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Abstract: 4-nitrophenol (4-NPh) is a harmful compound produced in large amounts in the chemical
industry, and its reduction to aminophenol (4-APh) using noble metals as catalysts is one of the most
studied processes. The development of noble metal-free catalysts represents an economic advantage
in large-scale applications and contributes to the sustainability of raw materials. Coal fly ash (FA), a
major waste stream from coal combustion, contains an easily recoverable magnetic fraction (FAmag
sample) composed of Fe-rich particles that could substitute noble metal catalysts in 4-NPh reduction,
with the concomitant advantage of being easily recovered via magnetic separation. For this purpose,
anew composite material containing copper ferrite nanoparticles (FAmag@CS@CuFe) was prepared
via a facile, environmentally friendly and cost-effective method based on three components: FAmag
as the core, a biobased polymer chitosan (CS) as the linker and copper ferrite CuFe;O4 nanoparticles
(CuFe) as the active sites. The structure, morphology, composition and magnetic properties of the
FAmag@CS@CuFe material were studied to assess the efficiency of the preparation. It was found
that the biopolymer prevented the aggregation of CuFe nanoparticles and enabled a synergistically
outstanding activity towards the reduction of 4-NPh in comparison to the pristine FAmag and bare
CuFe nanoparticles. The FAm,g@CS@CuFe catalyst showed efficiency and stability in the conversion
of 4-NPh of up to 95% in 3 min over four consecutive cycles. Such remarkable catalytic results
demonstrate the potential of this catalyst as a substitute for expensive noble metals.

Keywords: fly ash; non-noble metal composites; pollutant valorization; nitro compounds; catalytic
reduction

1. Introduction

The extensive use of aromatic nitro compounds by various industries, such as in the
manufacturing of papers, pharmaceuticals, leather, dyes, pesticides and herbicides, has led
to environmental contamination of soil and groundwater [1]. As nitroarenes are highly
toxic and cancerogenic, various techniques have been employed to reduce their concen-
trations in water, including physical (e.g., adsorption/desorption processes [2]), chemical
(e.g., oxidative degradation [3], photodegradation [4] and catalytic reduction [5]) and bio-
logical techniques (e.g., microbial treatment via anaerobic and aerobic biodegradation [6]).
An advantage of the catalytic reduction of 4-nitrophenol (4-NPh) is the selective formation
of 4-aminophenol (4-APh), which is significantly less toxic and a valuable product since it
is an important intermediate in the production of agrochemicals, dyes and drugs, such as
paracetamol and phenacetin [7].
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Noble metals, especially Au, Pt and Pd nanoparticles, have been extensively used
as catalysts for 4-NPh reduction with excellent results (total 4-NPh reduction in less than
3 min [8]). However, their tendency to aggregate during the reaction leads to a significant
reduction in catalytic activity [9]. This activity suppression and the high cost of noble
metals make this process unattractive to be applied at an industrial scale.

Meanwhile, the search for alternatives to noble metals has been growing in recent
years, and transition metal oxides have shown to be promising. Nevertheless, active site
aggregation, which results in lower catalytic activity [10,11], still needs to be overcome.

In this context, nanoparticle impregnation via a proper support is being actively used as
an efficient methodology to avoid aggregation. For example, the use of carbonaceous mate-
rials, such as carbon nanotubes [12], activated carbons [13], carbon black [14] or biochar [15],
is excellent for this purpose due to their high surface area and active site separation. How-
ever, their production demands harsh conditions and multi-step processes [16-18].

Meanwhile, composite materials (natural biopolymer—metallic or metal oxide nanopar-
ticles) have been successfully employed in catalysts for advanced oxidation processes [19],
but studies regarding their application in catalytic reduction are scarce [20] despite the fact
that composite preparation is simple, environmentally friendly and cost-effective and leads
to highly stable, well-dispersed nanoparticles in the biopolymer matrix [21,22].

Among natural biopolymers originated from poly-saccharides, chitosan (CS) is mostly
used as a dispersing or supporting agent since it readily forms hydrogels via crosslinking in
an acidic medium, and also due to its polymeric chain functional groups (-OH and -NHy),
which may chemically or electrostatically interact with metal ions and immobilize them in
the matrix via the formation of ion pairs or ion exchange [23]. Moreover, chitosan is a very
cheap and easily accessible biopolymer that can be obtained from crustacean shell wastes,
thus contributing to minimizing their disposal in landfills [24].

Recently, chitosan-modified Cu,O nanoparticles were tested as a catalyst in 4-NPh
reduction and exhibited improved photocatalytic abilities (KO = 2.28 x 10! min™1),
with the reduction rate increased by 1.7 times compared to free CuyO nanoparticles
(KO =1.32 x 10~! min~!). This improvement was attributed mainly to chitosan-induced
formation of (111) crystal surfaces of Cup,O. However, the catalyst efficiency dropped after
three catalytic cycles to 63% and 76% for CuyO and chitosan-modified Cu,O catalysts,
respectively, in comparison to the total 4-NPh conversion in the first cycle [25]. Similarly;,
the catalytic activity of ruthenium supported on magnetically recyclable biopolymer-based
nanocatalysts, where MnFe, O, was used as the magnetic core and chitosan [26] or chitosan—
carrageenan [27] as the biopolymer, was evaluated for 4-NPh reduction. Both catalysts
showed a high catalytic performance of 100% in the reduction of 4-NPh in less than 1 min
and could be reused in at least 10 cycles without losing their catalytic activity, which
confirmed their high stability [26,27].

