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Abstract: To avoid resource waste and environmental pollution, a chain of ErOx-boosted MnOx-
modified biochars derived from rice straw and sewage sludge (EryMn1-y/BACs, where biochars
derived from rice straw and sewage sludge were defined as BACs) were manufactured for formalde-
hyde (HCHO) elimination. The optimal 15%Er0.5Mn0.5/BAC achieved a 97.2% HCHO removal
efficiency at 220 ◦C and exhibited favorable EHCHO and thermal stability in a wide temperature win-
dow between 180 and 380 ◦C. The curbed influences of H2O and SO2 offset the boosting effect of O2

in a certain range. Er–Mn bimetallic-modified BACs offered a superior HCHO removal performance
compared with that of BACs boosted using Er or Mn separately, owing to the synergistic effect of
ErOx and MnOx conducive to improving the samples’ total pore volume and surface area, surface
active oxygen species, promoting redox ability, and inhibiting the crystallization of MnOx. Moreover,
the support’s hierarchical porous structure not only expedited the diffusion and mass transfer of
reactants and their products but also elevated the approachability of adsorption and catalytic sites.
Notably, these prominent features were partly responsible for the outstanding performance and
excellent tolerance to H2O and SO2. Using in situ DRIFTS characterization analysis, it could be
inferred that the removal process of HCHO was HCHOad → dioxymethylene (DOM)→ formate
species→ CO2 + H2O, further enhanced with reactive oxygen species. The DFT calculation once
again proved the removal process of HCHO and the strengthening effect of Er doping. Furthermore,
the optimal catalytic performance of 15%Er0.5Mn0.5/BAC demonstrated its vast potential for practical
applications.

Keywords: HCHO; catalytic oxidation; Er–Mn oxides; density-functional theory; hierarchical porous
biochar

1. Introduction

The robust growth of industrial activities in China’s now mammoth economy has led
to a rapid increase in the demand for coal, one of the main energy sources. Volatile organic
compounds (VOCs) discharged in large quantities from coal-fired power stations are
mainly composed of aldehydes, alkanes and alkenes, and chlorinated hydrocarbons [1,2].
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In addition to posing a significant threat to human health, these pollutants also generate
gas pollution, forming photochemical smog and secondary organic aerosols that contribute
to the dangerous depletion of stratospheric ozone [3]. In particular, as a common VOC,
HCHO has been classified as a Class A carcinogen by the World Health Organization, and
it is also widely recognized as a hazard to human health [4,5]. Consequently, researchers
have developed efficient methods to remove HCHO, among which adsorption, photo-
catalysis, condensation, catalytic oxidation, biological filtration, and other technologies
have recently emerged [6,7]. Among these technological endeavors, catalytic oxidation
is regarded as an environmentally friendly, economical, and promising solution [7]. It is
known that the performance of catalysts is vital for the efficiency of oxidation reactions.
In the past several decades of research, supported noble metals and supported transition
metal oxides have been considered key catalysts for the adsorption and catalytic oxidation
of HCHO [7,8]. A series of metal oxide supports, including MnOx, TiO2, CeO2, and FeOx
and their composites, such as MnOx–CeO2, CeO2–Co3O4, and In2O3–SnO2, have been
used in a wide range of studies on catalytic HCHO due to their excellent redox effects, the
high dispersity of the supported metal oxides, and the metal–support interactions (MSIs)
between the supports and the supported metal oxides [9–11]. However, applications of
these common metal oxide supports are restricted owing to certain disadvantages, such
as irregular shapes, unsuitable sizes, uneven structures, and high prices [12,13]. Against
this backdrop, despite their own problems, biochar supports hold potential for HCHO
removal because of their low prices, adjustable sizes, large specific surface areas, excellent
hydrophobicity, and rich sources [14]. Biochars’ hydrophilic and porous structures provide
them not only with excellent supports to convert VOCs into CO2 and H2O but also suitable
mediums to remove a variety of gas pollutants, such as NOx, SO2 and Hg0 [15–17]. Unlike
most commercial activated carbon, hierarchical porous biochars are mainly composed of
mesopores and macropores and not micropores, which significantly reduces the influence
of internal diffusion and mass transfer on catalytic oxidation and adsorption rates [2,18]. In
addition, mesopores and macropores can be used as spacious rooms for active ingredient
dispersion, providing channels for the transfer and diffusion of other active substances,
such as electrons [18]. Therefore, researching new types of efficient and cheap hierarchical
porous biochars has become a focus in the field of catalysis.

Unfortunately, the finite number of surface functional groups and limited active
sites in pristine biochars are insufficient to remove various VOCs. It has been reported
that loading noble metals or transition metal oxides onto biochars could significantly
enhance their catalytic activity and adsorption capacity [19]. Compared with noble metals,
transition metal oxides provide lower costs and stronger resistance to poisoning, making
them attractive alternatives to improve biochars’ activity [20]. In particular, manganese
oxides have become a major research topic because of their rapid electron transfer, abundant
oxygen vacancies, and variable valences [21,22]. Notably, manganese oxides are regarded as
a promising class of transition metal oxides, with relatively large oxygen storage capacities
and high activity during the removal of VOCs [23]. Based on previous studies, Mn’s
different valence states from −3 to +7 allow its oxides to provide abundant reactive oxygen
species while it also transfers activated electrons into a mobile electron environment that
increases redox reactions [24].

