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Abstract: Novel tungsten-modified mixed-valence tin oxides (Sn3O4) with two oxidation numbers,
such as Sn2+ and Sn4+, were successfully prepared by the cetyltrimethylammonium bromide (CTAB)-
assisted solvothermal method in one-step using tin (II) chloride dihydrate and sodium tungstate
(IV) dihydrate as the precursors for dye degradation of methyl orange (MO) under visible light
irradiation. The synthesized materials were characterized by various techniques to investigate the
surface/structural morphology and the optical property. The presence of tungsten and the optimized
amount of CTAB in the preparation method were favorable for the photocatalytic dye degradation
reaction. In particular, when 0.03 of CTAB was added to W-modified Sn3O4 (W-Sn3O4@CTAB)
and its concentration was 0.6 mg/mL, 10 mg/L of MO could be decolorized almost completely in
40 min, with the apparent reaction rate constant of 0.0496 min−1. The improvement of photocatalytic
activity for this proposed W-Sn3O4 results from increased reduction power, enhanced separation
of electron–hole pairs, extended visible light absorption range, and optimized band structure by
CTAB additive. The radical trapping experiments showed that the main reactive species during the
photocatalytic reaction are superoxide ions. The developed photocatalysts may contribute to the
development of environmental improvement technology.

Keywords: Sn3O4; cetyltrimethylammonium bromide; solvothermal method; decolorization;
photocatalysis; visible light irradiation

1. Introduction

Water pollution caused by organic dyes is one of the serious problems with the
development of the printing and dyeing industry [1]. Among the diverse source of water
contaminants, azo dyes with one or more azo groups (-N=N-) as the chromophore and
other functional groups commonly have toxicity, mutagenicity, and low degradability [2,3].
Such dye pollutants with sewage and/or industrial wastewater were discharged into the
environment without being purified, resulting in serious pollution problems [4,5]. The dyes
released into the environment remain for a long time, worsening water quality, reducing
light penetration, and affecting the performance of aquatic organisms, and ultimately,
they can have significant negative impacts on the life of aquatic organisms, humans, and
other mammals through oral ingestion and/or skin contact [6,7]. Hence, there is an urgent
need for novel technology development to treat dye-contaminated wastewater safely
and efficiently.

While many water treatment technologies, including physical, chemical, and bio-
logical approaches have been implemented, photocatalysis has been recognized as one
of the most important and green technologies to solve water pollution problems [8–11].
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In particular, many strong and sustainable approaches have been conducted to design novel
photocatalytic materials for the efficient decomposition of pollutants by the application of
visible light, which accounts for the largest proportion of the solar spectra as a renewable
energy [12,13].

Recently, there has been a significant interest in tin-based oxide materials in photo-
catalysis. Among them, tin dioxide (SnO2) is an n-type semiconductor with a band gap
of 3.7 eV with many advantages such as low cost, lack of toxicity, environment-friendly,
and high photoelectrochemical performance [14,15]. In contrast, its wide band limits the
photocatalytic activities under solar energy since SnO2 materials can only absorb ultra-
violet light, and the rapid recombination rate of the photogenerated electron–hole pair
reduces its photocatalytic efficiency [16]. In order to overcome these disadvantages, the
turning of morphology has attracted much attention in recent years, and attempts have
been made to synthesize tin oxides with unique morphological structures [17]. Sn3O4, as a
metal oxide with a mixed valence state of Sn2+ and Sn4+, has been reported to have strong
solar absorption and high chemical stability [18,19]. Although Sn3O4 has improved visible
light responsivity like other photocatalysts, it has problems with the recombination rate
of electrons and holes and the charge transfer rate [20]. Another effective approach to
designing visible-light-driven photocatalysts is the modification of photocatalytic materials
employing metals and/or nonmetals by doping impurity elements and other noble metal
depositions [21,22]. It is reported that the introduction of high-valence cations such as
tungsten for the photocatalysts modifies the electronic structure of its material [23,24]. In
the combination of tin and tungsten, tin tungstate (SnWO4), as one of metal tungstates,
has gained attention for its unique structure and optical properties as a multi-metal oxide
semiconductor [25,26]. On the other hand, to the best of our knowledge, few reports
have developed photocatalysts consisting of tungsten modified with tin oxide, and the
mechanisms of those photocatalysts under visible light irradiation remain far from clear.

