher than its band gap, inducing the
formation of energy-rich electron-hole pairs that can be involved in redox reactions with a
lethal effect at the cell level [21,22].

Titanium dioxide (TiO2) is widely recognized as one of the most efficient photocat-
alysts used for air purification [17,18]. It has adequate optical and electronic properties,
high-photocatalytic activity, and high-chemical stability. It is commonly used as refer-
ence material for photocatalysis applications [23]. In addition to being non-toxic, this
compound is inexpensive, available, and abundant [18]. Under “high” intensities of
light, over >10 W/m2, the photocatalysis of TiO2 nanoparticles induced antimicrobial
activity against a wide variety of microorganisms, including algae, viruses, bacteria and
fungi [24–27]. Nevertheless, few studies have been carried out in the last five years on
the effect of TiO2 on microorganisms at lower intensity levels (≤5 W/m2), closed to real-
world conditions (30 W/m2 on sunny days and 5–10 W/m2 on cloudy days outdoors and
4–5 W/m2 indoors) [17,28–30].

Zinc oxide (ZnO) is also a well-known photocatalyst that exhibits high photosensitivity,
excellent stability, low toxicity, and a bandgap similar to that of TiO2 (approximately 3.3 eV
for ZnO wurtzite and 3.2 eV for TiO2 anatase). It is also cost-effective and has a higher
oxidation capacity. ZnO is a semiconductor metal oxide that is of increasing interest due to
its various morphologies such as nanorods, nanotubes, and nanowires, each with unique
properties depending on the synthesis method [31,32]. The photocatalytic activity of ZnO
can be extended to the visible light region by the addition of metallic nanoparticles (NPs)
such as silver (Ag), copper (Cu) and gold (Au). The introduction of these metals induces a
localized surface plasmon resonance (LSPR) effect and enhances charge carrier separation,
thereby reducing recombination. In the literature, most applications of ZnO-based systems
focus on the photodegradation of dyes or organic pollutants such as rhodamine, methylene
blue, and Congo red [33,34]. At higher light intensities, the photocatalytic biocidal activ-
ity of ZnO [35,36] and metal supported ZnO nanocomposites, such as CuO/ZnO [37,38],
Ag/ZnO [39,40] and Au/ZnO [41,42], were assessed over different bacteria, such as Es-
cherichia coli, Staphylococcus aureus, Bacillus atrophaeus, and fungi such as Aspergillus niger and
Candida albicans. The bactericidal performances were generally attributed to the combined
effects of mechanical piercing of ZnO nanoparticles [36] (nanorods, spheroide, nanoflowers,
etc.), ions release (Zn2+, Cu2+, Cu+, Ag+) [37,38], and effective generation of reactive oxygen
species due to a higher charge separation [40–43].

The present study is a preliminary work within the framework of developing pho-
tocatalytic products to prevent microbial contamination and growth of microorganisms
on surfaces of indoor building materials. It aims to compare the efficiency of pure photo-
catalysts (TiO2, ZnO, Au/ZnO), i.e., without interfering material (such as organic binder,
tensioactive. . .) in a neutral activation media: water. The experimental design was firstly
designed to compare the bactericidal and fungicidal activities of the three selected com-
pounds by direct contact on two frequent indoor contaminants (E. coli cells and A. niger
spores), using a suspension test, as a previously described approach at European level
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(EN 14885), for testing antiseptics and disinfectants [43]. In order to be close to indoor
activation conditions, chosen light intensity was relatively low (<10 W/m2) compared to
light intensities used in previously available studies. The impact of the concentration of
the photocatalyst as well as the duration of exposure were evaluated. The development of
fungicidal and/or bactericidal photocatalytic compounds could be of great interest in pre-
venting and reducing the microbial contamination of building materials and subsequently
improving indoor air quality.