However, manganese oxides are still limited by their low resistance to SO2 poisoning,
thermal instability, excessive by-products, and other problems in practical industrial appli-
cations [25]. To improve the anti-SO2 performance of Mn-based catalysts, it has become
a promising method to modify the catalysts with other metal elements to exploit the syn-
ergistic effect between bimetallic oxides [26]. As a rare earth metal, Er (erbium) has often
been used in various fields in modified catalysts because it does not completely occupy
the 4f and empty 5d orbitals. For example, adding a small amount of Er doping could
significantly augment the oxygen vacancy concentration and oxygen storage capacity of
CeZr/TiO2 catalysts, generating excellent anti-SO2 performance and SCR activity [27]. In
addition, the presence of Er oxide in a YAlO3/TiO2-Fe2O3 composite created good acoustic
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catalytic activity [26]. According to studies, Er and its composite oxides have been applied
in a series of metal-oxide-supported catalysts, but they have rarely been applied in catalysts
with biochars as the supports and for HCHO elimination [26–28]. For the above reasons,
using ErOx-boosted MnOx-modified biochars to improve catalytic activity is encouraged,
albeit a few reports on the utilization of such catalysts to remove VOCs in simulated flue
gas and the catalytic oxidation mechanism of HCHO with EryMn1−y/BACs are still un-
clear. To shed light on this, a range of EryMn1−y/BACs samples were investigated for
HCHO removal in this novel work, emphasizing three aspects: (1) the performance and
practical application of EryMn1−y/BACs catalysts for HCHO removal; (2) the mechanism
of HCHO removal by EryMn1−y/BACs catalysts; and (3) the physicochemical properties
and structural features of these catalysts, aiming to explore the relationship between the
physicochemical properties and catalytic performance of EryMn1−y/BACs as well as to
develop a new and efficient catalyst for HCHO removal.

2. Experimental Section
2.1. Sample Synthesis

Sewage sludge was collected from the Shuikoushan Industrial Sewage Treatment
Plant, while rice straw was acquired from the outskirts of Hengyang City, Hunan Province,
PR China. The biochars with sewage sludge, rice straw, and their combination as pre-
cursors were labeled as SAC, SAW, and BAC, respectively. The fabrication methods of
the biochars have been described in detail in our past work [29]. The active ingredient
precursors were manganese(II) acetate tetrahydrate or erbium(III) nitrate pentahydrate,
while SAC, SAW, and BAC acted as the supports, in which the Mn- or Er oxide-modified
catalysts were fabricated using the facile ultrasonic-assisted impregnation method. First,
the desired precursors of erbium(III) nitrate pentahydrate or manganese(II) acetate tetrahy-
drate were uniformly dissolved in deionized water. Subsequently, the calculated amounts
of the corresponding supports were impregnated in the precursor solutions for 25 h, un-
dergoing ultrasonic sound treatment during the first 2 h. Lastly, the acquired samples
were positioned in a drying oven until completely dried and then calcined at 450 ◦C for 5
h with constant N2 protection. XEryMn1−y/BAC catalysts were thus obtained, where X
represents the mass fractions of the doping active metal oxides designated as 5%, 10%, 15%,
and 20%. In addition, y and 1 − y represent the mole ratio of Er to Mn in the bimetallic
oxides. 15%Er/BAC, 15%Mn/BAC, 15%Er0.5Mn0.5/SAC, and 15%Er0.5Mn0.5/SAW were
also manufactured in the above manner.

2.2. Samples Characterization

First, a TriStarll3020 surface area porosity analysis tube (America Micromeritics, Geor-
gia, GA, USA) was deployed to evaluate the pore parameters and specific surface areas
of the samples. Scanning electron microscopy (SEM) photographs were obtained to an-
alyze the surface morphologies and structures of the samples with a MIRA4 analyzer
(TESCAN, Prague, Czech Republic). Transmission electron microscope (TEM) images
were obtained with a Technai G2 F20 (FEI, Colombia MD USA) to view the samples’ mi-
crostructures. Next, the X-ray diffraction (XRD) results of the components’ dispersivity
and crystallinity were obtained using a Bruker D8-Advance X-ray diffraction installation.
H2 temperature-programmed reduction (H2-TPR) was carried out using a Tianjin Xian-
quan TP-5080 automatic chemical adsorption instrument. The samples’ chemical element
states and chemical compositions were investigated with a Thermo ESCALAB 250XI X-
ray photoelectron spectrometer (America Thermo, Lexington, MA, USA). Finally, in situ
diffuse reflectance infrared Fourier-transform spectroscopy (DRIFTS) for the samples was
conducted with a Nicolet iz10 (Thermo Fisher, Lexington, MA, USA).

2.3. Experimental Setup and Procedure

Figure 1 shows the device sketch for evaluating the HCHO elimination performance,
which consisted of the following three main sectors. The first component was the simulated
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flue gas supply system, where the simulative flue gas (SFG) contained 200.0 ± 2.0 ppm of
HCHO, balanced N2, and 6% O2. Gaseous HCHO was prepared using a peristaltic pump to
infuse a solution of 38 wt% HCHO into a polyethylene tube enclosed within a temperature-
controlled heater. Moreover, the carrier gas of 80 mL/min N2 carried the high-humidity
gas-phase HCHO and passed through the condenser device to remove the gas-phase water
vapor. The second component was a sustaining flow-fixed bed reactor. For each experiment,
a 0.5 g sample was placed in a quartz tube (inner diameter = 10 mm; length = 1200 mm),
and the total flow rate was maintained at 500 mL/min using a programmed heating tube
furnace and various matching mass flow controllers, which corresponded to a gas hourly
space velocity (GHSV) of approximately 64,000 h−1. The corresponding gas components
were plenarily mixed before entering the fixed bed reactor. The third component was the
gas analyzer system, which included a PGM7340 analyzer (RAE Systems, San Francisco,
CA, USA) and a PGA-650 analyzer (Phymetrix, Medford, NY, USA) to survey the HCHO
and CO2 concentrations, respectively. The required HCHO concentration was regularly
checked to maintain stability for at least 30 min before the start of the test. In addition, trial
tests were performed before the experiment to lessen interference from the instrument and
exterior elements.
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Figure 1. The apparatus diagram for HCHO removal.

The HCHO removal efficiency (EHCHO) and CO2 selectivity (SC) were determined
using the following formulae:

EHCHO =
[HCHO]in − [HCHO]out

[HCHO]in
× 100% (1)

SC =
[CO 2]out2 − [CO2]out1

[HCHO]in − [HCHO]out
× 100% (2)

where the HCHO concentrations at the inlet and outlet are represented as [HCHO]in and
[HCHO]out, respectively. Similarly, the outlet CO2 concentrations in the blank experiments
and performance tests are denoted as [CO2]out1 and [CO2]out2. Furthermore, to reduce
the error of the experiment, EHCHO and SC were taken as the average values of three
parallel experiments.