Regarding catalyst support materials, it is crucial to improve studies based on alter-
native low-cost materials coming from recycling streams such as coal fly ash (FA), which
are mainly composed of aluminosilicate glass and minor amounts of other materials, in-
cluding Fe-rich particles such as ferrospheres [28,29] that are easily recovered via mag-
netic separation [2—4]. For example, Gadore and Ahmaruzzamn [30] reviewed the use of
FA-based nanocomposites as effective photocatalysts for water remediation; Saputra and
co-authors [31] prepared a Co-supported fly ash catalyst to promote phenol oxidation and
observed a total degradation after 90 min at 45 °C; Yusuff et al. [32] used FA-supported ZnO
as a catalyst in biodiesel production from used oil and obtained an 83.2% yield after 180 min
at 140 °C; Dong et al. [33] used coal fly ash as a Ni-Re catalyst support for CO, methanation.
The bimetallic catalyst achieved 99.55% of CO, conversion and 70.27% of CHj selectivity
under the following conditions: 400 °C, 2000 h~1, 1 atm and H,:CO,:N, = 4:1:0.5.

In a recent study, it was found that the synergy caused by the combination of two
transition metals (Cu and Fe) in bimetallic NPs, and the presence of iron oxide in FA
can increase the efficiency of the catalyst due to enhanced electron transfer [34]. Thus, a
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facile synthesis was developed and tested using a magnetically recyclable three-component
composite material containing copper ferrite (CuFe), FAm,g@CS@CuFe.

As far as is known, for the first time, CuFe nanoparticles were immobilized on fer-
rosphere surfaces using chitosan as linker, creating an innovative composite material to
efficiently reduce 4-NPh and potentially other derivatives.

2. Results and Discussion
2.1. Materials Characterization

The XRF results are listed in Table 1. The FAm,g sample had the highest Si and Al
concentrations, compared to the modified samples. However, after covering of FAmag with
CS using acetic acid (sample FAmag@CS), Si decreased from 36.77 to 16.73 wt.%, and the
Al concentration decreased from 19.01 to 7.82 wt.%, respectively, which was due to some
leaching promoted by acetic acid [35-37]. Consequently, the relative concentration of Fe
increased from 41.63 wt.% in FAmag to 68.49 wt.% in FAmag@CS.

Table 1. XRF results (wt.%) regarding elements of the initial and modified samples.

Sample Al Si P K Ca Ti Mn Fe Cu Zn Sr
FAmag 19.01 36.77 0.0 1.30 0.25 0.55 0.30 41.63 0.00 0.05 0.08
FAmag AA? 13.75 27.40 0.00 2.04 1.42 0.78 0.47 54.06 0.00 0.04 0.04
FAmag@CS 7.82 16.73 4.45 0.57 1.01 0.65 0.21 68.40 0.00 0.03 0.05
FAmag@CS@Cu 4.83 18.10 0.08 1.01 1.30 0.48 0.50 72.72 091 0.01 0.04
FAmag@CS@CuFe 5.72 13.17 3.64 0.38 0.30 0.33 0.26 61.68  14.37 0.00 0.04
FAmag@CS@CuFe b 5.23 13.16 0.64 1.07 0.87 0.45 0.31 61.64 0.84 0.01 0.02

@ The FAmag_AA sample—FAm,; washed with diluted acetic acid (AA). Conditions: 500 mg of FAmag sample
with 150 mL of 0.5% AA was stirred for 60 min at room temperature. ® after 5th catalytic cycle.

Further modifications of FAm,g@CS, by the incorporation of Cu or CuFe, resulted in
the increase in Cu content (from absence to 0.91 and 14.37 wt.%, respectively, for samples
FAmag@CS, FAnag@CS@Cu and FApm,g@CS@CuFe) and Fe content (from 41.63 wt.% to
61.68 wt.%, respectively, for samples FAmag and FAm,g@CS@CuFe). These results con-
firmed the successful formation of the tri-component composites FAma;@CS@Cu and
FAmag@CS @CuPFe.

The FTIR spectrum of chitosan (Figure 1) shows characteristic bands for carbohydrate,
amide and amine groups [38]. A broad, intensive band at 3430 cm ! is attributed to the O-H
stretching vibration of adsorbed water and carbohydrate ring (CS), and a weak shoulder
at 3240 cm ! is due to N-H stretching vibration. The weak bands at 2925 and 2875 cm !
are usually associated with C-H stretching vibrations. The amine deformation vibrations
usually produce strong to very strong bands in the 1660-1575 cm™~! region [39], and the
band observed at 1654 cm~! can be associated with the N-H bending amide vibration.
In addition, C-N stretching vibrations occur in the 1190-920 cm ™! region and overlap the
vibrations of the carbohydrate ring (observed as a band at 1075 cm~!) [40,41]. These most
intensive bands due to O-H, C-H, N-H and C-N vibrations were observed in the modified
FAmag@CS, FAnag@CS@Cu and FApag@CS@CuFe materials, confirming the successful
coating of FAmag by CS (Figure 1).

The band at 580 cm ! in FTIR spectra, usually assigned to metal-oxygen stretching
vibrations [42-44], was only presented in FAy,@CS@Cu and FApm,g@CS@CuFe samples.
This agrees with XRF results (Table 1) and corroborates the success of the preparation of
the multicomponent FAp,;@CS@Cu and FA g @CS@CuFe samples.

