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Abstract: Development of an effective catalytic system for the cycloaddition of carbon dioxide to
epoxides for the preparation of cyclic carbonates under mild conditions is of great importance.
Herein, a mixture of zinc iodide, metal chlorides, and strong organic bases is demonstrated to
be a useful catalytic system that works at room temperature under atmospheric pressure. The
most efficient combination, zinc iodide-niobium chloride-7-methyl-1,5,7-triazabicyclo[4.4.0]dec-5-ene
(1.2-0.3-3.0 mol%), gave styrene carbonate (95%) from styrene oxide and CO2 (balloon) at 25 ◦C for
24 h. Another combination, zinc iodide-zinc chloride-1,8-diazabicyclo[5.4.0]undec-7-ene (1.2-0.8-
4.0 mol%), kept the catalytic activity for the preparation of propylene carbonate until the fourth
run. Therefore, the reaction system was operationally simple, highly efficient, and proceeded under
ambient conditions. The catalyst is composed of readily available reagents and is reusable. Thus, the
method presented is a powerful tool for utilizing CO2 as the starting material for the production of
valuable chemicals.
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1. Introduction

CO2 is regarded as an ideal carbon source for organic synthesis because it is inexpen-
sive, abundant, nontoxic, and renewable. Therefore, efficient transformation of CO2 into
valuable chemicals is important for creating greener and more sustainable industries. The
cycloaddition of CO2 and epoxides to afford five-membered cyclic carbonates is one of the
most promising methods for utilizing CO2, owing to the 100% atom economy of the reaction.
Carbonates are widely used as polar aprotic solvents, electrolytes in lithium-ion batteries,
and intermediates in the production of pharmaceuticals and fine chemicals. Accordingly,
a wide range of methods involving metal-based catalysts and organocatalysts have been
reported for the synthesis of cyclic carbonates using CO2 [1–3]. For example, the catalytic
components employed in this study—zinc halides [4–19], NbCl5 [20–24], and 7-methyl-1,5,7-
triazabicyclo[4.4.0]dec-5-ene (MTBD) [25]—have been previously used as catalysts for the
cycloaddition of CO2, often in combination with onium salts. In addition, zinc-based hetero-
geneous catalysts have been continuously reported [4–6,8,9,11–14,17–19,26–30]. Despite the
extensive research in this area, pressurizing or/and heating are usually required to obtain
cyclic carbonates from CO2 and epoxides in satisfactory yields.

Owing to the growing environmental and energy concerns, the development of syn-
thetic methodologies for the preparation of cyclic carbonates by harnessing CO2 under
mild conditions is gaining interest. Recently, metal complexes [31–42], metal-organic
frameworks [43–45], and solid-supported reagents [46–52] have been reported for facile
conversion of CO2 and epoxides into cyclic carbonates, even under ambient conditions
(around 25 ◦C under 0.1 MPa). However, these materials typically have complex chemical
structures with relatively high molecular weights. Organocatalysts have been utilized un-
der ambient conditions; however, they usually require loadings greater than 5 mol% [53–59].
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These limitations have spurred catalytic research toward the development of more effective
and practical methods for the synthesis of cyclic carbonates under milder conditions.

We recently reported the selective guanidine-accelerated synthesis of carbonates from
CO2, glycerol, and alkyl halides [60]. In this study, we observed that a zinc complex
formed between ZnI2 and guanidine displayed catalytic activity for the cycloaddition of
CO2 and epoxides. Continuing our investigations in this area of research, we report the
development of an efficient catalytic system for the conversion of CO2 to cyclic carbonates
using CO2 at room temperature and atmospheric pressure. The catalyst was developed
using simple metal halides and strong organic bases, and was catalytically active under
ambient conditions.