3. Results and Discussion
3.1. Sample Characterization
3.1.1. BET Analysis

Table 1 overviews the physical properties of the primordial BAC and modified BACs,
including total pore volumes, BET surface areas, and average pore diameters. Figure 2a
depicts the N2 adsorption/desorption isotherms of the samples. All the isotherms exhibit
the typical IV with H3 hysteresis loops, revealing the existence of slit-shaped mesopores
based on the IUPAC [30,31]. The primordial BAC exhibited the maximal BET surface area
of 284.3071 m2/g and the highest total pore volume of 0.263 cm3/g. Both the specific
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surface areas and total pore volumes of the boosted samples decreased with the addition
of the metal oxides. This might be due to sections of the existing pores being covered and
destroyed by the loaded metal oxides [25]. The bimetallic-modified samples had higher
specific surface areas than the mono-metallic-modified samples, and this phenomenon
was attributed to the synergistic effect between Er and Mn oxides, which improves the
dispersity of metal oxides [32,33]. The total pore volumes and specific surface areas of the
Er0.5Mn0.5/BAC samples decreased as a result of the increase in the loading value. This
phenomenon might be because of the agglomeration of metal oxides, and the blocking
of more voids by Er and Mn oxides becomes increasingly significant with the increasing
metal oxide loading value [29,30]. Combining the subsequent SEM analysis and the
experimental results in Comparison of Catalytic Performance, the specific surface area was
not the exclusive determinant of the samples’ activity. Furthermore, the samples’ pore size
distribution curves in Figure 2b show that the pore volume characteristics of the prepared
samples were mainly determined by micropores and mesopores.

Table 1. The BET specific surface areas and pore parameters of primordial BAC and modified BACs.

Sample BET Surface
Area (m2/g)

Total Pore Volume
(cm3/g)

Average Pore
Diameter (nm)

Primordial BAC 284.3071 0.263 5.0651
5%Er0.5Mn0.5/BAC 240.2477 0.218 5.3080
10%Er0.5Mn0.5/BAC 204.4189 0.189 5.6334

15%Er/BAC 185.3815 0.189 5.8242
15%Mn/BAC 198.0249 0.196 5.7362

15%Er0.5Mn0.5/BAC 198.7038 0.180 4.9473
20%Er0.5Mn0.5/BAC 159.5359 0.154 5.2493
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3.1.2. SEM and TEM Analysis

The SEM images of the primordial BAC and modified BACs are shown in Figure 3.
The surface morphology and structure of the primordial BAC dramatically changed after
the import of metal oxides. As demonstrated in Figure 3b, only a few agglomerates located
in 5%Er0.5Mn0.5/BAC and most surfaces of 5%Er0.5Mn0.5/BAC were not completely used,
allowing further loading with additional metal oxides. For 10%Er0.5Mn0.5/BAC, while
part of the effective area was fully utilized, some of the surface of 10%Er0.5Mn0.5/BAC
was not exploited. It was thought that more dispersed active metal oxides resulted in
more adsorption or catalytic sites, thus improving catalytic activity [29,34]. Regarding
15%Er0.5Mn0.5/BAC, almost all surface areas were highly dispersed with metal oxides, with
some agglomerating metal oxides and more agglomerates existing in 20%Er0.5Mn0.5/BAC.



Catalysts 2023, 13, 1222 6 of 24

Consequently, the excess metal oxides destroyed some pre-existing pores due to more
serious agglomerates [35,36]. This appearance also dovetailed with the frontal BET results.
Furthermore, as revealed in Figure 3f, EDX was used to detect the rough element ratio
of Er to Mn in 15%Er0.5Mn0.5/BAC. The Mn/Er atomic ratio in a particular morphology
of 15%Er0.5Mn0.5/BAC was 0.93, which is almost equal to the theoretical Mn/Er atomic
ratio in 15%Er0.5Mn0.5/BAC (Mn/Er = 1). The experiments demonstrated that Er and Mn
were equally dispersed in 15%Er0.5Mn0.5/BAC and that ErOx was slightly more likely to
agglomerate than MnOx.
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Figure 3. The SEM and TEM images of primordial BAC and modified BACs. (a) SEM im-
age (×10,000) and (b–e) SEM images (×20,000): (a) primordial BAC, (b) 5%Er0.5Mn0.5/BAC,
(c) 10%Er0.5Mn0.5/BAC, (d) 15%Er0.5Mn0.5/BAC, (e) 20%Er0.5Mn0.5/BAC, and (f) EDX image of
15%Er0.5Mn0.5/BAC. TEM images: (g) 15%Mn/BAC, (h) 15%Er/BAC, and (i) 15%Er0.5Mn0.5/BAC.

The TEM images of 15%Mn/BAC, 15%Er/BAC, and 15%Er0.5Mn0.5/BAC at 50 nm
and 5 nm are revealed in Figure 3, where visible lattice fringes appeared on the crystal
nanoparticles. Figure 3g reveals that the particle size of 15%Mn/BAC was approximately
20 nm, and three lattice stripes of 0.2730 nm, 0.4267 nm, and 0.3564 nm were detected, which
can be attributed to the MnO (0 2 1) phase, MnO2 (1 1 1) phase, and Mn3O4 (3 1 1) phase,
respectively [25]. The particle size of 15%Er/BAC shown in Figure 3h was approximately
27 nm, and a lattice fringe of 0.2961 nm was determined to belong to the Er2O3 (2 2 2) phase.
In addition, the particle size of 15%Er0.5Mn0.5/BAC shown in Figure 3i was approximately
19 nm, which was lesser than that of 15%Er/BAC and 15%Mn/BAC, hinting that the
incorporation of Er reduced the crystallinity and particle sizes of Mn/BAC to a certain
extent, as only one lattice fringe of 0.2877 nm corresponding to ErMnO3 (1 1 3) phases was
observed. Moreover, the absence of lattice streaks matching other metallic components
also proved that the Er and Mn species existed as amorphous species [37]. The 5 nm and
50 nm TEM images clearly show that the Er and Mn species were highly decentralized in
15%Er0.5Mn0.5/BAC or emerged as amorphous species.
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3.1.3. H2-TPR Analysis