To further support the formation of composites containing Cu and CuFe, Raman spectro-
scopic analysis was performed for the as-prepared respective samples, which allowed us to
identify magnetite and hematite in the FAmag sample (Figure 2A), as previously observed [45].
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Figure 1. FTIR spectra of pristine CS, FAmag, CuFe nanoparticles and FAm,g based composite
materials in 4000-500 cm ™! region.
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Figure 2. Raman spectra of the Fe-bearing morphotypes (A) and FAmag based composite materials
(B) in 150-1000 cm 1.

The Raman spectra of the CuFe nanoparticles (Figure 2B) show four Raman active modes
at 670 (A1g), 530 (Fag), 470 (Tog) and 300 (E1g) em ! and the position of the bands in agreement
with the literature data [46—48]. The band at 670 cm™ is usually attributed to the local lattice
effect in the tetrahedral sub-lattice, and the band at 470 cm ™! is typically related to local lattice
in the octahedral sublattice [47,48]. However, in the Raman spectrum of the tri-component
sample (FAmag@CS@CuFe), these bands are overlapped with characteristic bands of iron oxides
(from FAmag), which confirm the presence of CuFe nanoparticles in the composite material.
The Cu-O modes at ~600 cm~! and ~300 cm~! in the Raman spectrum of FAmag@CS@Cu are
expected, but they are overlapped by higher intensity bands of iron oxides present in FAmag.

Scanning electron microscopy (SEM-EDS) experiments were performed to characterize
the samples of FAmag and FAmag-composite materials (samples FAmag@CS, FAmag@CS@Cu
and FAm,g@CS@CuFe). The detailed imaging of the FApmag sample (Figure 3) confirms
that it is mainly composed by Fe-rich morphotypes. The morphotypes are spheres with
variable amounts of aluminosilicate glass embedding Fe-minerals (e.g., wiistite-magnetite



Catalysts 2024, 14, 3

50f16

dendritic crystals, maghemite, hematite, and magnesioferrite) with variable amounts of Fe
(ferrospheres), Fe and Mg (magnesiaspheres and magnesiaferrospheres), and Fe, Ca and
Mg (calcimagnesiaferrospheres) (Figure 3A-D) [31].

20 pm

Z1 Ferrosphere C 72 Magnesiaferrosphere D

Fe

Fe

Fe
C

50 pum z B PR BB el PR 10 pm

Figure 3. Detailed imaging and X-ray microanalysis of samples FAmag, FAmag@CS and FAmag@CS@CuFe
(SEM-EDS, BSE mode): (A) overview of Fe-rich spherical morphotypes in sample FAmag
(x2000); (B) FAmag, example of ferrosphere (Z10) and magnesiaferrosphere (Z11) (x5000);
(CD) EDS spectra 210 and Z11 of black square areas in “B”; (E) FAmag@CS sample, chitosan
(dark grey) binding magnetic spheres, and Z5 EDS spectrum of chitosan layer (x2500);
(F-H) micrographs of FAmag@CS@CuFe sample showing homogeneous distribution of CuFe nanoparti-
cles (EDS spectrum Z4 in (F); x10,000) on chitosan ((G,H); x1750 and x7500, respectively).
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Chitosan coating of FAmag particles is clearly observed in Figure 3E, as well as the
successful incorporation of Cu (Figure S1, Supporting Materials) and CuFe nanoparticles
on the chitosan surface, Figure 3F-H. It is clear that CuFe nanoparticles are uniformly
dispersed (Figure 3G,H) in the chitosan film (FAm,g@CS@CuFe material), as observed
by the EDS mapping images of FAmL.g@CS@CuFe, presented in Figure S2 (Supporting
Material). These observations are in accordance with ones observed in the literature for
composites using different metals (Ag-Au, Ag-Pd, and Au-Pd) and gum kondagogu as
natural biopolymer [20].

The XRD diffractograms of FAmag, FAmag@CS, FAya;@CS@CuFe and CuFe NP sam-
ples are presented in Figure 4. The CuFe nanoparticles show diffraction lines at 18.4°, 30.1°,
35.6°,38.8°, 43.2°, 53.8°, 57.1°, and 62.6°, corresponding to the tetragonal structure of the
copper ferrite [49,50]. The XRD pattern of FAmag confirms the presence of SiO, (quartz)
with a diffraction line localized at 26.6° and iron oxides with diffraction peaks at 26 = 18.2°,
30.2°,35.6°,43.2°, 53.8°, 57.1° and 62.8°, corresponding to the spinel structure of Fe,Os3 or
Fe30y. In the FApy,;@CS@CuFe composite, the diffraction peaks of CuFe were detected
along with a characteristic diffraction peak of FAmag at around 26.6° (20), corresponding to
quartz, indicating the successful preparation of the material.

mag ™~

FA, @CS@CuFd

20 30 40 50 60 70

20 (°)
Figure 4. XRD patterns of CuFe nanoparticles, parent FAmag and composite FAma;@CS@CuFe.

