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Abstract: A Pt(II) complex bearing chelating tridentate bis-aryloxide tetrahydropyrimidinium-based
N-heterocyclic carbene (NHC) was synthesized and characterized by using different techniques.
Both cyclic voltammetry and differential pulse voltammetry were used to study the electrochemical
properties of the complex, revealing two reversible one-electron oxidation processes. The chemical
generation and isolation of one-electron-oxidized species were performed oxidizing the initial com-
plex by means of AgBF4. A combination of spectroscopic (UV-Vis/NIR- and EPR-) and theoretical
(density functional theory (DFT)) studies suggests the formation of a Pt(II)-phenoxyl radical complex.
The latter open-shell derivative was structurally characterized by means of X-ray diffraction analysis.
Finally, the neutral platinum complex was tested as a mediator in the process of electrocatalytic
oxidation of 2-(methylamino)ethanol (MEA).

Keywords: cyclic voltammetry; electron paramagnetic resonance; DFT calculations; UV-VIS/NIR;
phenoxyl radical; pincer complex; platinum complex; NHC ligand

1. Introduction

Transition-metal complexes with redox-active ligands have been extensively studied
over the past few decades due to their unique properties and intriguing chemical behav-
ior [1–8]. They are widely applied in various fields of coordination chemistry including
catalysis, organic synthesis, and material science [1,9–18]. Recent attempts in controlling
catalytic processes employing redox non-innocent ligands are mostly inspired by the metal-
radical motifs in active sites of many metalloenzymes [5], such as galactose oxidase, which
contains one copper ion and converts a primary alcohol to the aldehyde in the presence of
dioxygen [19,20]. The formation of a Cu(II)-phenoxyl radical species was proposed to be
the key step in this transformation [21].

Indeed, electron-rich sterically hindered phenolates are among the most common non-
innocent ligands that can assist in catalytic transformations by storing (in form of phenoxyl)
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and delivering charge during catalytic transformations [22–27]. However, bidentate ligand
scaffolds utilized in many catalytic reactions involving such phenolate ligands (or their
aminophenol derivatives) often lead to unfavorable isomerization processes of the ligand
field, precluding further transformations of a substrate [28,29]. In order to overcome the
limitation the redox-active phenolates were merged with N-heterocyclic carbenes (NHCs),
forming a pincer-type tridentate ligand [30,31]. NHCs are well-known as an important
family of ligands in coordination chemistry and homogeneous catalysis due to their unique
steric and electronic properties. Moreover, the strongly σ-donating nature makes the ligand
more stable in its oxidized forms, while the strong trans effect provide hemilability of
the auxiliary ligand, generating a vacant coordination site at the metal center which is a
prerequisite for efficient substrate coordination and transformation under the homogeneous
catalysis conditions [32–34]. In this context, the previously obtained diphenolate imidazolyl
and benzimidazolyl carbenes were applied for constructing transition metal complexes
with the coordinated pro-radical ligand [35–38]. The oxidation of the above-mentioned
species allowed the formation of an electronic structure in which an unpaired electron
is more likely localized on the ligand. However, the precise determination of the metal
oxidation state in transition-metal complexes is not always possible. In reality, metal ions
and ligands are both affected by the oxidation and the resulting spin density is shared
over both, allowing a multi-configurational state [9,25]. Therefore, a careful examination of
metal complexes via various spectroscopic methods combined with computational studies
is required for a better description of their electronic structure, which is essential for the
design of catalytic cycles with participation of redox non-innocent ligands [39,40].

Our research team has been focusing on the design, synthesis, and catalytic applica-
tion of pincer-type ligands and their complexes of group 10 metals during the past few
years [41–47]. The intrinsic diamagnetism of this metal ions in d8 configuration allows for
fine assignment of the electronic structure of the oxidized species. At the same time, the
natural content of spin-1/2 isotope for platinum (195Pt, 33.775%) gives the opportunity
for careful examination of the electronic structure by EPR spectroscopy. Thus, herein we
report on the synthesis of Pt(II) complex bearing tridentate diphenolate NHC ligand. The
one-electron-oxidized species are generated chemically and electrochemically. Characteri-
zation of their electronic structures using combined UV-Vis/NIR- and EPR-spectroscopy;
X-ray diffraction and DFT studies suggests the redox non-innocence of the ligand. The ob-
tained results allowed the design of an electrocatalytic process for 2-(methylamino)ethanol
oxidation with participation of Pt(II)-phenoxyl radical complex.

