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Abstract: The synthesis of dimethyl adipate (DAP), a stable configuration of adipic acid, from biomass-
derived cyclopentanone (CPO) and dimethyl carbonate (DMC) constitutes an attractive greener route
than petroleum-based industrial processes. Solid basic catalysts such as MgO, Mg5(CO3)4(OH)2·4H2O,
KOCH3 and Ca(OCH3)2 have been used achieving a DAP yield up to 30% at 533 K. In addition to the
type of catalyst, other operating conditions such as the substrate, reaction time, temperature and CPO
concentration have been studied. The methylation of DAP and CPO and the self-aldol condensation
of CPO to form dimers and oligomers are reactions that occur in parallel with the production of DAP.
It has been established that the main challenge is the self-aldol condensation of CPO. It has been
identified that at short reaction times, to prevent methylation, and at dilute concentrations, to avoid
CPO self-condensation, the DAP formation rate is much higher than these other competitive reactions.
Finally, it should be noted that a DAP productivity up to 3.45 g·gcat−1·h−1 has been achieved under
mild conditions.

Keywords: cyclopentanone; dimethyl carbonate; dimethyl adipate; solid basic catalysts

1. Introduction

Adipic acid (AdA) is an essential building block used to manufacture nylon 6-6, adipic
esters and polyurethanes. Among its many applications, its uses in the pharmaceutical,
cosmetic and food industries stand out [1,2]. Currently, adipic acid is mainly produced
from petroleum-based feedstock. Benzene is hydrogenated to cyclohexane and further
treated to synthesize ketone/alcohol oil (KA-oil), a mixture of cyclohexanone and cyclo-
hexanol, which is oxidized with nitric acid to obtain AdA [3]. Given that this process is
not sustainable due to its several steps and the nitrous emissions produced [4], a number
of greener routes have been proposed over the last decade [5,6]. Lignocellulose biomass,
made up of cellulose, hemicellulose and lignin, presents itself as a renewable carbon source,
from which the conversion to valuable chemical products has attracted interest over the
last years [7–9]. Among the processes to obtain AdA from biomass, an attractive process
is the synthesis of dimethyl adipate (DAP) from cyclopentanone (CPO) and dimethyl
carbonate (DMC). CPO is an interesting compound used in the synthesis of fungicides,
pharmaceuticals, flavors, fragrances and rubber chemicals. Currently, it is obtained through
petrochemical routes [10,11]; however, recently, its synthesis from biomass has been thor-
oughly studied via the hydrogenation of furfural [12–15]. DMC is an attractive solvent
and reactant due to its chemical properties and low toxicity. It is used in methylation and
carboxymethylation reactions as an eco-friendly substitute to phosgene, dimethylsulfate
and metal halides [16,17]. Furthermore, its origin is also green, since it can be obtained
from the reaction between CO2 and CH3OH [18]. Given that CO2 is one of the compounds
responsible for the greenhouse effect, its capture and use in the synthesis of carbonates
is highly interesting. By choosing the DAP synthesis from CPO and DMC, we combine
biomass and CO2 to synthesize biopolymers (Scheme 1).
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from the CPO, forming an enolate that attacks the carbonyl group of DMC, possibly ob-
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be further methylated in the reaction media to synthesize dimethyl 2-methyladipate 
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DAP has been obtained from CPO with PdCl2, methanol and CO instead of DMC [19,20].
However, the use of DMC as a solvent and reactant makes the reaction greener. To carry out
the desired synthesis, temperatures between 473 and 533 K and basic catalysts are required.
The use of solid catalysts instead of homogeneous ones has several advantages. The ease
with which the catalyst can be separated from the reaction mixture and later reused, the
reduction in the waste produced during the reaction as a result of the elimination of the
catalyst neutralization step, the capacity to run continuous processes and the ability to work
at higher temperatures are just a few of them [21]. DAP has been obtained using organic
carbonates as catalysts [22,23]. Its synthesis was also reported using a nanostructured
CeO2, giving an 84% DAP yield; however, a large amount of catalyst (catalyst/CPO
wt% = 42) and highly diluted solutions (CPO/DMC wt% = 2.2) were used [24]. These
authors have also tested MgO as a catalyst, giving a 47% yield of DAP. This catalyst
was also studied by Wu et al. [25] under milder conditions (CPO/DMC wt% = 14.0 and
catalyst/CPO wt% = 14.0), obtaining a 44% yield of DAP. Other cyclic ketones have been
reported to react with DMC in a similar reaction using MgO and NaOCH3 as catalysts,
giving moderate yields [26].