2.2. Catalytic Performance

Prior to catalytic tests, the 4-NPh adsorption studies were performed using the
as-prepared samples (FAmag, CuFe and composites: FAmag@CS, FApa;@CS@Cu and
FAmag@CS@CuFe). It was found that the materials had a negligible adsorption of 4-NPh
after 180 min of contact. The maximum of 4-NPh adsorption capacity (3.6%) was observed
for the pristine FAmag sample. Thus, no kinetic studies of the 4-NPh adsorption process
were further performed.

The reduction of 4-NPh, performed in the presence of NaBH,4 at room tempera-
ture and using the catalysts listed above, is expected to take place in two steps [51].
Firstly, the 4-NPh is spontaneously converted to p-nitrophenolate ion (4-NPh") by the
addition of NaBHy (pHreaction medium~11, PKa@-Nphy = 7.1) [52], which changes the color of
the solution from pale to deep yellow. In the second step, in the presence of catalysts, the
hydrogenation of 4-NPh™ takes place to form a colorless solution of 4-APh.

The catalytic reduction of 4-NPh in the presence of CuFe nanoparticles, FAmnag and
multicomponent composites is shown in Figure 5, and the evolution in the UV-Vis spec-
trum of the 4-NPh solution during the catalytic reduction is presented in Figure S3,
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Supporting Material and the catalytic reduction profiles presented in Figure 5. The catalyst
FAmag@CS@CuFe showed the best catalytic performance, with total 4-NPh conversion in
3 min (Table 2, Figure 5).

CuFe

FA_@Cs@Cure

A @Cs@cy

FA, @CS

*—FA 5 . . . . . . . . .

10 15 20 25 30 0 1 2 3 4 5 6 7 8 9 10
Time (min) Time (min})

Figure 5. Catalytic reduction process for 4-NPh with CuFe nanoparticles, FAmag, and two- and
three-component composites: (A) kinetic plot; (B) linear fit between In (C/Cy) of 4-NPh and time.

Table 2. Results of catalytic reduction of 4-NPh with pristine FAmag and FAmag composite-based
catalysts 2.

3 b d 11 f
Entry Run Catalyst 2:;:0 %C © (nlfi:rl) R2e (miIrffllgfl)

1 1 CuFe 3(1) 88 1.02 x 10° 0.98 10.2
2 1 FAmag 180 53 4.00 x 1073 0.99 0.04
3 2 FAmag 20(5) 98 1.86 x 1071 1.00
4 1 FAmag@CS 180 8 5.00 x 1074 0.97 0.005
5 2 FAmag@CS 180(20) 52 470 x 1073 1.00
6 1 FAmag@CS@Cu 30 88 8.18 x 1072 0.95 0.818
7 2 FAmag@CS@Cu 30(5) 94 1.22 x 1071 0.98
8 1 FAmag@CS@CuFe 8 3(1) 99 1.98 x 10° 0.99 19.8
9 2 FAmag@CS@CuFe 8 6(2.5) 81 496 x 1071 1.00
10 3 FAmag@CS@CuFe 8 10(3) 97 4.79 x 1071 0.99
11 4 FAmag@CS@CuFe & 10(3) 96 4.02 x 1071 0.99
12 5 FAmag@CS@CuFe 8 10(3) 85 1.82 x 1071 0.99
13 1 FAmag_AA R 180 48 38 x 1073 0.98 0.04

@ Experimental conditions: initial 4-NPh concentration (5 x 1075 mol - dm~3), NaBHy (5 x 1072 mol - dm—3) and
catalyst loading (100 mg), volume total V = 30 mL under stirring. b Reaction time, in parenthesis induction time.
¢ Conversion of 4-NPh calculated from %C = 100 — [(A¢/Ag) X 100%], where Ay and A are absorbance values of
4-NPh (A = 400 nm) at ¢ = 0 and at the end of the reaction (min). ¢ K1 is apparent first-order kinetic rate constant
(min~1), calculated from In(Af/Ag) = —K1 x t. ¢ Correlation coefficient. fK1is activity parameter calculated
from K’1 = K1/m, where m is the total catalyst mass (g) used in the reaction. & Reaction was performed in sealed
spectroscopic cell (V = 3 mL) experimental conditions: initial 4-NPh concentration (5 X 1075 mol - dm~?), NaBHy
(5 x 1072 mol - dm %) and catalyst loading (10 mg). I The FAmag_AA sample—the parent FAmag washed with
diluted acetic acid (AA); conditions: a mixture containing 500 mg of FAmag sample with 150 mL of 0.5% AA was
stirred for 60 min at room temperature.

The bare CuFe, under the same experimental conditions, showed 88% conversion
of 4-NPh in 3 min. The FAm,g@CS@Cu also presented catalytic activity in 4-NPh reduc-
tion (substrate conversion 88% in 30 min), but the efficiency was far less than that of pris-
tine CuFe or the FAn,;@CS@CuFe composite, due to the need for an induction period.
The FAmag and FAmag@CS showed almost no activity after 30 min (less than 10% of substrate
conversion) and led to conversion of only 53% and 8% of 4-NPh, respectively, after 180 min.

The reproducibility of FAm,g utilization as catalyst in the 4-NPh reduction was tested
in three independent experiments under the same experimental conditions. The kinetic
profiles and the substrate conversion (Figure 6; Figure S4 Supporting Material) suggest
that the active sites in FAnag are uniformly distributed, resulting in A %Cynpp < 1, as
previously observed by the authors using magnetic size-fractions of FA [45].
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Figure 6. The results of catalytic reduction of 4-NPh using FAmag as catalyst, triplicate test (A) kinetic
curves and (B) conversion of 4-NPh during the catalytic reduction process, 1-3Dup—the number of
experiment duplications. Conditions: mM,garyst = 100 mg, ¢ npp =5 X 107> M, 30 mL, 56.7 mg of NaBHy.