The redox reactions of the primordial BAC and modified BACs were analyzed using
H2-TPR. As elucidated in Figure 4, the two overlapping peaks occurred at approximately
652 ◦C and 718 ◦C in the primordial BAC, and the peak centered at 652 ◦C might be due
to the reduction in adsorbed oxygen on the surface, while the latter could be attributed to
the gasification of the BAC [37]. The peaks at these two positions in the other modified
BAC samples were due to the same cause. An additional peak for 15%Er/BAC appeared at
538 ◦C, possibly as a result of Er2O3 participating in the redox reactions with the transfor-
mation into metallic erbium [38]. In addition, the first peak for 15%Mn/BAC at 417 ◦C can
be ascribed to the reduction of MnO2–Mn2O3/Mn3O4 and the second peak at 505 ◦C to the
succedent reduction of Mn3O4–MnO [39,40]. Furthermore, three extra peaks were observed
for 15%Er0.5Mn0.5/BAC. The two peaks below 500 ◦C were interpreted as being associated
with the concurrent reduction of MnO2/Mn2O3 to Mn3O4 and Er2O3 to Er, while the peak
at approximately 540 ◦C might be associated with the conversion of Mn3O4 to MnO [41].
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It was shown that in comparison with 15%Er/BAC and 15%Mn/BAC, the correspond-
ing two reduction peaks of 15%Er0.5Mn0.5/BAC were at lower temperatures and showcased
better redox abilities [26,41]. This could be due to the following two reasons. A synergistic
effect occurred between ErOx and MnOx, which might have led to structural deformation
and surface oxygen defects, thus favoring catalytic oxidation reactions [42]. Second, the
Mn4+/Mn3+ and Er3+/Er pairs expedited one another to form more surface oxygen va-
cancies, significantly accelerating reactant activation or increasing oxygen mobility [30,43].
Moreover, studies indicate that the inclusion of Er could enhance the low-temperature
redox capacity of a catalyst, which is consistent with the results of these experiments.
Therefore, this could explain why 15%Er0.5Mn0.5/BAC possessed outstanding catalytic
activity at a lower temperature range [26,44].

3.1.4. XRD Analysis

XRD measurements were performed to probe into the crystal structures and chemical
compositions of the primordial BAC and modified BACs, with the results displayed in
Figure 5. Regarding the primordial BAC, nine diffraction peaks at 2θ = 26.60◦, 28.90◦,
32.22◦, 35.51◦, 36.04◦, 39.46◦, 44.46◦, 47.35◦, and 56.10◦ were observed, wherein the peaks
at 2θ = 26.60◦ and 44.46◦ were associated with the carbon matrix, while the other peaks at
2θ = 28.9◦, 32.22◦, 35.51◦, 36.04◦, 39.46◦, 47.35◦, and 56.10◦ were ascribed to the presence of
SiO2 [25,37,42]. Interestingly, the peaks belonging to C and SiO2 receded or disappeared
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with the introduction of erbium oxides or manganese oxides, demonstrating that the exter-
nal structures of the supports were violently changed via the loading of the active metal ox-
ides [37]. Moreover, this phenomenon also indicated a strong interaction between these ox-
ides and the supports [37,45]. Regarding 15%Er/BAC, five peaks at 2θ = 20.6◦, 40.1◦, 47.2◦,
56.5◦, and 59.4◦ belonged to Er2O3 [46]. As for 15%Mn/BAC, four peaks at 2θ = 40.55◦,
59.84◦, 69.50◦, and 73.80◦ were clearly observed, in which the peaks at 2θ = 59.84◦ and
73.8◦ corresponded to Mn3O4, and the peak at 2θ = 40.55◦ indicated the presence of MnO,
whereas the peak at 2θ = 69.5◦ was assigned to MnO2. This phenomenon might be because
different Mn species coexisted in these samples, showing faultless crystalline structures
and distinct diffraction peaks. However, unlike 15%Er/BAC and 15%Mn/BAC, several
characteristic peaks appeared in XEr0.5Mn0.5/BACs at 2θ = 47.16◦, which were similar to
ErMnO3 [47]. Since the radii of Er3+ (0.881 Å) are close to those of Mn4+ (0.60 Å) and Mn3+

(0.66 Å), Er ions might dissolve in the MnO2 lattice [48]. Significantly, in comparison with
15%Mn/BAC and 15%Er/BAC, the interrelated peaks delegating the interaction between
Er and Mn were broader and weaker in 15%Er0.5Mn0.5/BAC, indicating that they favored
the generation of fewer amorphous surface species, which could have increased the disper-
sion of the metal oxides and accelerated surface oxygen vacancies, improving the catalytic
performance of the samples [43].
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3.1.5. XPS Analysis

XPS analysis was carried out on the primordial BAC and modified BAC samples to
obtain information on the valence states and chemical compositions of the relevant elements.
Figure 6a exhibits the three sub-peaks of the O 1s XPS spectra in these samples, where the
peaks with lower binding energy values at 528.2–528.7 eV corresponded to lattice oxygen
(Oα) and the peaks at approximately 529.7–530.1 eV were due to faintly bonded oxygen
or chemisorbed oxygen (Oβ), while the peaks at approximately 530.9–531.7 eV resulted
from adsorbed water species (Os) [49,50]. The primordial BAC lacked Oα, an oxygen
reservoir, and the metal oxide modification favored Oα formation, thus enhancing the
catalytic activity [32]. According to the SEM analysis, the metal oxides covered the surfaces
of the samples in the loading and calcination stages, blocking the pre-existing type of
oxygen, which offers a possible explanation for its disappearance. In addition, Oβ exhibited
extremely high reactivity and fluidity in the catalytic oxidation reaction, demonstrating the
distinguished catalytic activity of removing HCHO [37,40]. Compared with the unsalted
15%Er0.5Mn0.5/BAC, the Os ratio of used 15%Er0.5Mn0.5/BAC increased from 16.46% to
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38.26%, while that of Oα and Oβ of used 15%Er0.5Mn0.5/BAC decreased from 38.33% and
45.21% to 34.76% and 26.98%, respectively, demonstrating the participation of Oα and Oβ

in the catalytic oxidation reactions [51]. Therefore, it can be inferred that more reactive
oxygen species were conducive to accelerating the catalytic activity of HCHO removal.
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Figure 6b showcases the five sub-peaks of the C 1s XPS spectra, among which the
generated characteristic peaks located at 282.5–282.9 eV, 283.8–284.2 eV, 284.9–285.8 eV,
287.3–287.8 eV, and 289.6–290.8 eV were related to graphitic carbon, carbon existing in
alcohol or phenolic, carbonyl groups, carboxyl, or ester groups, and π-π* transitions in
aromatic rings, respectively [9,52]. In addition, the loading of metal oxides resulted in
a boom in the ratio of COOH to C–C, which likely resulted from the impregnation of
acetate or nitrate precursor solutions, where the decrease in C–O could be attributed to
the desorption of chemisorbed oxygen via high-temperature calcination under the N2
atmosphere [9]. In the modified BACs, the proportion of functional C–O groups decreased
and the proportion of total-oxygen-containing functional groups heightened after the
reactions, which was a possible outcome of the oxidation of C–O by reactive oxygen species
during the removal of HCHO [53].