2. Results and Discussion

The diphenolate NHC precursor LH3Cl was prepared according to our previous re-
port [48]. The synthesis of its platinum complex was performed using modified procedure
suggested by Mauro, Dagorne, Bellemin-Laponnaz, and co-authors for the related diphe-
nolate imidazolyl and benzimidazolyl carbene complexes [30]. However, it should be
noted, that in our case providing the synthesis at 100 ◦C (as reported by the authors) led to
unfavorable deposition of black precipitate (more likely metallic platinum). Therefore, the
tetrahydropyrimidin-1-ium based pro-ligand was treated with Pt(COD)Cl2 and an excess
of a base in pyridine at 50 ◦C for 20 h (Scheme 1). The isolation of the complex via filtration
of the CH2Cl2 solution of crude material through a silica gel plug with further evaporation
of the solvent afforded the platinum complex Pt(L)Py in 81% yield as an orange solid. The
formation of the corresponding diphenolate NHC complex was confirmed by the presence
of a carbene signal at δC 159.2 ppm in the 13C{1H} NMR spectrum, while no residual
tetrahydropyrimidinium and phenol moieties were detected via 1H NMR spectroscopy
analysis. The proposed formulation was also confirmed by elemental analysis and MALDI
mass spectrometry.
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Scheme 1. Synthesis of Platinum Complex Pt(L)Py. 

The UV-Vis spectrum of Pt(L)Py in CH2Cl2 (Figure 1) shows a weak absorption band 
at ca. 350 nm (ε = 6000 M–1·cm–1). According to time-dependent DFT calculations (Figure 
S4 and Table S1), the observed absorption originates from the electronic transition com-
posed of a phenolate-to-NHC intraligand excitation mixed with a metal-to-metal transi-
tion (HOMO → LUMO + 2). It should also be noted that no NIR transitions were observed 
for Pt(L)Py complex (see Supplementary Materials for details). 
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Figure 1. UV-Vis spectrum of 0.1 mM solution of Pt(L)Py in CH2Cl2 at 298 K. The vertical bars rep-
resent the calculated electronic excitations. 

The electrochemical properties of Pt(L)Py have been studied using the methods of 
cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH2Cl2 in the pres-
ence of 0.1 M tetra-n-butylammonium tetrafluoroborate as supporting electrolyte. CV 
curve of complex Pt(L)Py exhibits two reversible oxidation peaks at E1/21 = 0.25 V and E1/22 
= 0.80 V vs. the ferrocenium/ferrocene external standard (Figure 2). Analysis of the DPV 
curve’s morphology provided evidence of the number of electrons involved. Thus, the 
values of 1.060 and 1.004 were obtained for the first and second oxidation, respectively. It 
may be concluded that the two oxidation waves occurred as a result of ligand-based oxi-
dation processes that produced mono- and possibly bis-phenoxyl radical species [49,50]. 
No reduction peak observed when scanning towards the cathodic values of potentials in 
CH2Cl2. It is interesting to note that the reversibility of the second oxidation peak disap-
pears when polar coordinating solvent is used (DMF, CH3CN). At the same time, DMF 
enabled determination of the electroreduction process for the complex at –2.80 V, which 
was ascribed to the PtII → Pt0 conversion (see Supplementary Materials for details). 

Scheme 1. Synthesis of Platinum Complex Pt(L)Py.

The UV-Vis spectrum of Pt(L)Py in CH2Cl2 (Figure 1) shows a weak absorption band at
ca. 350 nm (ε = 6000 M–1·cm–1). According to time-dependent DFT calculations (Figure S4
and Table S1), the observed absorption originates from the electronic transition composed of
a phenolate-to-NHC intraligand excitation mixed with a metal-to-metal transition (HOMO
→ LUMO + 2). It should also be noted that no NIR transitions were observed for Pt(L)Py
complex (see Supplementary Materials for details).
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Figure 1. UV-Vis spectrum of 0.1 mM solution of Pt(L)Py in CH2Cl2 at 298 K. The vertical bars
represent the calculated electronic excitations.