Kinetic studies of the catalytic reduction of 4-NPh were performed. The reactions were
performed using a significant excess of NaBH4 compared to the substrate concentration, un-
der the assumption that the BH4 ™ concentration remains constant during the reaction cycle.
These studies were assessed using pseudo-first-order kinetics. The rate constants obtained
from linear correlation of In(C/Cy) vs. time for 4-NPh reduction were 1.98 min—!,1.02 min—?,
0.0818 min~!, 0.004 min~! and 0.0005 min ! for FApa;@CS@CuFe, CuFe, FAp,;@CS@Cu,
FA and FA@CS catalysts, respectively (Figure 5B). The calculated activity parameter (reac-
tion rate constant per unit mass) was 19.800 min~'g~!,10.200 min~'g~!,0.818 min~'g~!,
0.040 min~'g~! and 0.005 min~!g~?, respectively (Table 2). Using FAm.;@CS@CuFe as
catalyst, the reaction rate and catalyst activity increased 495 times in comparison with
FAmag, 24 times in comparison with FAm,;@CS@Cu, and 2 times in comparison with bare
CuFe. These high activities may derive from abundant amine and primary and secondary
hydroxyl groups on chitosan that prevented CuFe nanoparticle aggregation on the material
surface (Figure 3G,H). A similar effect was observed using polydopamine-graphene/Ag-Pd
nanocomposite as the catalyst for reduction of nitrophenol in the presence of NaBHjy as re-
ducing agent. The high activity of the catalyst originated from numerous amine and catechol
groups on polydopamine, which ensured the dispersion of bimetallic Ag/Pd nanoparticles
on the surface of the nanocomposite [53].

The details of 4-NPh reduction reaction conditions along with the catalytic rate con-
stants are summarized in Table S1 (Supplementary Material). The FA ., @CS@CuFe catalyst
exhibited superior catalytic activity compared with the other FA-based catalysts, even those
containing noble metals. For example, FA-supported Pd-Ag bimetallic nanoparticles led
to faster 4-NP reduction in the presence of NaBHy in water (K1 = 0.7176 min~!) than
their monometallic analogues FA-Pd (K1 = 0.5449 min~!) and FA-Ag (K1 = 0.5572 min~ 1),
as well as their physical mixture (K1 = 0.4075 min~!) [54], which was 2.7 times slower than
the rate obtained with FApy,;@CS@CuFe (K1 =1.9761 min~!) in this work. Furthermore,
the rate constant of 4-NPh reduction over core-shell fly ash@polypyrrole/Au compos-
ite microspheres (K1 = 0.474 min~') [55] was 4.2 times lower than the one obtained for
FAmag@CS@CuFe (K1 =1.9761 min™1).

Similarly, the FAnm,;@CS@CuFe catalyst exhibited enhanced catalytic activity com-
pared to the core-shell structured CuFe;O4/ Ag@COF nanocomposites (K1 = 0.77 min~1)
as well as its two-component composite CuFe;Oy/Ag (K1 = 0.25 min~!) or CuFe,0,@COF
(K1=0.15min"1) [56], eggshell membrane-CuFe;O4 nanocomposite (K1 = 0.748 min~1) [57],
cellulose nanocrystal (CNC)-supported magnetic CuFe,O4@Ag@ZIF-8 nanospheres
(K1 = 0.64 min—1) [58] or reduced graphene oxide (RGO) nanocomposite with the best
catalytic performance among other RGO/CuFe;O4 composites, i.e., material consisting of
96 wt.% CuFe;O4 and 4 wt.% RGO (K1 = 1.032 min~1) [59] vs. K1 = 1.9761 min~! obtained
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in this work. The superior activities of FAm,g@CS@CuFe can be ascribed to the synergistic
effect of CuFe;Oy, CS and FApag and the homogeneous distribution of CuFe nanoparticles.

Other examples with good performance in 4-NPh reduction were found for the
nanocomposite catalysts consist of carbon dots and CuFe nanoparticles [60], possibly
due to the smaller particle size of CuFe;O4 in composite than pure CuFe,Oy, and conse-
quently the larger surface area of the composite and better adsorption of the substrate
and reductant and good electron-transport properties of the C-dot shell [61,62]. However,
carbon dot preparation is complex and demands high energy-consuming hydrothermal
conditions for coating [62] and core—shell [61] catalysts.

Stability of Catalysts

The recycling of the catalysts is essential to make the process more attractive for
application at industrial scale. In this sense, to assess the reusability of the best performing
catalyst (FAmag@CS@CuFe), trials were conducted under the same reaction conditions in a
sealed quartz cell (optical path1=1 cm, V =3 mL). After the first cycle, the catalyst was
fixed at the cuvette bottom using an external magnet, the reaction mixture was removed by
decantation, and a new portion of 4-NPh and NaBH,; was added to the remaining catalyst.
This process was repeated four times. The results are summarized in Figure 7, and the
corresponding UV-Vis spectra are shown in Figure S5 (Supporting Materials).