The Mn 2p XPS spectra are revealed in Figure 6c, and the main finding is that the three
peaks were located at 638.5–639.2 eV, 641.2–642.4 eV, and 645.1–646.3 eV, corresponding
to Mn2+, Mn3+, and Mn4+, respectively [36,54]. This intimated that Mn existed in three
valence conditions, Mn2+, Mn3+, and Mn4+, during the entire reaction process, where the
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sum of Mn2+ + Mn3+ + Mn4+ can be defined as Mnn+. In addition, the proportions of
Mn2+, Mn3+, Mn4+, and Mn3++ Mn4+ were calculated using Mn2+/Mnn+, Mn3+/Mnn+,
Mn4+/Mnn+, and Mn3++Mn4+/Mnn+. In comparison with fresh 15%Mn/BAC, the propor-
tions of Mn4+/Mn3+, Mn4++Mn3+, and Mn4+ in fresh 15%Er0.5Mn0.5/BAC all increased to
different degrees, signaling that the incorporation of ErOx could expedite the increase in
the Mn valence state and proving that redox reactions occurred between ErOx and MnOx.
High-valence Mn, such as Mn4+, participating in the redox cycle might help improve the
catalytic activity of the sample and accelerate the removal of HCHO [55]. In addition, the
proportions of Mn4+/Mn3+, Mn4+ + Mn3+, and Mn4+ demonstrated a decreasing trend
after the reactions, suggesting that Mn in the high-price state changed to a low-price state
during the reactions.

Figure 6d shows the Er 4d XPS spectra, wherein three peaks could be observed
at 167.1–168.3 eV, 169.1–171.2 eV, and 173.6–178.2 eV. The first peak corresponded to
Er 4d5/2, indicating that Er existed in the modality of Er2O3 and, thus, in the state
of Er3+ occurring at this time, while the last peak had a higher peak binding energy
at 173.6–178.2 eV corresponding to Er 4d3/2, which could be a result of the Er metal
oxides [38,56,57]. The peak in the middle indicated that the metal Er was first oxidized to
Er2+, but because of the relatively unstable electronic configuration, it was rapidly oxidized
to Er3+ [56]. Therefore, these values demonstrate that Er was successfully loaded onto
the BAC samples and participated in the catalytic oxidation reaction in the Er3+ mode.
Such binding energy values of Er 4d are consistent with those in perovskites [36]. All
these phenomena testify that at least part of the Er2O3 transformed into the perovskite-like
structure of ErMnO3, which is consistent with the H2-TPR analysis. This suggests that the
addition of ErOx could change the morphological structure of the catalyst.

3.2. Comparison of Catalytic Performance
3.2.1. Effect of Molar Ratio of Er/Mn

The performances of the 15%ErMn/BAC samples with diverse molar ratios of Er/Mn
for HCHO elimination at 100–380 ◦C are listed in Figure 7. A roughly similar trend was
observed in the EHCHO of these samples. The EHCHO first showed noticeable growth with
the rise in the reaction temperature from 100 ◦C to 220 ◦C and subsequently behaved in a
slight downward trend with the continuous enhancement of the reaction temperature at
220–380 ◦C. The former finding can be interpreted as the increase in the reaction tempera-
ture providing more kinetic energy and facilitating the chemical adsorption and oxidation
of HCHO [58]. Meanwhile, the decline in the EHCHO at excessively high temperatures could
be caused by various reasons, such as the high temperatures inhibiting the physical adsorp-
tion of HCHO [37,59]. Another reason was the destruction of the BAC structure at high
temperatures. In addition, vibrant metal oxides could catalytically oxidize the carbon ma-
trix into H2O and CO2 [25]. Moreover, it was found that the EHCHO of 15%Er0.5Mn0.5/BAC
engendered the most outstanding performance in the 100–380 ◦C temperature range when
the molar ratio of Er/Mn was 1:1. This optimal performance could be connected with the
strongest synergistic effect between the two metal oxides with an appropriate molar ratio of
Er/Mn [60,61]. Ultimately, 15%Er0.5Mn0.5/BAC showed the most outstanding performance
at 220 ◦C in these samples, and its EHCHO content was 97.2%.
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3.2.2. Effects of Support Materials

The support materials derived from diverse raw materials showed distinctive surface
functional groups and intrinsic pore structures in different proportions of micropores,
mesopores, and macropores, which directly influenced the mass transfer and pervasion
of reactants and product molecules, thus playing an imperative role in the catalytic re-
actions [12,62]. Figure 8 showcases the effects of the support materials from diverse
precursors on HCHO removal at an identical loading and molar ratio of metal oxides at
100–380 ◦C. Throughout the entire heating process, 15%Er0.5Mn0.5/BAC exhibited a better
EHCHO than 15%Er0.5Mn0.5/SAC and 15%Er0.5Mn0.5/SAW, which could be theoretically as-
cribed to 15%Er0.5Mn0.5/BAC neutralizing 15%Er0.5Mn0.5/SAW and 15%Er0.5Mn0.5/SAC.
It is conceivable that the hierarchical porous structure of 15%Er0.5Mn0.5/BAC well regu-
lated the proportions of micropores, mesopores, and macropores via the BAC support,
which was more conducive to the mass transfer and diffusion of reactant and offspring
molecules [31]. In addition, the EHCHO of 15%Er0.5Mn0.5/BAC and 15%Er0.5Mn0.5/SAW
presented a decreasing trend with the increase in the reaction temperature at 220 and 300 ◦C,
and 15%Er0.5Mn0.5/BAC’s EHCHO dropped lower than 15%Er0.5Mn0.5/SAW’s at high tem-
peratures. This may have been caused by high temperatures destroying the active centers
and pore structures of BAC and SAW, and the thermal stability of BAC was higher than that
of SAW [62,63]. In contrast, according to the BET analysis, 15%Er0.5Mn0.5/BAC possessed
better physicochemical characteristics, which were conducive to the diffusion and mass
transfer of gas reactants, and exhibited the best HCHO abatement performance across the
entire temperature range.