2. Results
2.1. Characterization of the Photocatalysts

Figure 1 shows the X-Ray diffraction analysis (XRD) patterns of TiO2, ZnO and
Au/ZnO metal oxide semiconductors. The peaks were indexed by using the Inorganic Crys-
tal Structure Database (ICSD). Anatase (Joint Committee on Powder Diffraction Standards
JCPDS 021-1272) crystalline phase was detected for TiO2 powder. Phase quantification
Rietveld refinement of this X-ray diffractogram using the High X’pert software (Malvern
Panalytical, https://www.malvernpanalytical.com accessed on 19 July 2023) provided 83%
anatase and 17% rutile, consistent with literature values for P25 TiO2 [44]. Concerning
ZnO, the X-ray pattern was consistent with that of the hexagonal wurtzite crystalline phase
(JCPD 036-1451), the most stable in ambient conditions [45]. The average crystallite sizes
were estimated from the Scherrer formula to be equal to 30, 40 and 60 nm for ZnO, TiO2
anatase and rutile, respectively. The XRD pattern of Au/ZnO showed characteristic peaks
of Au in addition to those of ZnO. As expected, the diffraction intensity of Au peaks (38.2◦

and 44.2◦) was low due to the small size and low weight content of Au nanoparticles
(NPs). The weight content of Au measured by EPMA was equal to 1.25 ± 0.19 wt% close to
the 1 wt% nominal amount, which confirmed the good efficiency of the photo-deposition
technique to master the Au content in the composite material.
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Figure 1. X-ray diffractograms of (a) TiO2 P25 and (b) ZnO and Au/ZnO. Peaks were indexed by
using the Inorganic Crystal Structure Database (ICSD).

The (Brunauer–Emmett–Teller) BET specific surface area’s obtained were: ca 50 m2/g
for TiO2 and ca 14 m2/g for ZnO and Au/ZnO. The shape of the photo-deposited Au
NPs was further investigated through Transmission Electron Microscopy (TEM) and
High-Resolution Transmission Electron Microscopy (HRTEM) analyses (Figure 2). The
size was accessed by measuring the longest dimension of Au NPs. Polymorphous Au
NPs (nanorods, triangular and spherical NPs) were observed with a mean diameter of
30 ± 13 nm. The HRTEM images (Figure 2b,c) show a well-defined interfacial contact
between Au NP and ZnO, which is known to play a crucial role in photocatalytic reactivity.

https://www.malvernpanalytical.com
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Figure 2. HRTEM images of Au/ZnO highlighting various morphologies of Au NPs (a,b); HRTEM
images of Au/ZnO interface (c,d).

2.2. Bactericidal Effects of Photocatalysts on Escherichia coli
2.2.1. Influence of Light

To compare the bactericidal activities of TiO2, ZnO and Au/ZnO against E. coli CIP
53126, experiments were first carried out at a concentration of 10 g/L in the dark and under
a light intensity of 5 W/m2. For all photocatalysts and in both experimental conditions,
the bactericidal effect increased with time and the maximal effect was observed after 2 h of
incubation (Figure 3). In the dark, the average log10 reductions of viable E. coli cells after
2 h of contact were 2.27 ± 0.08, 3.36 ± 0.01 and 3.04 ± 0.01 for TiO2, ZnO and Au/ZnO,
respectively (Figure 3a). Under light, the average log10 reductions were 2.58 ± 0.08,
3.43 ± 0.02 and 3.98 ± 0.02 for TiO2, ZnO and Au/ZnO, respectively (Figure 3).
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Figure 3. Average log reduction of E. coli 53126 after contact with different photocatalysts TiO2 (blue
bars), ZnO (orange bars) and AuZnO (grey bars) at 10 g/L concentration in the dark (a) or under an
exposition to a light intensity of 5 W/m2 (b). Results are expressed as mean ± SD (n = 2).
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In the dark, ZnO and Au/ZnO both consistently showed higher levels of reduction
compared to TiO2, whatever the time point tested. Additionally, Au/ZnO exhibited the
highest average reduction in log concentration at t = 60 min, while ZnO showed the highest
reduction at t = 120 min.

In the light, a slight increase in bactericidal activity was observed for the three photo-
catalysts from 30 min of contact. The highest gain in activity was observed for Au/ZnO
(about 1 log).

2.2.2. Influence of Photocatalyst Concentration

To investigate the influence of the concentration of photocatalysts on their bactericidal
activity against E. coli, another set of experiments was carried at 1 g/L. For these assays,
incubation was prolonged to 4 h. As previously observed at 10 g/L, the bactericidal effect
increased with time of incubation for the three photocatalysts tested.