1.0 1s 2n 3rd 4th 5th
0.8
0.6
QO
© 04
0.2
([ ]
0.0 ! ‘ ! ! ! ! !
10 15 20 256 30 35 4

0 5 0

Time (min)
Figure 7. Plot of five consecutive cycles for reduction of 4-NPh over FAm,g@CS@CuPFe.

The FAmag@CS@CuFe catalyst was highly active during five consecutive cycles and
led to 85% conversion of 4-NPh in the first 10 min. However, the apparent K1 gradually
decreased in each cycle (from K1 1st ¢ycje = 1.98 min~! to K1 5th cycle = 1.82 X 10! min~1),
which may have been due to some leaching of CuFe. The XRD pattern of the recycled
catalyst (Figure S6, Supporting Material) was similar to that of the as-prepared sample,
suggesting that the spinel structure of the oxides did not change during five consecutive
cycles. However, after the last catalytic cycle, the copper content of the FAp,;@CS@CuFe
composite was significantly reduced (14.34 wt.% for the as-prepared sample vs. 0.84 wt.%
after the fifth cycle), suggesting Cu leaching from the sample (Table 1), whereas the Fe
concentration did not change (61.68 wt.% vs. 61.64 wt.%). However, the Raman spectrum
of the FAmag@CS@CuFe catalyst after the fifth reaction cycle showed no features pertaining
to Cu- or Fe-oxides, indicating their partial conversion into metallic Cu® or FeY, respec-
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tively [60]. Another possibility is the adsorption of borohydride on the particle surface
(CuY), decreasing the reduction potential of the metallic nanoparticle [63]. This can promote
the oxidative dissolution of reduced Cu® due to high susceptibility toward oxidation by
oxygen, and may cause the copper leaching.

Figure 8 displays the results of room-temperature magnetization vs. applied mag-
netic field curves for all samples. All samples followed a soft ferromagnetic-like behavior
where magnetization reached saturation at relatively low fields (<5 kOe), and small re-
manence magnetization and coercive field values (<3 emu g~ ! and 58 Oe) were observed.
Such behavior is consistent with the presence of both CuFe;O,4 and Fe3O4 magnetic phases.
The two most striking features were (i) the larger saturation magnetization displayed by
the FAmag@CS@CuFe material after the last catalytic cycle, particularly in comparison with
the as-prepared FAma,g@CS@CuPFe (blue curve), and (ii) the larger paramagnetic-like linear
behavior exhibited by CuFe nanoparticles. The latter can typically be attributed to the
linear susceptibility associated with uncompensated spins at the nanoparticle surface [64].
More importantly, the former feature can be explained by the enhancement of the higher-
saturation magnetization Fe;Oy4 phase at the expense of the lower-saturation magnetization
CuFe;O4 phase—leading to an overall increase in the saturation magnetization of the
sample [65,66]. These results corroborate the XRF results (Table 1) and support the hypoth-
esis of Cu leaching from the sample during catalytic cycles.

20
— FA,,@CS@CuFe
S 10|
>
E |
o
G Of
©
N
g
5 10f
E [ FAmaG
20 CuFE
201 Fa_ @Cs@CuFe*
| | | | |
40 -20 0 20 40

Magnetic field (kOe)

Figure 8. Room-temperature magnetization vs. magnetic field curves of CuFe nanoparticles, and
bare FAmag and composite FAmag@CS@CuFe, where FAma;@CS@CuFe* is the catalyst after the last
catalytic cycle.

The formation of Cu® was observed by Kang et al. [67] during reductive decomposition
of CuFe nanoparticles in a methane atmosphere, where Cu segregation and simultaneous
formation of magnetic Fe3O, occurred in the first reduction step of CuFe. The Cu®*
reduction to metallic Cu® was also observed by Park et al. [68] for water-washed coal fly
ash-supported copper catalysts in the presence of NaBHy. The authors suggested that
the Cu®/Fe®* and Cu®/Fe?* were the active species that led to the enhanced reduction of
4-NPh. This conclusion suggests that the catalysts should be more active in consecutive
cycles, and it agrees with the results from the second cycle of FApy,;@CS@Cu (Table 2),
where the apparent K1 increased in the second cycle from 8.18 x 1072 t0 1.22 x 10~! min~1.
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Summarizing, the Raman spectrum of the FAp,;@CS@CuFe material after the cat-
alytic cycle suggests partial reduction of Cu?* to Cu® (from CuFe) and Fe?* or Fe3* to Fe’
(from CuFe or from ferrospheres, i.e., FepOs or Fe304). The study of magnetic properties of
FAmag@CS@CuFe suggests the formation of Fe304 from CuFe;O4. All of these data support
the statement that Cu® is formed. In aqueous solution, the BH; ™~ ions (from NaBHj) are
adsorbed on the surface of the catalysts, and the active species acts as intermediate for
electron transfer from BH4~ (donor) to substrate 4-NPh (acceptor). During this process,
Cu?* can be partially converted into Cu’ and induce the changes in the valence state be-
tween Cut —Cu?* and Fe?*-Fe®* ion pairs in CuFe,Oy, which can enhance catalytic activity,
which was suggested by H Zheng et al. [69]. Thus, the presence of Cu’ plays a key role in
enhancing the catalytic reduction of 4-NPh, as it can boost the electron transfers of CuFe;Oy
and directly transfer electrons from BH, ™ ions to 4-NPh. Thus, the oxidative leaching of
Cu’ to solution causes that activity of FAmag@CS@CuFe to decrease in the following cycles.