The electrochemical properties of Pt(L)Py have been studied using the methods of
cyclic voltammetry (CV) and differential pulse voltammetry (DPV) in CH2Cl2 in the pres-
ence of 0.1 M tetra-n-butylammonium tetrafluoroborate as supporting electrolyte. CV curve
of complex Pt(L)Py exhibits two reversible oxidation peaks at E1/2

1 = 0.25 V and E1/2
2 =

0.80 V vs. the ferrocenium/ferrocene external standard (Figure 2). Analysis of the DPV
curve’s morphology provided evidence of the number of electrons involved. Thus, the
values of 1.060 and 1.004 were obtained for the first and second oxidation, respectively.
It may be concluded that the two oxidation waves occurred as a result of ligand-based
oxidation processes that produced mono- and possibly bis-phenoxyl radical species [49,50].
No reduction peak observed when scanning towards the cathodic values of potentials in
CH2Cl2. It is interesting to note that the reversibility of the second oxidation peak disap-
pears when polar coordinating solvent is used (DMF, CH3CN). At the same time, DMF
enabled determination of the electroreduction process for the complex at –2.80 V, which
was ascribed to the PtII → Pt0 conversion (see Supplementary Materials for details).
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Figure 2. CV curve (red line) and DPV curve (black line) of 0.5 mM solution of the Pt(L)Py complex 
in CH2Cl2 with n-Bu4NBF4 (0.1 M) at a glass carbon electrode. Scan rate, 100 mV/s; reference, Fc+/Fc; 
T = 298 K. The potential scanning from 0.00 to +1.00 V, back to 0.00 V, second cycle further to +1.00 
V, and back to 0.00 V. The current scale is indicated for the CV curve. 
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formed in the electrooxidation process, the “chemical” oxidation of Pt(L)Py with AgBF4 as 
an oxidizing agent (E1/2 = 0.65 V vs. Fc+/Fc [51]) in dry CH2Cl2 at room temperature under 
an inert atmosphere of nitrogen was performed (Scheme 2). The solution’s change in color 
from orange to dark green and the precipitation of Ag0 at the flask’s bottom verified the 
successful oxidation of Pt(L)Py. The product [Pt(L)Py][BF4] was isolated in 63% yield as 
an air-stable dark green solid. The proposed composition was confirmed via MALDI mass 
spectrometry using the characteristic ions with m/z 792.4 (positive mode) and m/z 87.1 
(negative mode) corresponding to the [Pt(L)Py]+ and [BF4]ˉ species, respectively. The ele-
mental analysis is also in agreement with the expected product. 
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Figure 2. CV curve (red line) and DPV curve (black line) of 0.5 mM solution of the Pt(L)Py complex
in CH2Cl2 with n-Bu4NBF4 (0.1 M) at a glass carbon electrode. Scan rate, 100 mV/s; reference, Fc+/Fc;
T = 298 K. The potential scanning from 0.00 to +1.00 V, back to 0.00 V, second cycle further to +1.00 V,
and back to 0.00 V. The current scale is indicated for the CV curve.

The relatively large separation between the halfwave potentials for both processes
(∆E1/2 = 0.55 V) suggests that the first oxidation of a phenolate fragment in the complex
significantly affects the second one. Thus, in order to evaluate the nature of the species
formed in the electrooxidation process, the “chemical” oxidation of Pt(L)Py with AgBF4
as an oxidizing agent (E1/2 = 0.65 V vs. Fc+/Fc [51]) in dry CH2Cl2 at room temperature
under an inert atmosphere of nitrogen was performed (Scheme 2). The solution’s change in
color from orange to dark green and the precipitation of Ag0 at the flask’s bottom verified
the successful oxidation of Pt(L)Py. The product [Pt(L)Py][BF4] was isolated in 63% yield
as an air-stable dark green solid. The proposed composition was confirmed via MALDI
mass spectrometry using the characteristic ions with m/z 792.4 (positive mode) and m/z
87.1 (negative mode) corresponding to the [Pt(L)Py]+ and [BF4]- species, respectively. The
elemental analysis is also in agreement with the expected product.
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Scheme 2. Synthesis of Platinum Complex [Pt(L)Py][BF4].