In the preparation of functional materials, adjusting the final photocatalyst mor-
phology is important to obtaining a large surface area and high photoactivity for high
photocatalytic efficiency [27]. In order to control the morphology of the catalysts by
manipulating the growth of particles, it is common to introduce a variety of organic addi-
tive agents such as polyvinylpyrrolidone (PVP) [28], polyethylene glycol (PEG) [29], and
ethylenediaminetetraacetic acid (EDTA) [30,31]. Among them, cationic surfactants such
as cetyltrimethylammonium bromide (CTAB) are widely used to regulate crystal growth,
surface structure, and optical properties as a structure-directing agent [32]. Currently, the
influence of CTAB as a capping agent on the photocatalytic activity of Sn3O4 has been
seldom addressed.

In this work, visible-light-driven tin oxide-based photocatalysts were synthesized
using the CTAB-assisted solvothermal method with tungsten as another metal. The influ-
ence of the presence of tungsten and CTAB quantity on the photocatalytic efficiency of
these photocatalysts was evaluated through the dye degradation rate of methyl orange
under visible light irradiation. The crystal structure, morphology observation, and chem-
ical properties of the photocatalysts were used to examine the reaction mechanism via
various techniques. Consequently, we present the first successful introduction of tungsten
into Sn3O4 with effective CTAB support, achieving a visible-light-driven photocatalyst to
promote dye decolorization.

2. Results and Discussion
2.1. Crystallographic Phase Properties

Figure 1a,b shows the prepared photocatalysts’ X-ray diffraction (XRD) patterns. It
can be seen that the diffraction patterns of all synthesized samples are attributed to triclinic
Sn3O4 according to the standard card (JCPDS NO.16-0737), along with corresponding
reflections of the (111), (210), (122), (130), (132), and (013) lattice planes at 26.4◦, 32.9◦, 34.0◦,
38.6◦, 51.8◦, and 61.9◦ as 2θ values, respectively [33,34]. For W-modified Sn3O4 samples, no
obvious peaks related to tungsten species were detected, which might be due to the lower
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content of W. The diffraction peaks of W-Sn3O4 samples slightly shift towards the lower
angle side as compared with unmodified tungsten Sn3O4, which indicates lattice expansion
with W-modification because of the large crystal radius of tungsten [35]. At the same time,
it was expected that the decrease in crystallinity and the broadening of the diffraction peak
occurred via changes in the crystal structure due to the presence of tungsten in tin oxides.
Moreover, in comparison to the XRD pattern of sodium tungstate (IV) dihydrate shown in
Figure 1c, no specific peaks of tungsten precursor were identified in the prepared samples,
suggesting that tungsten, in elemental form, is introduced into Sn3O4 materials. Compared
to Sn3O4 samples prepared with and without CTBA (0.03 g), almost no change in these
XRD patterns was observed, and no characteristics for any other phases about impurities
could be detected. The results indicate that the CTAB in the solvent for the solvothermal
method has no significant effect on the crystal structure of the catalyst.
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2.2. Surface Morphology

The scanning electron microscopy (SEM) images in Figure 2a–c indicated that all
prepared samples exhibited lump-shaped structures. It was observed that the addition of
tungsten to tin oxides resulted in finer surface morphology, and the appropriate amount of
CTAB in the photocatalysts preparation led to the formation of an even finer microstructure.
On the other hand, it also demonstrated that the shape of the products could not be radically
altered by two factors, within the scope of an investigation, in the proposed preparation
method. In Figure 2d,e, the transmission electron microscopy (TEM) images show that each
synthesized sample contains irregular aggregations of various sizes as indicated by the SEM
observations. In the case of W-Sn3O4 without CTAB, many crystals around 30 nm were
found, and the aggregation degree of these crystals was high; by contrast, smaller crystals
of around 10 nm were observed for the W-Sn3O4@CTAB. Moreover, Sn3O4@CTAB was
constituted by aggregates of smaller crystals than W-Sn3O4@CTAB. The modification of
the crystalline shape by tungsten and CTAB might be beneficial to facilitate photocatalytic
performance by providing the reaction active sites.