In the dark, the bactericidal activity was strongly weaker in comparison to assays
performed with a concentration of 10 g/L. Indeed, after 4 h of incubation, the maximum
reductions were only 27 ± 4%, 48 ± 1% and 37 ± 1% of those observed at 10 g/L for TiO2,
ZnO and Au/ZnO, respectively (Figure 4a,c,e). By contrast, under light, the prolongation of
incubation until 4 h allowed to reach similar bactericidal activity as those observed after 2 h
of contact at 10 g/L for the three photocatalysts (Figure 4b,d,f). Indeed, in that condition,
the reductions of E. coli population were 97 ± 2%, 99 ± 1% and 98 ± 1% of those observed
at 10 g/L for TiO2, ZnO and AuZnO, respectively.
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Figure 4. Comparison of time-dependent bactericidal activities (E. coli 53126) of photocatalysts used
at 1 and 10 g/L. Orange curves: control tubes; grey curves: 10 g/L of photocatalyst; blue curves:
1 g/L of photocatalyst. TiO2 in the dark (a), TiO2 under light (b), ZnO in the dark (c), ZnO under
light (d), Au/ZnO in the dark (e) and Au/ZnO under light (f). The results presented are expressed as
mean ± SD of two independent experiments.
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2.3. Fungicidal Effects of Photocatalysts on Aspergillus niger
2.3.1. Influence of Light

As conducted for the bactericidal experiments, the fungicidal activities of TiO2, ZnO
and Au/ZnO on A. niger spores were firstly determined at a concentration 10 g/L in the
dark and under a light intensity of 5 W/m2.

The three photocatalysts, TiO2, ZnO and Au/ZnO, provided weak fungicidal activity
in the dark. Even after 120 min of contact, log reductions were not significant (≤0.11)
(Figure 5a).
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bars), ZnO (orange bars) and AuZnO (grey bars) at 10 g/L concentration in the dark (a) or under an
exposition to a light intensity of 5 W/m2 (b). Results are expressed as mean ± SD (n = 2).

Under light, the average log10 reductions were mildly increased (Figure 5b). Af-
ter 30 min of contact, the fungicidal activities of photocatalysts significantly increased,
with average reductions of 0.41 ± 0.01, 0.45 ± 0.01 and 0.59 ± 0.01 for TiO2, ZnO and
Au/ZnO, respectively. After 60 min and until 120 min of contact, the fungicidal activities
of all photocatalysts continued to increase, showing an average reduction of contact of
0.85 ± 0.03, 1.00 ± 0.01 and 1.38 ± 0.03 for TiO2, ZnO and Au/ZnO, respectively. At each
time point, ZnO exhibited a higher average reduction in log concentration than TiO2, while
Au/ZnO showed the highest reduction among the three photocatalysts.

The reduction in fungal spore concentration was therefore higher under light than
in the dark for all three photocatalysts. As for bactericidal activity, the presence of light
enhanced the fungicidal activity of tested photocatalysts with bactericidal activities being
clearly higher than fungicidal ones.

2.3.2. Influence of Photocatalyst Concentration

The influence of the combination concentration of the photocatalysts' contact time on
their fungicidal activity against A. niger was also tested through another set of experiments
carried at 1 g/L for ZnO and Au/ZnO with exposition up to 4 h (Figure 6).

As expected, the fungicidal activities of ZnO and Au/ZnO at 1 g/L were negligible in
the dark after 4 h of contact. Under light, the fungicidal activities of ZnO and Au/ZnO at
1 g/L were enhanced but, even after 4 h of contact, did not reach those obtained after 2 h of
contact at 10 g/L concentration, as was the case with the E. coli population. The reduction
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of A. niger spores were 64 ± 2% and 78 ± 3% of those observed at 10 g/L for ZnO and
Au/ZnO, respectively.
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2.3.3. Additional Test on A. niger with TiO2

TiO2 at 10 g/L had the weakest fungicidal activity compared to ZnO and Au/ZnO. To
investigate this lack of activity in the tested conditions, another series of experiments was
carried out with an incubation prolonged to 24 h of contact between A. niger spores and
10 g/L TiO2 under light. Figure 7 shows that the limited reduction observed after 2 h was
not increased after 24 h, confirming the resistance of A. niger to the photocatalytic effect of
TiO2.
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3. Discussion
3.1. Effects of Photocatalyts on E. coli Cells