X-ray-quality dark green needle-like crystals were obtained via slow diffusion of
pentane into a saturated solution of the formed product in dichloromethane at ca. 0 ◦C, and
the structure of [Pt(L)Py][BF4] was determined by means of X-ray diffraction. The complex
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crystallizes as CH2Cl2 adduct in the P1 (2) triclinic space group containing two molecules
per unit cell. As depicted in Figure 3, the coordination geometry around the metal center is
distorted-square-planar. Thus, the pyridine ligand occupies the coordination site trans to
the pincer carbene carbon, while two oxygen atoms complete the metal coordination sphere
standing trans to each other. The Pt−Ccarbene distance (1.954(2) Å) falls in the same range
as those observed for related structures [30,52–56]. A significant distortion of the planarity
of the {OCO}Pt moiety of the complex is observed (O(1)−N(1)−N(2)−O(2) = −14.63(8)◦).
The Pt−N bond length (2.094(2) Å) lines up with a trans influence of the carbene ligand
(see Ref. [57] for example of [Pt(Py)4]2+ complex, where the average Pt–N bond length is
2.024 Å). Selected bond distances and angles are listed in the figure description.
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Figure 3. Molecular structure of the complex [Pt(L)Py][BF4] (ellipsoids at 50% probability). Hy-
drogen atoms and CH2Cl2 molecules are omitted for clarity. Selected bond distances (Å) and
angles (deg): C(1)−Pt(1), 1.954(2); O(1)−Pt(1), 1.937(1); O(2)−Pt(1), 1.923(1); N(3)−Pt(1), 2.094(2);
C(1)−Pt(1)−O(1), 95.03(7); C(1)−Pt(1)−O(2), 94.57(7); O(1)−Pt(1)−O(2), 170.38(6); C(1)−Pt(1)−N(3),
177.64(7); O(1)−Pt(1)−N(3), 83.21(6); O(2)−Pt(1)−N(3), 87.22(6); and C(35)−N(3)−Pt(1)−O(2), 57.6(2).

An EPR analysis of a solution of [Pt(L)Py][BF4] in CH2Cl2 at 298 K shows a signal
at g = 2.070 with signal coupling coming from the 195Pt having nuclear spin of 1/2 and
natural content of 33.775%. (Figure 4a). The g value is considerably greater than what is
commonly predicted for free phenoxyl radicals (typically 2.005) [58], although it is lower
than the typical average g values reported for paramagnetic platinum complexes. Variable-
temperature EPR study (Figure 4b) revealed the g-anisotropy. Thus, the frozen solution
EPR spectrum of [Pt(L)Py][BF4] in CH2Cl2 exhibits a highly anisotropic S = 1

2 signal at g1 =
1.943, g2 = 2.123, and g3 ≈ 2.149 (giso ≈ 2.071), that together with large g value suggests
a considerable contribution of the metal d orbital to the SOMO [12,59]. Taken together,
these observations provide strong evidence that the distribution of the unpaired electron
in [Pt(L)Py][BF4] is not uniform, and allow us to claim that the radical is localized over
the ligand.
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experimental spectrum; red line: simulation by considering g value of 2.070, a Lorentzian/Line
width of 60.464/22.620 G, APt = 64.865 G (considering 31.332% rel. conc. of 195Pt); T = 298 K.
(b) Variable-temperature EPR spectra of 0.5 mM solution of [Pt(L)Py][BF4] in CH2Cl2.

The Mulliken spin–density distribution in [Pt(L)Py]+ calculated at the DFT-optimized
structure (Figure 5, left) exhibits a predominant phenoxyl-radical character. Although the
spin density is shared between the metal center and the ligand, its major contribution
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is delocalized within the ligand. It should also be noted that the nitrogen atoms of the
carbene linker hold a small spin population, in contrast to the diphenolate imidazolyl based
nickel analogue, which does not feature any significant spin density [35]. Note that the
computed spin–density plot is consistent with the average local ionization energy (ALIE)
isosurface map computed for Pt(L)Py (Figure 5, right), where the blue-colored regions have
a relatively low ALIE value and are, therefore, the most vulnerable to electrophilic attack.
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The UV-Vis and NIR spectra of [Pt(L)Py][BF4] in CH2Cl2 are shown in Figure 6. In
visible regions the complex exhibits an absorption band at ca. 466 nm, which is red-shifted
compared to its neutral analogue. In addition, [Pt(L)Py][BF4] shows a remarkable intense
NIR band at 1242 nm (ε = 7500 M–1·cm–1) with a narrow bandwidth at half height ∆ν 1/2 of
1712 cm−1 (see Supplementary Materials for details).
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Figure 6. UV-Vis (solid black line) and NIR (dashed black line) spectra of 0.1 mM solution of
[Pt(L)Py][BF4] in CH2Cl2 at 298 K. The vertical red bars represent the calculated electronic excitations.