For additional photocatalytic surface characterization studies, specific surface ar-
eas related to physical adsorption and photocatalytic activity were obtained via the BET
method using nitrogen. As shown in Figure 3a, it was reported from the nitrogen adsorp-
tion/desorption isotherm analysis that the curve shapes of all products belonged to type-IV
isotherms with H3-type hysteresis loops characteristic of the mesoporous structure. The
corresponding pore sizes distribution curves in Figure 3b, also analyzed from the desorp-
tion branch of the isotherms, were calculated via Barret Joyner Halenda (BJH) methods [36].
It can be seen that the diameter range of pores was found to be concentrated between
2 and 20 nm for all photocatalysts measured, which further confirmed the mesoporous
character of their materials. Table 1 shows that BET-specific surface area tended to increase
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with W modification and stabilize around 40 cm3/g as a result of the decrease in surface
area with the addition of CTAB; however, this appeared to have little correlation with
photocatalytic activity.
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Table 1. Monomolecular layer adsorption volume (Vm), BET specific surface area (asBET), total pore
volume (Vp), and average pore diameter (dp) of the synthesized samples.

Sample CTAB
Amount

Vm
(cm3(STP)/g)

asBET
(m2/g)

Vp
(p/p0 = 0.990)(cm3/g)

dp
(nm)

Sn3O4 0.03 g 28.5 124.0 0.20 6.36
W-Sn3O4 0.03 g 42.8 186.0 0.17 3.54
W-Sn3O4 0 g 64.6 281.4 0.22 3.14

Therefore, the improvement of photocatalytic activity for dye degradation of MO
would largely be attributed to various modified optical properties rather than to the
optimization of the surface morphology.

2.3. Chemical Structure

The chemical structural information about the chemical bonding or molecular struc-
tures of materials can be illustrated via Fourier-transformed infrared (FT-IR) spectra in
Figure 4a. The characteristic peaks at 2918 cm−1 and 2850 cm−1 correspond to the C–H
bond stretching vibration from methyl and methylene groups of CTAB. Because the two
absorption bands mentioned above were observed around 2900 cm−1 in the materials pre-
pared with CTAB (Sn3O4@CTAB and W-Sn3O4@CTAB), a small number of linear molecules
of CTAB are present inside or on the surface [37]. Other peaks observed in CTAB were
attributed to the alkyl chains as hydrophobic groups. The strong and wide band around
3400 cm−1 arises from the stretching vibration of hydroxyl groups on surface hydroxyl
groups or adsorbed water due to the re-adsorption of water from the ambient atmosphere.
The broad band around 500 cm−1 and 1470 cm−1 is caused by the vibration of the Sn–O
bond and the bending vibration of Sn-OH, respectively [38]. Due to the trace amount of
modified tungsten, there was no evidence of its presence in the W–O bond.
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The further chemical surface compositions and elemental valence states of the pre-
pared samples were identified via X-ray photoelectron spectroscopy (XPS) analysis. The
survey XPS spectra in Figure 4b of all samples finds the peaks originating from C, O, and Sn
elements. In addition, the peaks related to the W element are also detected in the samples
treated with tin and tungsten precursors simultaneously via the solvothermal method, in-
dicating that the tungsten was assuredly doped in Sn3O4-based photocatalysts. In contrast,
the peaks of nitrogen (N) and bromine (Br), which could be derived from CTAB employed
in the sample preparation process, were not observed even via high-resolution spectral
analysis. This result is consistent with the result from the XRD and FT-IR techniques.

The C 1s spectra in Figure 5a show three binding energy peaks at 284.8 eV, 286.2 eV,
and 288.7 eV associated with C single bond C (C–C), C single bond O (C–O), and O
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single bond C single bond O (O–C–O) groups, respectively. These peaks indicate that the
synthesized samples contain some carbon originating from the background carbon as well
as hydrocarbons, including CTAB.
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The O1s spectra in Figure 5b show the apparent peak around 530 eV attributed to crys-
tal lattice oxygens. In particular, each binding energy of Sn3O4@CTAB, W-Sn3O4@CTAB,
and W-Sn3O4 are located at 530.8 eV, 530.6 eV, and 530.6 eV, respectively, where there
appear to be slight shifts of about 0.2~0.3 eV to lower binding energy due to the adjustment
of the metals–oxygen bonding state via W-modification and CTAB additive. Other small
shoulders are observed at 530.0 eV and 533.5 eV, probably due to adsorbed water molecules
on the surface and the hydroxyl groups, respectively.