3. Materials and Methods
3.1. Reagents and Materials

In this work, the following reagents were used: chitosan (CS, medium molecular
weight, 75-85% deacetylated, Merck KGaA, Darmstadt, Germany), sodium tripolyphos-
phate (TPP, technical grade, 85%, Merck KGaA, Darmstadt, Germany), iron(III) chloride hex-
ahydrate (FeCls x 6H,O, for analysis, Merck KGaA, Darmstadt, Germany), copper(Il) chlo-
ride dihydrate (CuCl, x 4H;0, ACS reagent, >99.0%, Merck KGaA, Darmstadt, Germany),
potassium bromide (>99%, FTIR grade, Merck KGaA, Darmstadt, Germany), 4-nitrophenol
(4-NPh, >99%, Merck KGaA, Darmstadt, Germany), sodium borohydride (NaBHg, >99%,
Merck KGaA, Darmstadt, Germany), 4-aminophenol (>99%, Merck KGaA, Darmstadt,
Germany), sodium hydroxide (NaOH, >99.5%, Merck KGaA, Darmstadt, Germany), potas-
sium carbonate, (KoCOs3, 98%, VWR Chemicals, Carnaxide, Portugal). All experiments
were conducted using ultrapure water (Millipore, specific resistivity 18 MQ - cm ™!, Merck
Millipore, Darmstadt, Germany).

The Fe-rich fraction (sample FAm,g) was magnetically recovered from a fly ash sample
from a pulverized coal-fired thermal power plant (Abrantes, Portugal) [45].

3.2. Preparation of Materials
3.2.1. Synthesis of CuFe,O4 Nanoparticles

The CuFe;O4 nanoparticles were prepared by an aqueous coprecipitation method
described elsewhere [70]. Briefly, 4.0 mmol CuCl, x 4H,O and 8 mmol FeCl3 x 6H,O
were dissolved in 100 mL distilled water, then 15 mL of NaOH solution (5.0 M) was added
dropwise (1.5 mL min~!). The mixture was heated at 100 °C and mechanically stirred for
5 h. The obtained dark brown precipitate was separated by external magnet, washed with
water until pH 7, then washed with ethanol and acetone, and then dried at 80 °C for 12 h.
Henceforward, this sample will be denominated as “CuFe”.

3.2.2. Preparation of Chitosan-Coated Fe-Rich Morphotypes

The sample of “chitosan-coated Fe-rich morphotypes” was prepared according to a
modification of a method described by Calvo et al. based on the ionic gelation of CS with
TPP anions [71]. An acetic acid solution (0.5%, v/v, 25 mL), stirred at RT for 1 h, was used
to disperse 0.5 g of FAm,g sample while dissolving CS (0.7 g). The TPP solution (2.5 g/L,
50 mL) was injected dropwise into the CS solution by using a syringe pump with 1 mL/min
injection rate. After the complete addition of TPP, the mixture was mechanically stirred at
1000 rpm for 1 h. The formed powder product was then collected with an external magnet,
washed with water until pH 7, and dried under vacuum at RT for 24 h. Henceforward, this
sample will be denominated as “FAmag@CS”.



Catalysts 2024, 14, 3

12 of 16

3.2.3. Modification of FAmag@CS with CuCl,

Briefly, 0.5 g FAmag was dispersed in 0.5% acetic acid together with CuCl, x 4H,O
(0.3 mmol) and CS (0.7 g), and mechanically stirred for 1 h. Then, 50 mL of TPP solution
(2.5 g/L) was injected dropwise, and the mixture was stirred for 1 h. The powder product
was separated with an external magnet, washed with water and dried under vacuum at RT
for 24 h. Henceforward, this sample will be denominated as “FAmag@CS@Cu”.

3.2.4. Modification of FAm,g@CS with CuFe,Oy

One three-component composite was prepared by wet impregnation based on ionic
gelation using sodium tripolyphosphate as cross-linking agent. Briefly, 1.0 g FAmag was
dispersed in 0.5% acetic acid together with freshly prepared CuFe nanoparticles (0.5 g) and
CS (1.3 g) and mechanically stirred for 1 h. Then, 100 mL of TPP solution (2.5 g/L)
was injected dropwise, and after complete addition, the mixture was stirred for 1 h.
The powder product was separated with an external magnet and washed with water
and dried under vacuum at RT for 24 h. Henceforward, this sample will be denominated
as “FAmag@CS@CuFe”.

3.3. Sample Characterization Methods

The chemical characterization of FAmag, FAmag@CS, FAmag@CS@Cu and FA g @CS
@CuFe included elemental analysis using a portable X-ray fluorescence analyzer (X-MET7500,
Oxford Instruments, Bristol, UK) equipped with a 45 kV Rh tube and a high-resolution
silicon-drift detector (SDD). Element contents were presented as an average value calculated
by the analyzer based on three separate measurements for each sample (20 s per measure).

For the detailed imaging and semi-quantitative chemical analysis, experiments were
carried out in a Scanning Electron Microscopy with Energy Dispersive Spectroscopy
(SEM/EDS) FEI Quanta 400 FEGESEM/EDAX Genesis X4M at the Materials Centre of the
University of Porto—CEMUP, Porto, Portugal.