The effect of photocatalysts on E. coli was evaluated both in the dark and under light
conditions. In the dark, ZnO showed the highest bactericidal activity, followed by Au/ZnO
and TiO2. No studies have reported the bactericidal activity of Au/ZnO in the dark. The
decoration of ZnO by Au NPs is known to enhance its photocatalytic activity [46] as the
implanting of other metals such as cobalt to form Co doped ZnO and other metals at
different suitable concentrations [47]. These findings are consistent with previous studies
carried out with ZnO [48,49] and TiO2 [50,51]. The bactericidal activity of ZnO (E. coli
population tested) was notably reported to be stronger than that of TiO2 by Jones et al. [52].
In addition, ZnO was reported to own significant bactericidal effects on a wide range of
microorganisms [48,49]. Indeed, the bactericidal activities observed may be explained by
the ability of well-dispersed nanoparticles of photocatalysts used to interact with bacterial
cells, absorbing them to their surfaces with a concentration and time-dependent effect [53].

Under light, the log reduction obtained with Au/ZnO was the strongest (R = 3.98 ± 0.01
and 3.91 ± 0.01 for 10 g/L and 1 g/L, respectively) followed by ZnO (R = 3.43 ± 0.02 and
3.44 ± 0.02 for 10 g/L and 1 g/L, respectively) and then TiO2 (R = 2.58 ± 0.08 for 10 g/L).
These results agree with the fact that the bactericidal activity of photoactivated ZnO is
enhanced when decorated with Au NPs [46]. Moreover, ESR measurements carried out by
Kevin Castelló Lux et al. showed a generation of radical oxygen species for both ZnO and
Au/ZnO), higher for Au/ZnO [28,54].

These results are in accordance with a previous study reporting strong bactericidal
activity of ZnO on E. coli and on Listeria monocytogenes where authors obtained seven log
reduction after only one hour of incubation at a light intensity up to 96 W/m2 [55]. More-
over, a recent study investigated the antimicrobial effect of Au doped ZnO decorated on
single wall nanotubes and multi wall nanotubes of carbon against E. coli and Staphylococcus
aureus at a light intensity of 8 W/m2, which was close to the intensity used in this study
(5 W/m2) [56]. The log reduction values, R, obtained in this study were between 4 and 4.5
in log10 after 24 h of incubation, similar to the values reported here (3.98 for Au/ZnO after
2 h of incubation). Indeed, at a lower concentration (1 g/L), four hours of contact with E.
coli cell suspension were required to observe bactericidal activities combined with photocat-
alytic activities that were approximately similar to those obtained at 10 g/L after two hours
of contact, confirming also a concentration and time-dependent bactericidal activity. As an
example, a concentration of TiO2 as low as 0.1 g/L showed a strong bactericidal activity
but after 24 h of contact using a light intensity range of 14–55 W/m2 [57]. The ability of
the photocatalytic products used to damage the cell membrane of E. coli may explain their
high-bactericidal activity [18,58].

3.2. Effects of Photocatalysts on A. niger Spores

In contrast to their bactericidal effects on E. coli, the photocatalysts tested were found
to have a negligible fungicidal activity against A. niger in the dark and to be less effective
under light.

In the dark, even at a higher concentration, the tested photocatalysts demonstrated no
fungicidal activities against A. niger. This observation implied that there was no efficient
interaction between photocatalyst nanoparticles and fungal spores of A. niger [50,59]. The
resistance of A. niger against TiO2 observed after 24 h of contact in the dark was previously
reported by KP Yu et al. [50]. However, several studies on the fungicidal activity of ZnO and
decorated ZnO in the dark, reported the ability of ZnO [60] and nickel-doped ZnO (NiZnO)
to inhibit the growth of yeasts at higher concentrations [61]. The authors suggested that a
minimal fungicidal concentration of 1 g/L ZnO together with 5 mM of Histidine amino
acids was responsible for growth inhibition of Candida albicans [60].

Under light, experiments carried out at a higher concentration (10 g/L) provided low
fungicidal activity of Au/ZnO, ZnO and TiO2 photocatalysts (R = 1.38 ± 0.03 for Au/ZnO
R = 1.00 ± 0.01 for ZnO where R= 0.85 ± 0.03 for TiO2). Notably, previous studies have
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reported higher fungicidal activity of TiO2 mixed with Ag NPs against A. niger, but at
higher light intensities of 14–55 W/m2 [57]. These results agree with the fact that the
fungicidal activity of photoactivated ZnO is enhanced when decorated with Au NPs [46].