Sn 3d XPS spectra of Sn3O4-based samples in Figure 5c display two splitting peaks
consisting of Sn 3d3/2 and Sn 3d5/2 states, which are further separated into the peaks
belonging to Sn2+ and Sn4+. Moreover, the asymmetric shape of Sn 3d XPS spectra is
attributed to the fact that Sn has different chemical states within the Sn3O4 crystal lattice.
With respect to Sn3O4 photocatalysts-modified W, four fitted subpeaks at 486.4 eV, 487.2 eV,
494.9 eV, and 495.7 eV were ascribed to 3d5/2 Sn2+, 3d5/2 Sn4+, 3d3/2 Sn2+, and 3d3/2
Sn4+, respectively, and the binding energy of Sn 3d slightly shifts toward the high energy
direction compared to the Sn3O4 sample without tungsten.

No characteristic peaks of the tungsten element are detected in pure Sn3O4@CTAB in
Figure 5d. The main oxidation state of tungsten detected on the W-Sn3O4 photocatalysts
is a valency of six, having peaks at around 35.9 eV and 38.0 eV for W4f7/2 and W4f5/2,
respectively. As CTAB concentration increased, two W4f peaks shifted toward the lower
binding energy side. The change of binding energy may be related to the change of electron
density in the materials. The results of each peak shift for Sn 3d, and W 4f support the
successful modification of tungsten to Sn3O4-based samples. Furthermore, a trace amount
of pentavalent tungsten (W5+) was detected during W 4f peak resolution stage. In previous
works, it has been reported that group-6 W works as a singly charged donor (W5+) in
tetravalent cation-based SnO2 because the ionic radius of tungsten was close to that of
tin [39,40]. Therefore, the same phenomenon is expected to have occurred in these proposed
photocatalysts.

Even though the amount of tin and tungsten used during the solvothermal process
were the same, the peak intensity of O, Sn, and W as the main constituents of the samples
with CTAB were provably stronger than those without CTAB; CTAB worked well as a
structure-directing agent to adjust the final photocatalyst morphology.



Catalysts 2023, 13, 1179 7 of 16

2.4. Optical Property

In photocatalytic reactions, the recombination of photoinduced electron–hole pairs
significantly affects their activity [41]. Therefore, photoluminescence (PL) measurements
were performed to investigate the efficiency of free charge carriers trapping and transfer in
the proposed photocatalysts via the intensity of fluorescence produced when photoinduced
electrons recombine with holes, as shown in Figure 6a. The synthesized samples showed
a visible emission centered around 420 nm. The PL intensity of W-Sn3O4 is lower than
that of Sn3O4 without tungsten in the same wavelength range, which was attributed to
interference with the recombination of photoinduced electrons and holes because the
tungsten could act as an electron trapping site. The fluorescence emission of W-Sn3O4 with
the proper quantity of CTAB was further significantly inhibited, suggesting the presence of
possible defects and/or the optimized band structure in the photocatalysts induced by the
structure-directing agent.
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The optical property of the prepared photocatalysts was investigated via UV–vis
diffuse reflectance spectra (DRS) in Figure 6b. Here, the optical band gap of a crystalline
semiconductor follows the equation:

αhν = A(hν − Eg)1/n, (1)

where α, hυ, Eg, and A are absorption coefficient, incident photon energy, band gap energy,
and a constant, respectively. Among them, n depends on the type of optical transition of
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a semiconductor (n = 1/2 for direct transition and n = 2 for indirect transition) [42]. The
band-to-band excitations of Sn3O4-based photocatalysts in this work exhibited indirect
transitions [43,44]. The intercept of the tangent to the x-axis gives the approximation of the
bandgap energy.