According to the Marcus–Hush relationship:

∆νHTL =
√

16 ln2 RT νmax (1)

Using the νmax = 8050 cm−1 (1242 nm) the bandwidth calculated in the high temper-
ature limit (HTL) is 4308 cm−1, which differs significantly from the experimental value.
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This observation is in line with Marcus–Hush theory’s failure to predict the IVCT band
form at the class II/III borderline [59]. Moreover, a sharp and intense NIR transition, where
∆ν1/2 ≤ 2000 cm−1, ε ≥ 5000 M−1 cm−1, is an indicator that the electron hole is at least
partly delocalized over the ligand scaffold [60]. Based on the high intensity and narrow
bandwidth, the lowest energy band can be assigned to the intraligand HOMO (donor)
to SOMO (radical) electronic transition. In order to validate this hypothesis, absorption
properties of [Pt(L)Py]+ were studied using time-dependent DFT (Figure S4 and Table S1).
The calculated energy of the NIR band with a large oscillator strength is 1162 nm (f osc
= 0.23), which matches well with the experimental data (1242 nm). The principal excita-
tion is indeed the β-HOMO → β-LUMO transition (97%), which is predominately π-π*
intraligand in nature. The calculated electronic transition of a higher energy (λcalc = 429
nm) corresponds to the experimental band observed at 466 nm. The principal excitations
that contribute to the band are α-HOMO→ α-LUMO (58%) and α-HOMO→ α-LUMO + 1
(32%) transitions.

Having all these results in hand, we decided to test the platinum complex Pt(L)Py
as a mediator in the process of electrocatalytic oxidation of amines. It is well known that
the electrooxidation of amines is an important alternative to current chemical approaches,
providing critical pathways for the synthesis and modification of a wide range of chemically
valuable compounds, including pharmaceuticals and agrochemicals [61]. Details on the
mechanistic aspects of the electrochemical oxidation of aliphatic amines can be found else-
where [61]. However, the direct electrooxidation often leads to a passivation of the working
electrode surface by the formation of a polymer film, which can sharply decrease current
efficiency [62]. Indirect electrooxidation using an electron transfer mediator is an effective
technique to avoid this problem [63]. Besides the minimization of the electrode surface
fouling effect, the application of redox mediators allows a decrease in the overpotential
needed for the direct oxidation of amines [61]. Pt(L)Py, which is prone to electrochemical
oxidation to [Pt(L)Py]+, meets the requirements usually addressed to a redox mediator (or
catalyst): it has a reversible redox couple, while both the oxidized and reduced forms are
relatively stable in the solution. Thus, 2-(methylamino)ethanol (MEA) was chosen as a
model substrate for the catalytic tests. Figure 7 shows the CV curves, obtained for 1 mM
solution of Pt(L)Py with different concentrations of MEA (0.00 M, 0.12 M and 0.24 M) in
the range of 0.00 to 0.45 V vs. Fc+/Fc in CH2Cl2 in the presence of n-Bu4NBF4 (0.1 M). It
should be noted that MEA is electrochemically inactive in this region (see black curve in
Figure 7). Reaching a concentration of MEA up to 0.12 M (see blue curve in Figure 7) leads
to a disappearance of reversibility of the [Pt(L)Py]+/Pt(L)Py couple with simultaneous
increase in oxidation peak current. The peak oxidation current continues to increase until
the substrate concentration reaches 0.24 M. At MEA concentrations greater than 0.24 M,
saturation behavior is observed as the current becomes independent of the concentration
of MEA. The efficiency of electrocatalytic MEA oxidation can be estimated via the ratio of
the maximum catalytic current (icat) to the peak current (ip) in the presence and absence of
amine, respectively. Thus, the icat/ip value of 1.9 was obtained for Pt(L)Py as a mediator of
this process.