3.2.3. Effects of Active Ingredients

The active ingredients and their loading values exerted important effects on the dis-
persion, aggregation, crystallization, and redox properties of the correlative metal oxides,
which were closely related to the catalytic activities of the samples [39]. Figure 9a dis-
plays the effects of various ingredients on HCHO elimination in the primordial BAC and
bimetallic-modified BAC samples with different loading values. It can be seen that the
EHCHO of the modified BAC samples first showed a significant upward trend with the
increase in the loading value and then exhibited a slight downward trend with the exces-
sive loading of metal oxides. The former could be attributed to the uniform dispersion of
the loaded metal oxides on the sample surfaces, providing a large number of adsorption
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or catalytic active sites, while the latter might be due to the more severe agglomeration
caused by excess metal oxides, thus hiding voids and adsorption or catalytic activity sites.
In addition, the EHCHO of XEr0.5Mn0.5/BACs increased continuously until the tempera-
ture reached 220 ◦C and dropped slightly as the reaction temperature increased further.
15%Er0.5Mn0.5/BAC showed the highest catalytic activity of 97.2% at 220 ◦C and con-
sistently demonstrated the best performance throughout the phase, which was likely a
consequence of the better dispersion of the Er and Mn oxides, more oxygen vacancies, and
the preeminent properties of the prepared sample. The SEM results also confirmed the supe-
rior physical and chemical properties of 15%Er0.5Mn0.5/BAC. Considering the metal oxide
loading value as a significant influencing factor for HCHO removal, 15%Er0.5Mn0.5/BAC
was selected for a follow-up study in this work.
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As illustrated in Figure 9b, the EHCHO of the Er- or Mn-modified samples demonstrated
significant improvement compared with the primordial BAC. It was observed that the
metal oxide loading greatly facilitated HCHO removal. 15%Er0.5Mn0.5/BAC demonstrated
superior performance and a wider effective temperature range than that of single-loading
samples. The synergistic effect of the bimetallic oxides was the main factor behind the
enhancement in the bimetallic oxides’ dispersity, the number of oxygen vacancies, surface
active substances, and the redox ability [39,64].

It was clear that the reaction temperature was a key factor in the catalytic reactions for
a given catalyst, and the corresponding active temperature range always behaved similarly.
Before this, the catalytic activity was proportional to the temperature rise due to an increase
in the catalytic activation energy [17]. There might be several reasons why the EHCHO
decreased at high temperatures. Firstly, high temperatures can hamper the adsorption of
reactant molecules [65]. Secondly, the catalytic oxidation of the carbon matrix by metal
oxides leads to the structural destruction of the BAC [34,66].

3.3. Effect of Atmospheric Conditions
3.3.1. Effect of O2

As an indispensable gas component in the actual flue gas, O2 significantly influenced
the conversion of reactive oxygen species associated with the catalytic oxidation proce-
dures of HCHO [12,32]. Figure 10 displays the influences of O2 concentrations on HCHO
elimination in 15%Er0.5Mn0.5/BAC at 220 ◦C. It was recognized that oxygen deficiency
might impact the catalytic properties of the samples. Nevertheless, with a short supply
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of oxygen, 15%Er0.5Mn0.5/BAC performed relatively well in terms of the EHCHO due to
the pre-existing lattice oxygen and chemisorbed oxygen both participating in the catalytic
oxidation of HCHO [32,37]. XPS analysis demonstrated that residual Oα and Oβ were
on the surface of 15%Er0.5Mn0.5/BAC in a dearth of oxygen, which played a role in the
catalytic oxidation of HCHO. Moreover, the EHCHO significantly increased when the oxy-
gen content was raised to 3%, but the variation in the EHCHO was almost negligible as the
O2 concentration increased further. Ample gaseous oxygen to supplement the consumed
Oα and Oβ was essential for achieving an efficient HCHO removal performance [32,67].
Meanwhile, the oxygen vacancy and lattice defects on the surface of 15%Er0.5Mn0.5/BAC
were conducive to the capture and transmission of O2, thus further facilitating HCHO
removal [68,69]. The above phenomenon demonstrated that only 3% oxygen could result
in a significant enhancement in HCHO removal, and the oxygen content in the industrial
flue gas was generally greater than that, thus well fulfilling this requirement.
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3.3.2. Effects of SO2 and H2O