The FTIR spectra were obtained in KBr pellets (Merck, KGaA, Darmstadt, Germany,
spectroscopic grade) containing 0.4 wt.% material, 1:250 sample KBr ratio using a Jasco,
(Tokyo, Japan) FT-IR 460 Plus spectrometer. All spectra were collected at room temperature,
in the 400—4000 cm~! range using a resolution of 4 cm~! and 32 scans.

Raman analyses were performed on powder samples at room temperature using a
Jobin—Yvon LabRaman spectrometer (Horiba, France) equipped with a CCD camera and a
He—Ne laser at an excitation wavelength of 632.8 nm. An optical microscope from Olympus
(Tokyo, Japan) with a 100x objective lens was used to focus the laser beam on the sample
surface and to collect the scattered radiation. A neutral density filter was used to reduce the
power of the laser by 75% (D.06) to avoid laser-induced transformation of the Fe-bearing
phases. Scans from 100 cm~! to 1000 cm~! were performed on the particles’ surface.
The acquisition time and respective accumulations were individually adjusted to acquire
an optimized spectrum at spectral resolutions near 1 cm~!.

X-ray diffraction (XRD) analyses were performed at IFIMUP (Departamento de Fisica
e Astronomia da Universidade do Porto, Portugal) on a Rigaku Smartlab diffractometer
(Tokyo, Japan). The XRD measurements were performed at room temperature over the range
20 = 15—80° using Cu Ko radiation (A = 1.5406 A) and the Bragg —Brentano 8 /26 configuration.

Measurements of the magnetic properties of materials were investigated by using a
commercial Quantum Design MPMS 3 SQUID magnetometer. The magnetization (M), as
a function of the applied magnetic field (H) measurement, was performed at 300 K for a
maximum H of 50 kOe.

3.4. Catalytic Reduction

The catalytic reduction of 4-NPh to 4-APh was carried out at room temperature using
NaBH} as the reducing agent. During the experiments, 30.0 mL of a 5.0 x 107> M stock
solution of 4-NPh and 56.7 mg of NaBH, were constantly stirred. With the addition of
NaBHy, the pale-yellow color of the solution turned to bright yellow due to the formation
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of nitrophenolate ions. After addition of FAmag-based catalysts, the yellow color of the
solution progressively vanished, following the reduction of 4-NPh. The samples were
collected at fixed intervals of time and centrifuged. The conversion of the substrate to the
4-APh was monitored by UV-Vis spectroscopy measurements of the absorption spectra in
the range 200-500 nm, using a quartz cell (1 =1 cm).

After each catalytic cycle, the catalysts were separated using an external magnet and
washed with water to remove potential traces of substrate product and reductant adsorbed
on the catalyst surface. The recovered catalysts were dried at 60 °C for 12 h under vacuum
and reused in a new reaction cycle under identical experimental conditions. Adsorption
experiments were carried out in the presence of the catalysts in the dark, and a blank
experiment in the absence of catalyst was also performed. Reusability of the material with
the best catalytic performance was evaluated for five continuous cycles.

4. Conclusions

Catalysts based on coal fly ash, a coal combustion residue, were prepared by an efficient
method using a bio-degradable polymer (chitosan) as linker and CuFe as catalytic active
sites, avoiding the use of noble metal-based catalysts. Multi-technique characterizations
(XRE, FTIR, SEM-EDS and RAMAN) confirmed the successful preparation of the target
tri-component composite, FAmag@CS@CuFe, which exhibited catalytic activity superior to
that of the other catalysts studied and, to some extent, those described in the literature,
which can be ascribed to the specific characteristics of its structure and the synergistic effect
of CuFe and chitosan. The recyclability of this composite is remarkable, although with some
negligible losses after the fifth cycle, showing that the reported catalyst is very promising
for the industrial-scale use of coal fly ash as support for active transition-metal oxides to be
used in the reduction of nitro compounds or other typical catalytic reduction reactions.

Supplementary Materials: The following supporting information can be downloaded at:
https:/ /www.mdpi.com/article/10.3390/catal14010003 /s1, Figure S1: Detailed imaging and X-ray
microanalysis of the FAm,g@CS@Cu sample; Figure 52: Elemental area-mappings for FAmag@CS@Cu
sample; Figure S3: Change of UV-Vis spectrum of 4-NPh during the reduction of 4-NPh by NaBH, in
the presence of: A—FAmag@CS@CuFe, B—CuPFe, C—FAmag@CS@Cu, D—FAmag and E—FAmag@CS
catalysts (initial 4-NPh concentration ¢ = 5.5 x 107> M, catalyst dose = 3.3 mg L ™!, NaBH, concen-
tration ¢ = 0.05 M); Figure S4: Reproducibility tests of FAmag catalyst (initial 4-NPh concentration
c=5.5 x10 ~ M, catalyst dose = 3.3 mg L1, NaBH, concentration ¢ = 0.05 M); Figure S5: Stability tests
of FAmag@CS@CuFe catalyst (initial 4-NPh concentration ¢ = 5.5 X 107°M, catalyst dose = 3.3 mg L1
NaBHy concentration ¢ = 0.05 M); Figure S6: XRD patterns of CuFe nanoparticles, samples FAmag,
and composite FAmag@CS@CuFe, where FAmag@CS@CuFe* is the catalyst after the last catalytic cycle,
Table S1: Comparison of catalytic conditions and apparent first-order rate constants for reduction of
4-NPh by FAmag@CS@CuFe and similar catalytic systems recently reported.
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