These results are indicative of the electrochemical catalysis of secondary amine (MEA)
oxidation via the active Pt(II)-phenoxyl radical complex oxidant. Further experiments
related to reactivity and catalytic activity of platinum complexes [Pt(L)Py]+ and Pt(L)Py as
well as other group 10 metals with diphenolate NHC ligand L are currently under progress.
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3. Materials and Methods
3.1. General Considerations

Standard Schlenk techniques have been applied for all reactions, which were carried
out in a dry nitrogen environment. Organic solvents (pentane, CH2Cl2, pyridine, DMF,
CH3CN, and THF) were purified and degassed using standard procedures. CDCl3 was
degassed via freeze–pump–thaw cycles (three times) and kept over 3 Å molecular sieves
before use. Ligand LH3Cl was obtained using the previously described procedure [48]. All
other reagents (AgBF4 (Aldrich, St. Louis, MO, USA, 98%), n-Bu4NBF4 (Acros Organics,
Geel, Belgium, 98%), ferrocene (Alfa Aesar, Karlsruhe, Germany, 99%), and Pt(COD)Cl2
(Sigma-Aldrich, St. Louis, MO, USA, 99%)) were used without further purification.

NMR spectra were recorded at frequencies of 400.17 MHz (1H) and 100.62 MHz (13C)
using a high-resolution BRUKER AVANCE-400 (Karlsruhe, Germany) spectrometer. 1H and
13C{1H} chemical shifts are given downfield of tetramethylsilane in parts per million (ppm)
and were calibrated against the resonance of the remaining protons of the used deuterated
solvent. UV–Vis spectra were recorded on a SPECORD 50 PLUS Analytik Jena (Jena,
Germany) spectrophotometer in 10 mm closed quartz cuvette at 298 K. NIR absorption
spectra were recorded on a Bruker Vertex 70 spectrometer (Ettlingen, Germany) in 10 mm
closed quartz cuvette at 298 K. The measurements related to the electron paramagnetic
resonance (EPR) were carried out using X-band microwaves and a 100 kHz field modulator
using a Bruker Elexsys E-500 spectrometer (Karlsruhe, Germany). MALDI-TOF studies
were conducted using an Ultraflex III TOF/TOF (Bruker Daltonics, Karlsruhe, Germany)
mass spectrometer equipped with a Nd:YAG laser. The spectra were measured in both
positive and negative ion linear modes. para-Nitroaniline (PNA) was used as a matrix. The
FlexControl software (Bruker Daltonik GmbH, Version 3.0) was used for instrument control
and data acquiring. FlexAnalysis software (Bruker Daltonik GmbH, Version 3.0) was used
to process the data. A high-temperature Elementar vario MACRO cube (Langenselbold,
Germany) analyzer was used for the elemental analysis.

3.2. X-ray Structure Determination

The crystal structure of [Pt(L)Py][BF4] was analyzed via X-ray diffraction utilizing
a Bruker D8 QUEST (Karlsruhe, Germany) automated three-circle diffractometer. The
diffractometer was equipped with a PHOTON III two-dimensional detector and an IµS
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DIAMOND microfocus X-ray tube (λ [Mo Kα] = 0.71073 Å) and operated under cooled con-
ditions. The acquired diffraction data were processed using the APEX3 software program.
The SHELXT software was used to solve the structure via the direct method [64] then the
SHELXT program was used to improve it using the full-matrix least squares approach over
F2 [65]. WinGX software package [66] carried out all calculations. The geometry of the
molecule and intermolecular interactions in the crystal were calculated using the PLATON
program [67]. Molecular drawings were created with the ORTEP3 [66] and MERCURY [68]
program. The non-hydrogen atoms were refined using the anisotropic approximation. The
hydrogen atoms were placed in geometrically calculated positions and included in the
refinement in the “riding” model. One of the solvate molecules of methylene chloride is
disordered by the center of symmetry over two positions. The structure’s crystallographic
data were deposited at the Cambridge Crystallographic Data Center, and Table 1 lists the
registration number and the key characteristics.

Table 1. Crystal data and structure refinement for complex [Pt(L)Py][BF4].

Moiety Formula
Sum Formula

2(C39H55N3O2Pt), 2(BF4), 3(CH2Cl2)
C81H116B2Cl6F8N6O4Pt2

formula weight 2014.28
temperature [K] 100(2)
wavelength [Å] 0.71073

crystal system, space group triclinic, P1 (No. 2)
a [Å] 9.7661(12)
b [Å] 13.8600(15)
c [Å] 16.8963(19)
α [deg] 102.107(3)
β [deg] 91.972(4)
γ [deg] 99.446(3)
V [Å3] 2200.2(4)