The influences of SO2 and H2O on HCHO removal in 15%Er0.5Mn0.5/BAC are shown
in Figure 11. In most cases, SO2 acted as an inhibitor in the removal of HCHO [42].
Compared with the pure SFG, the EHCHO demonstrated a significant downward trend
when 300 ppm SO2 was added, but this trend gently slowed down when the SO2 increased
to 600 and 900 ppm. The former trend can be interpreted in two ways: the first is that
SO2 might compete with HCHO or O2 for limited adsorption/catalytic active sites, and
the second is that SO2 could readily react with metal oxides in the sample to form metal
sulfates, which might cover the surface active sites or block the pores, as demonstrated
by in situ DRIFTS [70,71]. The latter trend may be because the introduction of ErOx or
MnOx could undermine the adsorption intensity of SO2 on the sample surface, offsetting
the inhibitory effect of SO2 [31]. Likewise, H2O (g) also had a slight inhibitory effect on
the EHCHO. Increasing H2O by 8% in the SFG reduced the EHCHO from 92.4% to 90.8%,
indicating that 15%Er0.5Mn0.5/BAC possessed excellent H2O resistance resulting from the
strong interaction between ErOx and MnOx and the hydrophobicity of BAC [72]. Equally,
the inhibitory effect of H2O might be due to the competitive adsorption of the active sites
between HCHO and H2O [73]. The combined additions of SO2 and H2O exerted a greater
passive effect on the EHCHO than the single addition of SO2 or H2O. Nevertheless, under the
action of SFG + 600 ppmSO2 + 8%H2O, the EHCHO of 15%Er0.5Mn0.5/BAC only decreased
by 4.5% from 92.4% to 87.9%, elucidating its excellent anti-SO2/H2O performance, which
was possibly a result of the positive effect of gaseous H2O on HCHO potentially related to
the active catalytic sites of HCHO [32]. Therefore, it was predicted that 15%Er0.5Mn0.5/BAC
displayed exceptional SO2 and H2O resistance in the practical flue gas component.
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The test results of the stability and selectivity of the 15%Er0.5Mn0.5/BAC catalyst for
HCHO removal are presented in Figure 12. Under SFG conditions, the stability test of
15%Er0.5Mn0.5/BAC persisted for 30 h, while the EHCHO decreased from 96.6% to 93.9% in
the first 6 h and then remained at approximately 93%. Adding 8%H2O or 300 ppm SO2
to the SFG also degraded the EHCHO to almost an identical extent, and their combination
amplified this negative trend, which was consistent with the previous performance test
analyses. The SC also exhibited an identical trend, albeit slightly stronger than that of the
EHCHO, but the addition of both 8% H2O and 300 ppm SO2 impeded their conversion. Some
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intermediates, such as DOM and formate, were produced during the removal of HCHO,
which was coherent with the results of the subsequent in situ DRIFTS. Eventually, under
SFG + 8%H2O and 300 ppmSO2, the EHCHO and SC of 15%Er0.5Mn0.5/BAC were maintained
at approximately 85% and 90%, demonstrating distinguished stability and selectivity.
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3.4. Intermediates and Mechanism

As reflected in Figure 13, the HCHO reaction processes in the Er0.5Mn0.5/BAC catalyst
at 90 min under different test conditions were studied using in situ DRIFTS spectra. The
peak associated with molecularly adsorbed HCHO occurred at 1142 cm−1 within 10 min af-
ter introducing 200 ppm HCHO + 6%O2/N2 [74]. In addition, the peak’s intensity increased
with the reaction time before decreasing slightly after 30 min. The ω(CH2), ν(CH2), and
ν(C–O) of dioxymethylenes were reflected in bands located at 1061, 1014, and 809 cm−1,
respectively [74,75]. Following previous studies, it was documented that HCHO was first
adsorbed on the sample surface by molecules and then fleetly oxidized into DOM by car-
bonyl electrophilic carbon combined with nucleophilic surface oxygen [76]. After 10 min,
DOM bands were detected and increased with time, showing that the catalytic oxidation
reaction of HCHO was still occurring. The paraformaldehyde (POM) produced by the
adsorption corresponding to the peak value of 937 cm−1 was also rapidly accumulating
and continuously generating DOM [75,76]. The amount of DOM reached a stable value
as the production of DOM, and its further conversion attained a dynamic equilibrium at
40 min. Moreover, the slight adsorption bands at 1460 and 1385 cm−1 could be attributed to
the νas(COO−) and νs(COO−) of formate species, while the νas(CH) and νs(CH) of formate
species appeared at 2943 and 2825 cm−1 [77,78]. Previous studies have suggested that
formates are often adsorbed on the surfaces of catalysts in three frameworks: monodentate,
bridging, and bidentate (chelating), which are distinguishable by the frequency of spacings
between νs(COO−) and vas(COO−) [32]. The reduced intensity of the bands in the formate
species indicated that the depletion of the formate species was expedited, and DOM oxida-
tion was inhibited until equilibrium was reached after 40 min of the reaction proceeding.
The peaks at 1656 cm−1 and 2334–2363 cm−1 were related to the formate species’ oxidation
reactions and conversion to H2O and CO2 [41,77,79]. After 10 min of reaction, it was
observed that the absorption of CO2 reached the maximum value before fluctuating and
decreasing. The former might have been caused by the rapid catalytic oxidation reaction of
HCHO, while the latter was ascribed to the formation of POM blocking the adsorbed active
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sites, leading to the desorption of CO2 in the catalyst [76]. The negative bands at 3484 cm−1

and 3690 cm−1 were generated by the depletion of hydroxyl(–OH) on the surface, and the
adsorption of activated H2O molecules was continuously replenished by reactive oxygen
species [79,80]. The peak at 685 cm−1 was attributed to the formation of metallic oxygen
bands between Mn or Er ions and carboxyl(COO–), indicating that ErOx and MnOx could
serve as active sites during the removal of HCHO [37].
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The feasible reaction mechanisms of HCHO removal in 15%Er0.5Mn0.5/BAC were spec-
ulated following the characterization analyses and experimental results shown above. It
was confirmed that the mechanism of the catalytic oxidation of HCHO by carbon materials
supported with metal oxide catalysts followed the Mars–van Krevelen (MVK) mecha-
nism [60]. In this study, catalytic oxidation gradually predominated over adsorption for
HCHO removal with the increment in the reaction temperature and time, and the oxida-
tion of HCHO was mainly attributed to the surface reactive oxygen species, including
chemisorbed oxygen and lattice oxygen and free radicals on the surfaces of the catalysts,
which were expressed as Oγ and OH, respectively. As reflected in Figure 14, HCHO
was instantaneously captured by hydroxyl groups and other active sites on the surface of
15%Er0.5Mn0.5/BAC. In addition, combined with the results of DRIFTS and other character-
ization analyses, it was determined that the main gaseous products came from carbonate
species and formate intermediates in the HCHO removal process. The latter’s production
was ascribed to the reaction of surface reactive oxygen species and HCHO to generate DOM,
which, in turn, was rapidly oxidized to form formate species. The former’s production can
be explained by the loss of hydrogen bonds in the formic acid intermediate, further oxidized
by the active hydroxyl group to unstable H2CO3, before being converted to CO2 and H2O
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(Equations (6)–(11)). The subsequent adsorption of HCHO or O2 was favorable toward
H2O desorption, thus starting a new cycle of HCHO oxidation [81,82]. Throughout the
reaction processes, gaseous O2 and H2O continuously replenished depleted reactive oxygen
species while the redox cycle of Er3+/Er2+ and Mn4+/Mn3+/Mn2+ constantly produced
Oγ [25,38]. The introduction of Er species increased the catalytic activity and changed the
morphological structures of the catalysts, which was suitable for the TEM and H2-TPR
results. In particular, the hierarchical porous structure of the BAC carrier with suitable
ratios of micropores, mesopores, and macropores boosted the reaction paths, which not
only furnished abundant surface functional groups but also facilitated the diffusion and
mass transfer of reactants and products, thus improving the catalytic oxidation ability of
HCHO. In summary, the specific pathways of removing HCHO by 15%Er0.5Mn0.5/BAC
can be determined as follows.
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HCHO(g) + BAC(surface) → HCHO(ad) (3)

