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Solar photocatalysis has evolved rapidly over the past few decades and has received
significant attention for its green, safe and renewable energy benefits, particularly in the
current era of global crisis, being considered as a potential solution to the major problems
we face today, such as the shortage of fossil fuels and the impact of human activities
on the environment [1,2]. The photocatalytic process is based on the unique ability of
semiconductor catalysts to generate electrons and holes when exposed to light, and these
photo-generated carriers are then used to interact with substances in the system, leading to
the degradation of contaminants, water splitting into H2 production, the reduction of CO2
and the synthesis of high-additional-value chemicals [3]. Among the numerous catalysts for
realizing photocatalysis, graphitic carbon nitride (g-C3N4) has attracted extensive attention
due to its low cost, suitable band structure, and easy structural adjustment [4].

g-C3N4 is a carbon-based material that can be produced via the thermal polymerization
reaction using precursors such as melamine, dicyandiamide, cyanamide, urea, thiourea,
ammonium thiocyanate and other similar substances [5]. Although g-C3N4 possesses
various advantages, its fast photo-generated carriers’ recombination and narrow visible-
light absorption region [6,7] limit its further practical application. There is therefore an
urgent need, but still a significant challenge, to rationally design and develop g-C3N4-based
photocatalysts though various modification strategies. Adjusting the morphology and
structure of carbon nitride is one of the methods of modification. A review of reaction
parameters, structure design and exfoliation methods focuses on the effect of various
parameters of the synthesis process of g-C3N4 on the photocatalytic activity and on the
methods of construction of microstructures [8]. Moreover, the synthesis of g-C3N4 was
been described by Biswas et al. [9]. In addition, Shi et al. added phloxine B to the process of
preparing g-C3N4 to produce black g-C3N4 nanosheets containing cyanine defects, which
not only reduces the distance of charge transfer, but also enhances the photocatalytic
activity through overlying the photothermal effect, providing beneficial ideas for the design
of photocatalysts to degrade antibiotic pollutants [10].

Next, the construction of heterojunctions is also one of the means to enhance the
photocatalytic activity of g-C3N4 [11,12]. When two semiconductors are in contact, the
internal electric field (IEF) can be formed because of the difference between their Fermi
levels, and the separation of electrons and holes is promoted under the action of IEF, ef-
fectively solving the problem of the fast recombination of photon-generated carriers [13].
Khan’s team fabricated a dual Z-scheme heterojunction photocatalyst by anchoring P and
S co-doped g-C3N4 on Ag/AgI/WO3, which effectively reduced the recombination of
photo-generated electrons and holes due to the enhancement of IEF, and effectively im-
proved the photodegradation efficiency [14]. Li et al. prepared an isotype heterojunction of
phosphorus-doped g-C3N4/phosphorus–sulfur co-doped g-C3N4 (P-g-C3N4/PS-g-C3N4)
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using a two-step calcination method, which not only suppressed electron–hole complexa-
tion through IEF to prolong the electron lifetime, but also lowered the interfacial resistance
and accelerated the electron mobility [15].

In addition, loading co-catalysts on the surface of g-C3N4 is also a means of improve-
ment. For example, Al-Hartomy’s group using Pt as the co-catalyst to coat on the g-C3N4
framework for the efficient photocatalytic reduction of CO2 to CO and CH4 [16]. Peng et al.
loaded g-C3N4 onto carbon dots modified with SBA-15 mesoporous silica by means fo
precursor impregnation, where the carbon dots act as co-catalysts with the ability to transfer
photo-generated electrons, while the mesoporous silica has a larger specific surface area
and porosity [17]. Furthermore, Kim et al.’s team loaded anthraquinone (AQ) onto g-C3N4,
endowing the conduction band with the ability to trap electrons and was able to reduce the
photocatalytic decomposition of produced H2O2, improving the selectivity of H2O2 produc-
tion [18]. Not only that, Sun et al. also promoted the visible-light photocatalytic reduction
of carbon dioxide by loading sodium hydroxide on the g-C3N4 surface. In the thin layer of
alkaline electrolyte formed on the carbon nitride surface, it not only acts as a hole acceptor
but also maintains the cycle of carbonic acid production and decomposition [19]. Li’s
group synthesized a g-C3N4/MoS2 composite with a hydrogen production rate 13.44 times
higher than that of the pure phase under visible light due to the fact that MoS2 acted as a
co-catalyst to significantly enhance the transfer of photo-generated electrons to H+ [20]. In
conclusion, the modification of g-C3N4 materials is based on the following three principles:
(i) structural adjustment of the g-C3N4 material itself to increase the specific surface area as
well as the active sites; (ii) construction of g-C3N4-based heterojunctions to separate the
photogenerated carriers by IEF; and (iii) combining with co-catalysts to make up for the
problems of g-C3N4 itself.

To conclude, this Special Issue entitled “Development of g-C3N4-Based Photocatalysts:
Environmental Purification and Energy Conversion” provides a comprehensive overview
of recent advances in the synthesis, modification, and energy-environmental applications
of g-C3N4, an excellent photocatalyst. We hope that this collection of important research
papers will inspire further research in this field.
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