Z, Dc [g cm−3] 1, 1.520
absorption coefficient [mm−1] 3.424

F(000) 1016
crystal size [mm] 0.30 × 0.10 × 0.02

Θ range for data collection [deg] 2.4–32.0
limiting indices −14 ≤ h ≤ 14, −20 ≤ k ≤ 20, −25 ≤ l ≤ 25

reflections measured
reflections unique

observed reflections [I > 2σ(I)]

113,538
15,266
14,441

GOF on F2 1.093
data/restraints/parameters 15266/2/516

final R indices [I > 2σ(I)] R1 = 0.0241, wR2 = 0.0588
R indices (all data) R1 = 0.0262, wR2 = 0.0593

largest diff. peak and hole [e Å−3] 2.02 and −1.47
CCDC number 2,277,791

3.3. Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV)

In CV and DPV experiments the concentration of the complex was 5·mM in CH2Cl2
as a solvent with (n-Bu4N)BF4 (0.1 M) as a supporting electrolyte. The electrochemical cell
had three channels and included a glassy carbon (GC) working electrode with a surface
area of 3.14 mm2, a Pt wire auxiliary electrode with a diameter of 1 mm, and Ag/AgNO3
(0.01 M solution in CH3CN) as the reference electrode. The cell was maintained in an
inert nitrogen environment, and all tests were performed with a working solution of 5 mL.
The ferrocenium/ferrocene external standard was used to adjust the values. Prior to
each experiment, the GC electrode was cleaned and polished using 0.05 µm aluminium
oxide polishing paper. Curves were recorded with a Е2Р potentiostat from BASi Epsilon
(West Lafayette, IN, USA) at a constant potential scan rate of 100 mV·s–1. The equipment
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comprises a measuring unit and a DellOptiplex 320 computer that operates the Epsilon-EC-
USB-V200 software.

3.4. Experimental Procedures and Product Characterization
3.4.1. Synthesis of Pt(L)Py

A mixture of 1,3-bis(3,5-di-tert-butyl-2-hydroxyphenyl)-5,5-dimethyl-3,4,5,6-
tetrahydropyrimidin-1-ium chloride LH3Cl (100 mg, 0.179 mmol), Pt(COD)Cl2 (85 mg,
0.227 mmol), and potassium carbonate (30 equiv, 744 mg, 5.4 mmol) was suspended in
pyridine in a Schlenk flask. For 50 min, the resulting mixture was sonicated. The mixture
was then stirred for 20 h at 50 ◦C in a nitrogen environment. The volatiles were removed
from the resulting suspension under reduced pressure. The residue then dissolved in
dichloromethane; the resulting solution was filtered through a Celite plug and concen-
trated under reduced pressure, affording complex Pt(L)Py (115 mg, 81%, orange solid).
1H NMR (CDCl3, 400.17 MHz, 300 K): 1.11 (s, 18H, C(CH3)3), 1.29 (s, 18H, C(CH3)3), 1.31
(s, 6H, C(CH3)2), 3.73 (s, 4H, CH2), 6.92 (d, 4JHH = 2.4 Hz, 2H, CHPhenoxy), 7.01 (d, 4JHH =
2.4 Hz, 2H, CHPhenoxy), 7.41 (td, 3JHH = 6.3, 4JHH = 1.4 Hz, 2H, CHPy), 7.82 (tt, 3JHH = 7.7,
4JHH = 1.5 Hz, 1H, CHPy), 8.81 (dd, 3JHH = 4.8, 4JHH = 1.5 Hz, 2H, NCHPy). 13C{1H}NMR
(100.62 MHz, CDCl3, 300 K) δ 24.72 (C(CH3)2), 28.40 (C(CH3)2), 29.76 (C(CH3)3), 31.69
(C(CH3)3), 34.30 (C(CH3)3), 35.29 (C(CH3)3), 58.41 (NCH2), 115.68 (CHAr), 119.52 (CHAr),
124.65 (CHPy), 136.15 (C–O), 138.01 (CHPy), 138.03 (CAr), 138.16 (CAr), 151.67 (CHPy and
CAr), and 159.37 (Ccarbene). MALDI-TOF MS m/z: calcd for C39H55N3O2Pt [M]+ 792.97,
found 792.4. Anal. Calcd (%) for C39H55N3O2Pt·0.5CH2Cl2: C, 56.79; H, 6.76; N, 5.03.
Found: C, 56.59; H, 6.78; N, 5.05.