The lack of activity of TiO2 on A. niger within light intensities, close to real-life condi-
tions, has not been reported in the literature yet. One investigation has shown the ability
of TiO2 to inhibit the growth of A. niger on woods, but these results were obtained at
very high light intensities [59]. It is important to highlight that previous findings showed
higher fungicidal activity of TiO2 mixed with Ag NPs on A. niger but these results were
again obtained using a very high light intensity of 40 W/m2 [62] or by continuous UV
irradiation for 20 days [59]. For ZnO and metal-doped ZnO, previous papers reported their
effectiveness on yeasts growing on plants and the possibility to use them in agriculture
for plant protections from pathogenic yeasts [40,42,60,63]. A previous study showed the
strong fungicidal activity of ZnO activity against A. niger [45] and Botrytis cinerea, a fungus
that affects many plant species, but at a very high light intensity of 96 W/m2 [55]. Very few
studies presented the fungicidal activity of metal-doped/decorated ZnO. A study reported
strong fungicidal activity of Cu-doped ZnO against yeasts but again at higher light intensi-
ties >22 W/m2 [40]. In previous studies, high-fungicidal activities of photocatalysts were
indeed achieved, but predominantly on yeasts. The observed differences in the effects of
TiO2, ZnO, and Au/ZnO on fungal and bacterial cells can be attributed to the variations in
their cell membrane compositions [64,65].

3.3. Implications for Practical Uses of Photocatalysts

The results obtained in this study suggest that photocatalysts could potentially be
employed for controlling E. coli in appropriate conditions. The effectiveness of photocata-
lysts under realistic light conditions was evaluated, considering the differential effects on
bacterial cells and fungal spores. While the photocatalysts showed promising results in
controlling E. coli bacteria, their effectiveness against A. niger was limited.

Our findings raise important implications for practical applications. For instance, in
antimicrobial treatments, photocatalysts can be utilized for bacterial control, but alternative
methods might be required to target fungal spores effectively. Further research is required
to optimize the application conditions and explore approaches to enhance the destruction
of fungal cells and prevent secondary growth. Additionally, investigations can focus on the
development of novel photocatalysts. Developing novel photocatalysts involves designing
materials with specific properties that can optimize their photocatalytic activity and an-
timicrobial efficacy. Researchers can explore various approaches, such as modifying the
composition, structure, or surface properties of existing photocatalysts, or even developing
entirely new materials. For example, researchers may focus on optimizing the bandgap
energy of the photocatalyst, which determines the wavelengths of light that can be effec-
tively utilized for photocatalytic reactions. Fine-tuning the bandgap energy can enhance
the absorption of light and increase the generation of reactive oxygen species, ultimately
improving the antimicrobial activity. Moreover, researchers may investigate the incorpo-
ration of different metal or non-metal elements into photocatalytic materials to enhance
their photocatalytic properties. Doping or alloying can modify the electronic structure,
band alignment, or charge transfer characteristics, resulting in improved photocatalytic
performance and antimicrobial effects.

Finally, if tests performed using aqueous solutions of microorganisms are useful to
screen and compare the activity of different photocatalysts toward microorganisms of
interest without any interference; future experiments shall focus on the evaluation of their
biocidal activity at similar light intensities on solid surfaces.
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4. Materials and Methods
4.1. Microbial Strains

Two of the most frequent microorganisms identified on building materials were chosen
to evaluate the antimicrobial activities of TiO2, ZnO and Au/ZnO nanoparticles: the mould
A. niger [7] and the Gram negative bacteria E. coli [66].

E. coli CIP 53126 was obtained from the collection of the Pasteur Institute (CIP, Paris,
France) and the A. niger CBS 733.88 strain was obtained from the Westerdijk Fungal Biodi-
versity Institute (CBS, Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands).
Strains were stored at −80 ◦C in Eugon medium (Biomérieux, Craponne, France) supple-
mented with 10% glycerol.