2. Results

Synthesis of styrene carbonate, 2a, from styrene oxide, 1a, and CO2 was investigated as
a model reaction in the presence of metal halides and guanidine (Table 1). The combination
of ZnI2 and pentaalkylguanidine led to a 26% conversion to 2a (entry 1). In contrast, the
addition of ZnCl2 as a cocatalyst substantially improved the conversion (entry 2). Catalytic
activity almost completely disappeared in the absence of ZnI2 and/or guanidine (entries 3
and 4). Thus, the combination of ZnI2, ZnCl2, and guanidine enhances the catalytic
activity, indicating the presence of synergistic effects that contribute to the acceleration of
the reaction.

Table 1. Cycloaddition of styrene oxide (1a) and CO2 in the presence of zinc halides and guanidine a.
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The catalyst combination was further optimized by evaluating several metal
chlorides, organic bases, and metal iodides to replace ZnCl2, N,N′,N′,N′ ′,N′ ′-tert-
butyltetramethylguanidine, and ZnI2, respectively (Table 2). The effect of the metal chlo-
rides was first examined under the conditions described in entry 2 of Table 1 (combina-
tion A). Although all metal chlorides enhanced the catalytic reaction, their effects were
significantly different. NbCl5 afforded the best conversion (83%), which might be due to
the suitable Lewis acidity of NbCl5 for the cycloaddition in the presence of guanidines
and ZnI2. The effect of organic bases was then examined using NbCl5 as a metal halide
(combination B). The results indicated that a strong basicity was necessary to achieve good
conversion, which was further evidenced by the low conversion observed for imidazole.
Furthermore, the presence of sterically demanding substituents on the guanidines did not
affect the cycloaddition conversion, and MTBD demonstrated the best conversion (86%).
The effect of the metal iodide was further examined using NbCl5 and MTBD (combina-
tion C). ZnI2 was found to be the best iodide anion source despite its low number of iodine
atoms per metal center. The catalytic activity of ZnI2 was higher than that of ZnBr2, which
can be attributed to the facile generation of the iodide anion from ZnI2 compared with
the generation of the bromide anion from ZnBr2. Additionally, although NbCl5-Bu4NBr
(0.5–1 mol%) was reported to be an effective catalyst under mild conditions (45 ◦C) [20],
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this catalytic system did not deliver good results (conversion: 11%) under the present
conditions (NbCl5-Bu4NBr: 0.5–2 mol%, 25 ◦C). Our optimization results indicate that
ZnI2-NbCl5-MTBD is the best combination, which probably leads to effective cooperative
catalysis of acidic sites and iodide anions.

Table 2. Metal iodide/base and metal chlorides-catalyzed synthesis of styrene carbonate (2a) from
styrene oxide (1a) and CO2

a.
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ZnI2 and MTBD complexes were prepared prior to NbCl5 addition, and the catalytic
system prepared by this process was used for the cycloaddition reaction. However, the
simultaneous mixing of ZnI2, MTBD, and NbCl5 did not affect product conversion (Table 3).
Therefore, NbCl5 was found to be effective upon the direct addition of free guanidine.
We further observed that the conversion depended significantly on the ZnI2, MTBD, and
NbCl5 mole ratio. The use of a suitable ratio led to almost complete consumption of the
starting material with a prolonged reaction time [ZnI2:MTBD:NbCl5 = 1.2:3.0:0.3, reaction
time (24 h), conversion (99%), and isolated yield (95%)]. Overall, the optimized method
is operationally simple, does not require the preformation of the catalyst, and allows the
efficient cycloaddition of CO2 and epoxides under ambient conditions.