O2(g) + BAC(surface) → O2(ad) (4)

2Mn4+ → 2Mn3+ + Oγ (5)

2Mn3+ → 2Mn2+ + Oγ (6)

2Er3+ → 2Er2+ + Oγ (7)

HCHO(ad) + Oγ → HCO + OH (8)

HCO + OH→ HCOOH(ad) (9)

HCOOH(ad) → HCOO(ad) + H+ (10)

HCOO(ad) + OH→ CO2 + H2O (11)

OH + H+ → H2O (12)
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2Mn3+ + 1/2O2(ad) → 2Mn4+ (13)

2Mn2+ + 1/2O2(ad) → 2Mn3+ (14)

2Er2+ + 1/2O2(ad) → 2Er3+ (15)

4. Computational Details
4.1. DFT Calculation Method

To further clarify the mechanism and reaction process of the catalytic oxidation of
HCHO in 15%Er0.5Mn0.5/BAC, current first principle DFT calculations were carried out
using the Vienna Ab initio Simulation Package (VASP) with the projector augmented wave
(PAW) method [83]. The commutative functional was treated employing the generalized
gradient approximation (GGA) of the Perdew–Burke–Ernzerhof (PBE) functional. All
calculations were conducted with spin polarizations. The energy cut-off value of the plane
wave base expansion was set to 450 eV, and the force on each atom was less than 0.03 eV/Å,
which was utilized as the convergence criterion of geometric relaxation. A 2 × 2 × 1 grid
was used to sample k points in the Brillouin region. A convergence energy threshold of
10−5 eV was adopted in the self-consistent calculations. The DFT-D3 method was utilized
to take into account the van der Waals interaction [84]. A 15 Å vacuum was joined in the z
direction to prevent the interaction from periodic structures.

The free energies were calculated using the following formula: ∆G = ∆EDFT + ∆EZPE
− T∆S, where ∆EDFT is the DFT electronic energy difference at each step, ∆EZPE and ∆S are
the correction of zero-point energy and the change in entropy, respectively, acquired via
vibration analysis, and T is the temperature (T = 300 K) [85].

4.2. HCHO Oxidation Reaction Path Diagram of MnO2 and Er-MnO2

To prove that Er doping contributed to the HCHO catalytic oxidation reaction and
its mechanism, Figure 15 shows the reaction path and configuration of MnO2−x (1 1 1)
and Er-MnO2−x (1 1 3) in the catalytic oxidation of HCHO, in which the structure and
shape of each intermediate for the HCHO conversion to CO2 and H2O are observed. In
addition, the formaldehyde oxidation reaction paths of the Er-MnO2 and MnO2 structures
were calculated, as shown in Figure 16. It can be seen that the MnO2 structure was stronger
than the Er-MnO2 structure in the first step of formaldehyde adsorption activation, with an
adsorption-free energy of −2.08 eV, while that of the Er-MnO2 structure was only −0.53 eV.
After a series of calculations, it was found that the rate determination step of the MnO2
structure reaction was a CH2O2*→CO2* transfer step, and the rate determination step
energy barrier was 0.95 eV, while the decisive step of the Er-MnO2 structure reaction was an
HCOO*→CO2* step, and the energy barrier of the decisive step was 0.80 eV. The reduction
in the energy barrier of the decisive step indicates that the Er-MnO2 structure promoted
the formaldehyde oxidation process. This result is consistent with the in situ DRIFTS, and
the incorporation of Er promoted the catalytic oxidation of HCHO to a certain extent.
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CO2*, (f) MnO2−x-H2O*, (g) Er-MnO2−x, (h) Er-MnO2−x-CH2O*, (i) Er-MnO2−x-CH2O2*, (j) Er-
MnO2−x-HCOO*, (k) Er-MnO2−x-CO2*, and (l) Er-MnO2−x-H2O*.
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5. Conclusions

A series of ErOx-boosted MnOx-modified biochars derived from rice straw and sewage
sludge (EryMn1-y/BACs) were prepared using the facile ultrasonic-assisted impregna-
tion method, and their HCHO removal activities were subsequently tested. The optimal
15%Er0.5Mn0.5/BAC displayed a 97.2% HCHO removal efficiency at 220 ◦C and excellent
stability throughout the circulation experiment. The removal mechanism of HCHO in
15%Er0.5Mn0.5/BAC was systematically studied using BET, H2-TPR, SEM, TEM, XRD, in
situ DRIFTS, XPS, and density-functional theory (DFT). The effects of O2, SO2, and H2O on
HCHO removal in 15%Er0.5Mn0.5/BAC were tested, and the curbed influences of H2O and
SO2 offset the boosting effect of O2 within a certain range. Er–Mn bimetallic-modified BAC
offered a superior HCHO removal performance than that of Er- or Mn-boosted BAC, owing
to the synergistic effect of ErOx and MnOx conducive to improving the samples’ total pore
volumes and surface areas, the surface active oxygen species, the promotion of redox ability,
and the inhibition of the crystallization of MnOx. Moreover, the support’s hierarchical
porous structure not only expedited the diffusion and mass transfer of reactants and their
products but also elevated the approachability of adsorption and catalytic sites. Notably,
these prominent features were partly responsible for the outstanding performance and ex-
cellent tolerance to H2O and SO2. In situ DRIFTS showed the appearance of CO2 and H2O
during the oxidation of HCHO to DOM and formate intermediates. The DFT calculations
proved the removal process of HCHO and the strengthening effect of Er doping. Finally,
this work provides direction and guidance for the future development of outstanding
biochars-based catalysts for HCHO removal.
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