Bacterial cells were pre-cultured for 16–24 h at 36 ◦C on trypticase soy agar (TSA,
Biomérieux, Craponne, France) before each experiment. For tests, bacterial cells were
dispersed in 1/500 nutrient broth medium and the bacterial suspension was adjusted to
about 108 cells/mL by spectrophotometry (λ= 640 nm). The cell suspension concentration
was checked by determining the number of CFU/mL after dilution and inclusion in TSA.

For fungal suspension, A. niger strain was cultured on Sabouraud agar medium (SAB,
Biomérieux, Craponne, France) at 22.5 ◦C for 10 to 14 days to prepare the spore suspen-
sion [67]. After incubation, 10 mL of sterilized distilled water (90%) + Tween 80 (10%) with
sterile glass beads were added into the flask and gently stirred for at least 2 min. Then, the
liquid phase was collected and filtered through sterile frit 080557-2 (40–100 µm) into a ster-
ile pot containing sterile glass beads to prevent spores from clustering. The concentration
of the spore suspension was determined by counting spores on Malassez cell via optical
microscope and adjusted to about 107 cells/mL. The cell suspension concentration was
checked by determining the number of CFU/mL after dilution and inclusion in Sabouraud
agar.

4.2. Photocatalytic Materials
4.2.1. Commercial Oxides

Two bare commercial metal oxide semiconductors TiO2 and ZnO were used. P25
Degussa® TiO2 and a commercial powder of ZnO (size < 100 nm) were purchased from
Sigma Aldrich (Sigma Aldrich, Saint-Quentin Fallavier, France).

4.2.2. Synthesis of the Au/ZnO Photocatalyst

The gold precursor (HAuCl4·3H2O, Sigma Aldrich, Saint-Quentin Fallavier, France)
was used without further purification. To synthesize the decorated Au/ZnO material, the
photo-deposition method was employed with the HAuCl4·3H2O precursor in water under
UV-A irradiation using a 100W Xenon lamp (λ = 365 nm, 17 W/m2) (UVP, Upland, USA)
for one hour, as already described [54,68,69]. The amount of Au decoration was fixed to
1% wt to be comparable to the literature data [70]. First, the bare commercial ZnO powder
was dispersed in ultra-pure water (1 mg/mL) through sonication for 20 min, without
any additional stabilizing or sacrificial agent. Immediately prior to UV-A exposure, the
HAuCl4·3H2O solution (1 mg/mL, 4 mL for 200 mg ZnO) was added to this ZnO solution.
After an hour of UV-A irradiation, the resulting blue solution was centrifuged (5000 rpm),
washed with distilled water, and dried under vacuum for one hour at room temperature in
the absence of light, yielding a blue powder.

4.3. Physiochemical Characteristics of Photocatalytic Materials
4.3.1. X-ray Diffraction Analysis (XRD)

The crystalline phase of each photocatalyst was identified by XRD analysis (Panalytical
MPDPro, Plaseau, France) at room temperature using Cu K-αradiation (λ = 1.54 Å). The data
were collected over the 2 theta (θ) angular range of 20◦–70◦ (with a step of 0.016 θ/s). The
X’pert HighScore software (Malvern Panalytical, https://www.malvernpanalytical.com
accessed on 19 July 2023) was used to identify the compounds and for Rietveld refinement.
The size of the different crystallites used in the study was evaluated by the Scherrer

https://www.malvernpanalytical.com
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equation, applied on the peak with the highest intensity [71]. It should be noted that the
obtained values are relative since no integration of the role of the instrument on the peaks
widening or internal strain of grains have been considered for these determinations [72].

4.3.2. Specific Surface Area Determination

N2 physisorption measurements were made with a Micromeritics ASAP 2020 analyzer
(Microméritics, Mérignac, France) at liquid nitrogen temperature. Powders were degassed
at 200 ◦C under high vacuum for 12 h before analyses. A minimum quantity of 200 mg
of photocatalyst powder was used to carry out the measurement. The specific area of the
three photocatalysts was evaluated using the Brunauer–Emmett–Teller (BET) method in
the P/P◦ = 0.07–0.2 range.

4.3.3. High-Resolution Transmission Electron Microscopy (HRTEM) Analysis

A JEOL JEM-ARM200F (JEOL LTD, Tokyo, Japan) High-Resolution Transmission
Electron Microscope (HRTEM) operating at 200 kV with 1.9 Å resolution was used for TEM
and atomic resolution HRTEM imaging.