Table 3. Comparison of conversions to styrene carbonate (2a) with and without the preformed
ZnI2/MTBD a.
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The optimized conditions were used for the conversion of several epoxides in the
presence of CO2, and the corresponding five-membered cyclic carbonates were isolated in
moderate to excellent yields (Table 4). Various terminal epoxides bearing aryl, alkyl, ether,
chloro, long alkyl chains, and unsaturated groups reacted smoothly with CO2 (atmospheric
pressure) at room temperature to furnish the corresponding carbonates in high yields
(entries 1–6). The bis-epoxide was also converted to the corresponding bis-cyclic carbonate
in excellent yield (entry 7). However, the use of N-methylpyrrolidone (NMP) as a solvent
was required to homogenize the reaction mixture in cases where the product precipitation
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lowered the yield by hindering continuous stirring of the reaction mixture. Accordingly,
the ZnI2-NbCl5-MTBD-catalyst system allowed the selective cycloaddition of CO2 with
terminal epoxides under solvent-free conditions and proceeded without by-product for-
mation. However, internal epoxides did not afford the desired carbonates under ambient
conditions. Nevertheless, the desired cycloaddition was achieved by increasing the reaction
temperature and CO2 pressure (entries 8 and 9). Remarkably, even a sterically hindered
internal epoxide was converted to the corresponding carbonate product in moderate yield.

Table 4. Efficient synthesis of a cyclic carbonate (2) under mild conditions a.
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a Reaction conditions: epoxides (10 mmol), CO2 (0.1 MPa), ZnI2 (1.2 mol%), NbCl5 (0.3 mol%), MTBD (3.0 mol%),
25 ◦C, 24 h. b Isolated yields. c NMP (1 mL) was added. d ZnI2 (2.4 mol%), NbCl5 (0.6 mol%), MTBD (6.0 mol%).
e CO2 (1.0 MPa), ZnI2 (4.0 mol%), NbCl5 (1.0 mol%), MTBD (10.0 mol%), 120 ◦C. f Mixture of cis/trans (84/16).
g Only trans.

After studying the scope of the catalytic reaction, we evaluated the reusability of the
catalyst system. The reusability of ZnI2-NbCl5-MTBD was assessed using the reaction
of propylene oxide (1b) with CO2 (Table 5). After the first experiment, the product was
isolated by the distillation of the crude mixture because of the homogeneous system, and
the residual catalyst in the reaction vessel was used for two subsequent runs under the
same reaction conditions without any pretreatment. Unfortunately, a slight decrease in
yield was observed in the second run, which was maintained in the third run (catalyst A).
The reduction in catalytic efficiency can be attributed to the partial decomposition of
NbCl5 and MTBD during distillation. Therefore, we further examined the cycloaddition
using a metal chloride and an organic base, which are less moisture- and heat-sensitive
under similar conditions. The use of ZnCl2 and DBU instead of NbCl5 and MTBD led to
similar conversions during the recycling experiments, although larger quantities of the
reagents were required (catalyst B). Thus, the ZnI2-ZnCl2-DBU system is a highly stable
cycloaddition catalyst that does not display any significant decrease in catalytic activity
until the fourth run.
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Table 5. Reuse of catalyst in the synthesis of propylene carbonate (2b) from propylene oxide (1b) and
CO2

a.
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Catalyst A: ZnI2-NbCl5-MTBD b

Cycle 1 2 3
Yield (%) 84 67 68

Catalyst B: ZnI2-ZnCl2-DBU c

Cycle 1 2 3 4
Yield (%) 78 81 85 83

a Reaction conditions: 1b (10 mmol), CO2 (0.1 MPa), 25 ◦C, 24 h. b ZnI2 (1.2 mol%), NbCl5 (0.3 mol%), MTBD
(3.0 mol%). c ZnI2 (1.2 mol%), ZnCl2 (0.8 mol%), DBU (4.0 mol%).