3.4.2. Synthesis of [Pt(L)Py][BF4]

In a Schlenk flask, Pt(L)Py (33 mg, 0.041 mmol) was dissolved in dichloromethane
(7.5 mL). Afterwards, the solution of AgBF4 (7.4 mg, 0.037 mmol) in dichloromethane
(7.5 mL) was added dropwise to Pt(L)Py and the mixture was stirred for 1 h at room tem-
perature. After the completion of the reaction, the solution was filtered, concentrated under
reduced pressure, and washed three times with pentane (5 mL). Complex [Pt(L)Py][BF4]
was isolated in 63% yield (20.5 mg) as a dark green solid. Crystals suitable for X-ray
diffraction analysis were grown by diffusion of pentane into a saturated solution of the
product in dichloromethane at 0 ◦C. MALDI-TOF MS m/z: calcd for C39H55BF4N3O2Pt
[M]+ 792.97, found 792.4. Anal. Calcd (%) for C39H55BF4N3O2Pt·0.7CH2Cl2: C, 50.77; H,
6.05; N, 4.47. Found: C, 50.19; H, 7.00; N, 4.98.

3.5. Quantum-Chemical Calculations

Geometry optimizations were carried out using the PBE0/LANL2DZ computational
procedure, which employs the PBE0 functional [69] in conjunction with the LANL2DZ
basis set and associated ECP [70–73] for Pt atom (replaces its 60 core electrons). Absorption
spectra were calculated via time-dependent DFT using the B3LYP functional [74,75] and
a larger basis set (def2-TZVP [76–78]). All these calculations were done with the ORCA
package (version 4.0) [79]. Average local ionization energy analysis was performed using
the Multiwfn package [80].

4. Conclusions

In summary, we have reported the direct and good-yielding synthesis and characteri-
zation of a Pt(II) complex bearing tridentate diphenolate tetrahydropyrimidin-1-ium-based
NHC ligand. The electrochemical behavior of the complex, investigated via voltammetric
techniques, revealed the reversible redox wave at 0.25 V vs. Fc+/Fc couple, which cor-
responds to the oxidation of the non-innocent phenolate moiety with the formation of
Pt(II)-phenoxyl radical complex. The latter was obtained preparatively via “chemical” oxi-
dation of neutral analogue by means of AgBF4 and its electronic structure was determined
using combined UV-Vis/NIR- and EPR-spectroscopy, X-ray diffraction, and DFT studies.



Catalysts 2023, 13, 1291 12 of 15

The obtained g value and spin–density plot suggest the predominant phenoxyl-radical
character of the complex. The intense NIR band supports the delocalization of the unpaired
electron over the ligand. It was found that neutral platinum complex is active in electro-
catalytic oxidation of secondary amine (MEA) via the formation of active Pt(II)-phenoxyl
radical complex oxidant with the icat/ip value of 1.9.

Supplementary Materials: The supporting information for this article can be downloaded at:
https://www.mdpi.com/article/10.3390/catal13091291/s1, Figure S1: NIR spectrum of CH2Cl2
at 298 K, l = 1 cm; Figure S2: NIR spectrum of Pt(L)Py (c = 0.1 mM) in CH2Cl2 at 298 K, l = 1 cm;
Figure S3: NIR spectrum of [Pt(L)Py][BF4] (c = 0.1 mM) in CH2Cl2 at 298 K, l = 1 cm; Figure S4: The
calculated absorption spectra for Pt(L)Py (top graph) and [Pt(L)Py][BF4] (bottom graph). The vertical
lines showing the position of electronic transitions and their intensity (f —oscillator strength) were
broadened by the Lorentz function; Table S1: Selected TD-DFT-calculated excitation energies (ab-
sorption wavelengths), oscillator strengths, and main compositions of the most important electronic
transitions for Pt(L)Py and [Pt(L)Py][BF4]; Figure S5: CV curves recorded from a solution containing
complex Pt(L)Py in different solvents (c = 5 mM) in the presence of (n-Bu4N)BF4 (0.1 M) at the scan
rate of 100 mV·s–1 on the GC working electrode (T = 298 K); Table S2: Peak potentials on the CV
curves of complex Pt(L)Py in different solvents; Figure S6: 1H NMR (CDCl3, 400.17 MHz, 300 K)
spectrum of Pt(L)Py; Figure S7: 13C{1H}NMR (100.62 MHz, CDCl3, 300 K) spectrum of Pt(L)Py.
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