Although the Sn3O4 without W sample could almost absorb only UV light due to the
large band gap energy (3.11 eV), the optical absorption range of the W-modified Sn3O4
samples is significantly extended to the visible light region. In addition, compared to
those of W-Sn3O4 prepared with and without CTAB, the absorption edge of CTAB-assisted
W-Sn3O4 was red-shifted to longer wavelengths in the visible region. The optical band
gap energy was found to be 3.11, 2.39, and 2.53 eV for Sn3O4@CTAB, W-Sn3O4@CTAB,
and W-Sn3O4, respectively. Therefore, the results indicated that W-modification and CTAB-
assist procedure for Sn3O4 preparation effectively adjust the band gap energy (Eg) of
photocatalysts for dye degradation under visible light irradiation.

The valence band (VB) positions of the prepared photocatalysts were determined
via VBXPS analysis. After reading the VBXPS values from Figure 6d, the contact po-
tential difference between the samples and the analyzer was corrected based on the
following equation:

ENHE (V) = VBXPS − 4.44 + ϕ, (2)

where ENHE and ϕ are the standard electrode potential and electron work function of
the analyzer (4.33 eV in this work), respectively [45]. As a result, the VB positions of
Sn3O4@CTAB, W-Sn3O4@CTAB, and W-Sn3O4 were estimated to be 1.73 V, 1.31 V, and
2.00 V, respectively.

From the band structure of each catalyst obtained by the combination of VBXPS and
DRS results, it was revealed that the energy band, regulated to a bandgap to be responsive
in visible light via the tungsten introduction, was placed on the lower potential side by the
CTAB additive.

2.5. Electrochemical Characterization

The separation efficiency of the photogenerated electron–hole pairs in the photo-
catalyst was analyzed using a three-electrode system. As seen from the electrochemical
impedance spectroscopy (EIS) Nyquist plots in Figure 7a, the W-Sn3O4@CTAB photo-
catalyst exhibits the smallest arc radius with a lower charge transfer resistance, which
means that the sample exhibited the highest electron transport rate. Transient photocurrent
response (I-t) analysis of the prepared samples was then performed to verify numerous
on–off cycles under visible light. The W-Sn3O4@CTAB photocatalyst showed a good pho-
tocurrent response, suggesting that the structure modified by tungsten and CTAB with
great synergistic interactions can effectively transfer the excited charge carriers and shorten
the reunion rate.
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2.6. Photocatalytic Dye Degradation

The photocatalytic activity of Sn3O4-based photocatalysts prepared under various con-
ditions, such as tungsten modification and CTAB amount in the solvothermal method, were
evaluated via the photodegradation of MO under visible light irradiation (λ ≥ 420 nm). In
order to acquire the MO degradation efficiency, the degradation rate C/C0 and the apparent
rate constant k (min−1) of the photocatalysts were calculated. Here, the experimental data
corresponded to the first-order Langmuir–Hinshelwood (L–H) model owing to the low MO
concentration, and pseudo-first-order kinetics could be obtained via the following formula:

−ln(C0/Ct) = kt, (3)

where C0 and Ct represent the initial concentration after adsorption/desorption equilibrium
and the concentration at light irradiated time t (min) during the photoreaction.

Figure 8a shows the photocatalytic activity of Sn3O4 and W-Sn3O4, each containing
0.03 g of CTAB. Sn3O4 modified without tungsten had no ability to decolorize MO under
visible light irradiation, which is attributed to its narrow absorption wavelength region and
wide band gap as shown in the DRS results. In contrast, W-Sn3O4 is visible-light-driven,
which explains that the optimized structure by tungsten species incorporated in Sn3O4
provides more reaction active sites and facilitates the efficient transfer and separation of
charge carriers. Figure 8b shows the photocatalytic activity of W-Sn3O4 with different
CTAB amounts (0~0.2 g). The photocatalytic degradation efficiency of MO improved with
an increasing CTAB amount in the solvothermal method, and W-Sn3O4 containing 0.03 g
of CTAB, with the highest photocatalytic decolorization performance, could decolorize 99%
of MO within 40 min. The reaction rates of the W-Sn3O4 with 0, 0.01, 0.02, 0.03, 0.04, 0.05,
and 0.2 g of CTAB additive were 0.0091, 0.0361, 0.0445, 0.0404, 0.0203, and 0.0181 min−1,
respectively. In short, W-Sn3O4@CTAB (0.03 g) obtained the maximum rate constant, which
is about 5.5 times faster than that of pure W-Sn3O4. On the other hand, the excess quantity
of CTAB resulted in photocatalytic reaction inhibition. From the characterization results,
that the optimized amount of CTAB (0.03 g) can significantly enhance the photocatalytic
performance of W-Sn3O4, originating from the effective separation of photo-induced car-
riers and DRS redshift, is distinct. Based on the above results, two approaches for Sn3O4,
tungsten induction as well as CTAB addition, were found to be superior for photocatalytic
MO decolorization under visible light irradiation.