3. Discussion

The catalytic system was examined by 1H-NMR in DMSO-d6 using tetramethylsilane
as an internal standard. The addition of ZnI2 or NbCl5 to the MTBD led to a downfield shift
in the peaks corresponding to the MTBD (Figure 1A). In addition, the addition of NbCl5 to
the MTBD and ZnI2 resulted in a further downfield shift in the MTBD peaks. These changes
are indicative of MTBD coordination to ZnI2 and NbCl5. Moreover, the addition of styrene
oxide (1a) to the complexes led to a slight downfield shift of the 1a signals, which suggests
coordination of the formed complexes with 1a (Figure 1B). However, because bubbling
CO2 into the mixture did not cause changes in the chemical shifts, the MTBD complex
coordinated with ZnI2 and NbCl5 might be less able to interact with CO2. Furthermore,
the coordination of ZnI2 and NbCl5 to MTBD was also confirmed by the changes in the IR
spectra (Figure S1). Accordingly, considering the key contribution of iodide to the catalyst
activity (almost no reaction occurred in the absence of ZnI2, Table 1, entries 2 vs. 3), the main
catalytic effect should operate via the synergistic activation of epoxides by the acidity of the
niobium and zinc complexes, followed by the nucleophilic attack of the iodide anion. The
proposed catalytic cycle for the synthesis of cyclic carbonates is shown in Scheme 1 [61–63].
The epoxide ring was activated by coordination with the Nb and Zn acidic sites. The iodide
anion generated from the reaction between ZnI2 and guanidines simultaneously attacks
the epoxide ring to form an intermediate [I] (path A). The other path B, including the attack
of MTBD followed by exchanging the MTBD moiety by the iodide, can also be proposed.
Nucleophilic addition of the alkoxide to CO2 forms a hemicarbonate intermediate [II].
Because the iodide anion is a good leaving group, the ring closure of the metal carbonate
occurs smoothly, affording the desired cyclic carbonate.

Previous reports on styrene carbonate synthesis revealed that the preceding combi-
nation of metal halides and organic bases afforded good yields under severe conditions.
For example, SnCl4 [64] or ZnI2 [5,13,15] were employed in combination with bases under
0.3 MPa-75 ◦C or 1–3 MPa-60–150 ◦C, respectively. Additionally, ZnI2 [6–8] or NbCl5 [24]
in combination with base-HX also were used under heating and pressurized CO2 condi-
tions (30–130 ◦C, 1–2 MPa). Therefore, the higher efficiency reported herein supports the
occurrence of cooperative catalysis by ZnI2, NbCl5, and MTBD. In this catalytic system,
the coordination of ZnI2 and NbCl5 to MTBD may hold I− derived from ZnI2 closer to the
Lewis acids and increase the solubility of their metal halides in the reaction mixture, thus
enhancing the activity of this reaction. Furthermore, although several effective catalysts
for the preparation of styrene carbonate, even under ambient conditions, have already
been reported [31–42,44–46,48–55,58,59], they usually require a long time for multistep
preparation (overnight to 30 days, 1–3 steps), simultaneous use of a relatively high-loading
tetrabutylammonium halide (1–50 mol%), and/or the use of significant quantities despite
low catalytic loadings (73–1737 mg for 10 mmol of styrene oxide). However, our reaction
allows convenient coupling with a relatively low-loading catalyst composed of readily
available reagents (ZnI2-NbCl5-MTBD: 92 mg for 10 mmol). In addition, while TON (mol of
product/mol of metal) and TOF [TON/time (h)] of previous catalysts cited here are 16–2760
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and 0.7–58 for the production of styrene carbonate, respectively, those of our one are 63 and
2.6, respectively. Thus, our catalytic system shows near average values among them except
the highest TON and TOF [46] attained in the presence of tetrabutylammonium bromide
(7.2 mol%) as a cocatalyst.
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4. Materials and Methods
4.1. Materials

ZnI2, ZnCl2, NbCl5, DBU, MTBD, epoxides, deuterated solvents, and CO2 (99.5%) were
used without further purification. NMP (super dehydrated) and EtOH (super dehydrated),
purchased from Wako Pure Chemical Industries Ltd., were used without further treatment.