4.3.4. UV-vis Diffuse Reflectance Spectroscopy (DRS) Measurements

DRS allowed the UV-visible spectra of the metal oxide semiconductor-based materials
to be obtained. The Perkin Elmer Lambda 950 spectrophotometer (PerkinElmer, Waltham,
MA, USA) equipped with snap-in integrating spheres calibrated with a Spectralon® White
Diffuse Reflectance Standard was used. The band gap energy (Eg) was estimated based on
the absorption spectra and the Kubelka–Munk function [73].

4.3.5. Electron Probe Microanalysis (EPMA)

The composition of the Au/ZnO was analyzed by Cameca Electron Probe Micro-
analysis (EPMA) with a Cameca SXFiveFE (Cameca, Genevillier, France) apparatus (field
emission gun 1 to 30 kV, analysis beam diameter down to 70 nm). The system allowed a
detection limit of 0.01% for all the elements of the periodic table from Be to U.

4.4. Evaluation of Bactericidal and Fungicidal Activity of Photocatalysts

The bactericidal and fungicidal activities of molecules were determined as follows:
TiO2 P25 nanoparticles (Degussa, Frankfurt, Germany), ZnO nanoparticles or Au/ZnO
nanoparticles were suspended in 50 mL of sterile distilled water and 0.5 mL of the microbial
cell suspensions (E. coli cells or A. niger spores) were added (final concentrations: 106

cells/mL and 105 cells/mL, respectively). The antimicrobial activity of photocatalysts was
tested at two concentrations, 10 g/L and 1 g/L. The mixture was gently stirred throughout
the incubation period. During each experiment, the test tubes and a control tube without
photocatalyst nanoparticles were placed in a sterile flow hood and covered with a Pyrex Lid.
Under lighting, test and controls were illuminated with a 8 W black bulb at a light intensity
of 5 W/m2. In the dark, test and controls tubes were completely covered with cardboard
to achieve an intensity of 0 W/m2. The intensity of light was measured using a UV-A
radiometer Gigahertz-Optik (Gesellschaft mit beschränkter Haftung (GmbH), Türkenfeld,
Germany), as described by Verdier et al. [66].

During each experiment, 1 mL was taken from each tube at t0 = 0 min (validation of
experimental conditions) and every 30 min for 2 or 4 h. It was diluted ten-fold in sterile
distilled water for CFU numerations in the corresponding agar. Petri dishes from E. coli and
A. niger tests were incubated 48 h at 36 ± 1 ◦C and 30 ± 1 ◦C, respectively. The antimicrobial
activity (log reduction) was calculated using Equation (1).

R = Log(Ccont)− Log(Ctest) = Log
(

Ccont
Ctest

)
(1)

where R: Log10 Reduction of TiO2, ZnO or Au/ZnO (referred as bactericidal or fungicidal
activity in the text), Ccont: Average concentration of suspension in control tube without
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product, expressed in CFU/mL, Ctest: Average concentration of suspension in test tube
with TiO2, ZnO or Au/ZnO, expressed in CFU/mL.

Each experiment was repeated twice to ensure reliability. Results are expressed as the
mean ± standard deviations of the two independent experiments.

5. Conclusions

The main objective of this study was to investigate (i): the difference between the bac-
tericidal effect from one side and fungicidal effect on other side of different photocatalytic
products nanoparticles and (ii) to compare the efficacies of different used photocatalysts
through stirring experiments allowing a direct contact between the product and cells at low
light intensity close to real-world conditions. The obtained results confirmed previous find-
ings on the bactericidal activities of TiO2, ZnO and AuZnO on E. coli and highlighted the
variation of their efficiencies as a function of concentration, duration of contact, light/dark
conditions and especially as a function of microorganisms (spores of A. niger vs. E. coli in
current study). ZnO- and Au-doped ZnO reported stronger bactericidal and fungicidal
activities than TiO2 both in the dark and under light conditions. When photocatalyzed,
ZnO nanoparticles implanted with gold Au metals reported stronger biocidal activity
than undoped ZnO nanoparticles. These findings support the use of Au doped ZnO in
paints, coatings and other applications as they present higher bactericidal activities and fair
fungicidal activities at light intensities close to those existing in the indoor environment.
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