The pH of the sample solution is one of the essential factors that can directly influence
the diffusion process, surface adsorption, and surface charge of dyes. The effect of the sam-
ple solution pH on photocatalytic decolorization of MO in the presence of W-Sn3O4@CTAB
(0.03 g) was investigated in the range of pH 3–9. As shown in Figure 8c, the photocatalyst
exhibited high decolorization efficiency under acidic conditions; however, the photocat-
alytic activity decreased as pH values increased. The decolorization efficiencies at 60 min
of light irradiation were 99, 99, 62, and 40%, and the reaction rate constants were 0.0700,
0.0496, 0.0213, and 0.0106 min−1 at pH values of 3, 5, 7, and 9, respectively. It has been
reported that Sn3O4-based materials exhibit the isoelectric point on the acidic side [46];
therefore, the W-Sn3O4@CTAB surface is likely to be protonated around pH 3 and/or
5. Combined with the knowledge that methyl orange is an anionic dye, the difference
in catalytic activity at each solution pH appears to be interactions such as electrostatic
attraction/repulsion between the catalyst and MO. In addition, the competition between
hydroxide ions and negatively charged MO in basic solutions could contribute to reduced
photocatalytic activities under high pH conditions.

The comparison of the performance of W-Sn3O4@CTAB as the prepared photocatalyst
with other photocatalytic techniques in several references is shown in Table 2 [47–51]. The
proposed photocatalyst preparation technique based on a one-step solvothermal method
is facile, and the photocatalytic activities for MO decolorization reported in this study is
good or comparable to that of other photocatalysts reported in other literature and possibly
related to W-Sn3O4@CTAB.
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each photocatalyst with different amounts of CTAB.

Table 2. Comparison of photocatalytic performance of the prepared W-Sn3O4@CTAB and a few other
photocatalysts for methyl orange decolorization.

Photocatalyst Preparation Method Light Source
Photocatalyst
Concentration

(mg/mL)

MO
Concentration

(mg/L)

Efficiency
(%)

Time
(min) Ref.

WO3/g-C3N4 Thermal polymerization 300 W xenon
lamp 1 10 93 120 [47]

TiO2@ WO3 Etching + hydrolysis processes 300 W xenon
lamp 1 10 95 25 [48]

N-CQDs/Sn3O4 CQDs process + hydrothermal 500 W xenon
lamp 0.6 10 78 80 [49]

Ni-Sn3O4 One step hydrothermal 300 W xenon
lamp 1 10 72 60 [50]

S-Sn3O4 One step hydrothermal 500 W xenon
lamp 1 20 99 80 [51]

W-Sn3O4@CTAB One step solvothermal 500 W xenon
lamp 0.6 10 99 40 This

work

2.7. Reaction Mechanisms

Investigation of the intermediates involved in photocatalytic reactions is important to
revealing the mechanisms. The radical trapping experiments were performed to determine
the reactive species of W-Sn3O4@CTAB (0.03 g) in the photocatalytic process. In the present
work, we attempted to trap superoxide radical anions (•O2