4.2. Methods

A general procedure for ZnI2/organic base + metal chloride-catalyzed synthesis of
styrene carbonate (2a) from styrene oxide (1a) and CO2

ZnI2 (0.1 mmol), organic bases (0.22 mmol), EtOH (0.4 mL), and a magnetic stirring bar
were placed in a glass vessel connected to an injection port with a 3-way cock. The mixture
was stirred at 60 ◦C for 3 h and was evaporated around 25 ◦C under reduced pressure to
afford the ZnI2/organic base complex. To the complex, metal chlorides (0.05 mmol) and 1a
(10 mmol) were added, and the vessel was charged with CO2 from a balloon. The reaction
mixture was stirred at 25 ◦C for 24 h under a 0.1 MPa pressure of CO2. The conversions to
the desired carbonates were determined based on the 1H NMR area ratios (2a/1a+2a).

A general procedure for ZnI2-NbCl5-MTBD-catalyzed synthesis of cyclic carbonates 2
from epoxides 1 and CO2

ZnI2 (0.12 mmol), MTBD (0.3 mmol), NbCl5 (0.03 mmol), and 1 (10 mmol) were placed
with a magnetic stirring bar in a glass vessel connected to an injection port with a 3-way
cock. NMP was added as the solvent in the experiments for glycidyl phenyl ether (1c) and
1,2-epoxydecane (1e). The vessel was charged with CO2 from a balloon, and the reaction
mixture was stirred at 25 ◦C for 24 h under a 0.1 MPa pressure of CO2. The obtained
crude product was purified by silica gel column chromatography (silica gel 60) to isolate 2.
The products 2b and 4-chloromethyl-1,3-dioxolan-2-one (2d) were purified by distillation
instead of purification on silica gel column chromatography.

A procedure for reuse of ZnI2-NbCl5-MTBD and ZnI2-ZnCl2-DBU in the synthesis of
propylene carbonate (2b) from propylene oxide (1b) and CO2

The carbonate 2b was synthesized from 1b and CO2 according to the procedure
described above, using ZnI2-NbCl5-MTBD or ZnI2-ZnCl2-DBU. The crude 2b was purified
by distillation under reduced pressure to obtain pure 2b. To the residual catalyst in the
reaction vessel, fresh 1b (10 mmol) was added, CO2 was charged from a balloon, and the
reaction mixture was stirred at 25 ◦C for 24 h in next recycle experiment. The resulting
liquid was purified by distillation to afford 2b, and the residual catalyst was further used
for the third run.

A procedure for 1H NMR measurement to examine the reaction mechanism.
ZnI2 (0.04 mmol), MTBD (0.1 mmol), NbCl5 (0.01 mmol), and DMSO-d6 + 0.03% TMS

(0.75 mL) were placed in an NMR tube, for studying the coordination of metal halides to
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MTBD. The 1H NMR spectrum was acquired. After that, 1a (0.1 mmol) was added to the
complex, and 1H NMR was acquired again. CO2 was bubbled into the mixture, and the 1H
NMR was acquired again.

5. Conclusions

The ZnI2-NbCl5-MTBD-catalyzed synthesis of carbonates is a powerful tool for utiliz-
ing CO2 under extremely mild conditions. The catalytic system allowed the conversion of
various terminal epoxides into the corresponding cyclic carbonates in high yields (85–95%)
with a relatively low-loading catalyst (92 mg for 10 mmol of epoxides) under ambient con-
ditions. The catalyst was also prepared in situ by simply mixing readily available reagents
and could be used under solvent-free conditions; thus, it is a practical and environmentally
benign reagent. To the best of our knowledge, no catalysts composed of two different
metal halides or organic bases have been reported for the synthesis of carbonates. As has
already been observed for some metal-organic framework catalysts [65,66], the use of a dual
Lewis acid catalytic system in combination with nucleophiles is believed to be a promising
strategy for the development of synergistic catalysts for the cycloaddition of CO2.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/catal13081214/s1, Characterization of Compounds 2a–i [34,67–69],
Figure S1: IR spectra of MTBD, ZnI2+MTBD, NbCl5+MTBD, and ZnI2+NbCl5+MTBD.
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