−), hydroxyl radicals (•OH), and
photogenerated holes (h+) that are critical in the oxidation reaction by adding scavengers
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such as benzoquinone (BQ), isopropyl alcohol (IPA), and ethylene diamine tetraacetic acid
(EDTA). As shown in Figure 9, the degradation efficiency significantly decreased in the
presence of BQ (−100%) and slightly decreased in the presence of IPA (−67.6%) and EDTA
(−17.6%) compared with the blank experiment. Hence, it is concluded that superoxide
radical anions are the main reactive component in the MO decolorization in the presence of
visible light irradiation catalyzed by W-Sn3O4@CTAB.
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In summary of the above results, the suggested photocatalytic mechanism and pho-
toinduced charge transfer during MO decolorization on the proposed photocatalysts are
shown in Figure 10. First of all, due to the introduction of tungsten into mixed-valence
tin oxides (Sn3O4), the visible-light-harvesting performance of W-Sn3O4 materials was
considerably enhanced. In detail, new impurity levels originating from tungsten owing
to its multiple oxidation states are formed within the broadband structure with limited
photoresponsivity of Sn3O4, resulting in decreased bandgap energy. Moreover, the addition
of CTAB during crystal growth further optimizes the final photocatalytic morphology, with
this result leading to improved visible-light absorption ability.
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During the photocatalytic process under visible light irradiation, the electrons (e−)
from the valence band (VB) are forced to move into the conduction band (CB) with the
generation of the same number of holes (h+). Although the photogenerated electrons and
holes generally recombine rapidly, those active species immediately move to the catalyst
surface because the designed W-Sn3O4@CTAB photocatalyst possesses excellent electron
transfer and collection ability. The redox potentials of O2/•O2

− have been reported to be
equal to −0.33 V [52]; thus, the photoexcited electrons can be transferred to the adsorbed
oxygen on the surface of W-Sn3O4 to form the superoxide radical anions (•O2

−), whereas
hydroxyl radicals have a very high potential for oxidation (2.80 V) [53], which means that
the holes in the VB around 1.31 eV cannot interact with OH- and/or H2O adsorbed on the
photocatalyst surface to produce •OH. Therefore, the superoxide radical anions would
receive hydrogen ions to form protonated superoxide anion radicals (HOO•); then, HOO•
would receive a hydrogen ion to form H2O2 and be converted to •OH [54]. The produced
reaction active species are eventually involved in the oxidation reaction of MO. In addition,
the photoproduced holes not consumed for •OH formations could also oxidize MO directly.

3. Materials and Methods
3.1. Materials

All of the chemicals were of analytical grade and used without further purification. Tin
(II) chloride dihydrate (SnCl2·2H2O) was purchased from NACALAI TESQUE, INC., Japan.
Sodium tungstate (IV) dihydrate (Na2WO4·2H2O), cetyltrimethylammonium bromide
(CTAB, C19H42BrN), ethylene glycol (C2H6O2), sodium hydroxide (NaOH), and methyl
orange (C14H14N3NaO3S) were obtained from FUJIFILM Wako Pure Chemical Co., Osaka,
Japan. The distilled water prepared by the water distillation apparatus RFD260NC was
used throughout all experiments.

3.2. Preparation of Photocatalysts

W-modified Sn3O4 (W-Sn3O4) photocatalysts were prepared via a one-pot solvother-
mal method. Typically, 1 mmol tin (II) chloride dihydrate was dissolved in 30 mL ethylene
glycol and mechanically stirred. In another vessel, sodium tungstate (IV) dihydrate was
dissolved in 20 mL ethylene glycol by ultrasonic treatment, and then CTAB was added to
the mixture to form Na2WO4-CTAB solution. Na2WO4-CTAB solution was added slowly
dropwise to SnCl2 solution under stirring thoroughly. The pH value of its solution was
adjusted with 10 mol/L NaOH aqueous solution. The resulting suspension was continu-
ously stirred for 1 h and then treated via a solvothermal process in a 100 mL Teflon-lined
autoclave at 200 ◦C for 18 h. After the system was naturally cooled to ambient temperature,
the precipitate was centrifuged, washed with distilled water and ethanol several times,
and dried at 60 ◦C for 6 h in a vacuum oven to obtain the main body of the photocatalysts.
Additionally, Sn3O4 with CTAB and W-Sn3O4 without CTAB were prepared by using the
procedures mentioned above in the absence of Na2WO4 and CTAB, respectively.

3.3. Characterization

X-ray diffraction (XRD) patterns were recorded by a RIGAKU Ultima IV instrument
with a Cu-Kα radiation source for structural analysis. X-ray photoelectron spectroscopy
(XPS) spectra were employed to investigate chemical bonding states. All binding energies
of photocatalysts were calibrated with C1s peak of the surface adventitious carbon at
284.8 eV as the reference. Fourier transform infrared (FT-IR) spectra were obtained via
a PerkinElmer SPECTRUM 100 FTIR spectrometer. The photoluminescence (PL) spectra
were acquired from a JASCO FP-8500 fluorescence spectrophotometer at the excitation
wavelength of 300 nm. UV–vis diffuse reflectance spectra (DRS) were measured on a
JASCO V-750 UV–vis spectrophotometer. In order to observe the surface morphologies of
photocatalysts, scanning electron microscopy (SEM) and transmission electron microscopy
(TEM) images were obtained via HITACHI S-4300 and JEOL JEM-1011, respectively. The
Brunauer–Emmett–Teller (BET) specific surface areas and the pore size distributions of
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photocatalysts were analyzed via the nitrogen adsorption/desorption isotherms from BEL-
SORP-miniII. A SHIMADZU UV-2450 UV–visible spectrometer was employed to examine
the concentration and/or intensity changes of MO during the photocatalytic reaction.

The photoelectrochemical experiments were carried out on a Princeton Applied Re-
search VersaSTAT 3 electrochemical workstation with a conventional three-electrode cell.
The reference electrode and counter electrode were applied to the Ag/AgCl electrode
and platinum electrode, respectively. In order to prepare the working electrode, a slurry
consisting of a proper quantity of photocatalysts, 5 wt.% Nafion (R) perfluorinated resin
solution, and 2-propanol was dropped onto indium tin oxide (ITO) glass, and then the
electrode was deposited. The electrolyte was an aqueous solution of 0.2 mol/L aqueous
sodium sulfate (Na2SO4). The light source for measuring the on/off response was a 100 W
xenon lamp equipped with a cut-off filter (λ ≥ 420 nm).

3.4. Photocatalytic Experiments

The photocatalytic activities of the synthesized photocatalysts were evaluated via the
dye-degradation of methyl orange (MO) under visible light irradiation at room tempera-
ture. An amount of 20 mg of each photocatalyst was dispersed in 35 mL of MO solution
(10 mg/L). Before light irradiation, the suspension was magnetically stirred in the dark
for 30 min to achieve adsorption/desorption equilibrium of MO with photocatalysts. The
photoreaction system was exposed to a 500 W xenon lamp equipped with a cut-off filter
(λ ≥ 420 nm) as a visible light source. At regulated intervals of time, a fixed volume of the
reaction mixture was collected and centrifuged to remove the catalyst particulates. The
supernatant solution was then analyzed via a UV–visible spectrophotometer (λ = 460 nm).

4. Conclusions

In the present study, a novel visible-light-driven photocatalyst labeled W-Sn3O4@CTAB
was prepared by modifying tungsten into mixed-valence tin oxides (Sn3O4), using the
solvothermal method with CTAB as a structure-directing agent. The characterization of the
crystallographic phase properties and chemical structure reveals that tungsten was success-
fully introduced into Sn3O4 materials for the first time and that CTAB controlled the final
photocatalyst morphology well. Consequently, tungsten modification and the CTAB addi-
tive have a strong effect on visible light response capability and photocatalytic performance
due to the formation of tungsten-derived impurity levels within and optimization of the
band gap structure of Sn3O4. The photocatalytic performance of W-Sn3O4@CTAB (0.03 g)
was evaluated via the dye-decolorization efficiency of MO, indicating that W-Sn3O4@CTAB
most efficiently achieved almost complete decolorization within 40 min under visible light
irradiation. The enhanced photocatalytic activity of the proposal materials is attributed to
the increased light absorption and the decreased recombination of photogenerated electron–
hole pairs. This research demonstrates unique approaches to developing tin oxide-based
materials and their potential to enhance photocatalytic activity for pollutant removal.
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