Regarding the reaction mechanism, DMC facilitates both methylation and carboxyme
thylation reactions, as mentioned above. Therefore, the methylation of reagents, interme-
diates and products can represent a competitive route of the selective pathway towards
DAP. Scheme 2 shows a plausible mechanism. The basic catalyst abstracts a proton from
the CPO, forming an enolate that attacks the carbonyl group of DMC, possibly obtaining
the intermediate 2-carbomethoxy-cyclopentanone (CMCP). Later, the previously leaving
methoxide anion attacks CMCP, giving DAP (route a). The desired product can be further
methylated in the reaction media to synthesize dimethyl 2-methyladipate (DMAP). This
compound can also come from the carboxymethylation of 2-methyl cyclopentanone (MCP),
which is obtained by CPO methylation (route b). Furthermore, the self-aldol condensation
of CPO can occur, giving 2-cyclopentylidene-cyclopentanone (CPCP) (route c).

This study aims to analyze the different routes proposed in the mechanism to under-
stand the selectivity of each of the products. It has been confirmed that the main challenge
is to achieve a high selectivity towards DAP, since the methylation of the reactants and
products and the self-aldol condensation of CPO to form dimers occurs at the same time. A
study of the operation conditions has been conducted to understand the different reaction
pathways’ relevance.
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2. Results and Discussion

Initially, a study on the performance of different basic solid catalysts was con-
ducted to determine the most promising catalyst to synthetize DAP (see Table S1 in the
Supporting Information). It has been mentioned in the Introduction section that basic
catalysts based on Ce have shown good behavior [24]. However, the tested cerium catalysts
did not achieve a CPO conversion higher than 10% under our operation conditions, even
after 2 and 4 h at 533 K (entries 1 to 3 in Table S1). CaO and Ca(OH)2 gave higher CPO
conversions; however, the selectivity for DAP did not reach satisfactory values (entries
6 and 7 in Table S1). Carbonates such as CaCO3, (NH4)2CO3 and Na2CO3 went up to a
30% conversion of CPO (entries 8 to 10 Table S1), but also, the selectivity for DAP was
considerably low and even negligible. The catalysts that showed a higher CPO conversion,
over 80%, were KOCH3, Ca(OCH3)2, MgCO3 (HC), Mg(NO3)2·6H2O and MgO (entries
4, 5, 11, 14 and 15 in Table S1), with the magnesium catalysts being the ones showing the
highest DAP yields. Mg(NO3)2·6H2O did not prove to be a heterogeneous catalyst, since
it melted at the high temperatures employed in the reaction; therefore, it was ruled out.
Finally, Ca(OCH3)2 showed a high DMAP yield, compared to the other catalysts, which
could be due to the methylation of DAP in the reaction media, suggesting that shorter
reaction times would be more appropriate. The KOCH3 catalyst did not show a high DAP
or DMAP yield in the tested conditions; however, a new compound was found, which will
be discussed later on. An interesting fact is that in some of the entries, we observe high
conversions of CPO and relatively low yields of identified products. This study aims to
explain the low carbon balance of this reaction.

2.1. A Kinetic Study of the Reaction Using MgO and MgCO3 (HC)

Based on the DAP yield data, the chosen basic catalysts for this kinetic study were
MgO and MgCO3 (HC). Accordingly, the selectivity has been displayed versus the con-
version of CPO for both basic solid catalysts (Figure 1 and Figure S1 in the Supporting
Information). Although there are some quantitative differences between both basic cata-
lysts, their behaviors are similar from a qualitative point of view. The products identified
are the same, and their evolution over the conversion of CPO is similar. The CPCP dimer
selectivity is the highest (over 40%) at a lower conversion of CPO. Since the self-aldol
condensation reaction is not reversible, the decrease in the selectivity observed at a higher
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conversion means that this compound is transformed into other side products, likely via
the successive aldol condensation of CPCP into heavier oligomers. The DAP selectivity
reaches a maximum at higher conversions (between 2 and 3 h of reaction) and then drops.
Another product is DMAP, for which the yield increases with the conversion, suggesting
the methylation of DAP occurs in the presence of DMC. It would explain, at least partially,
the drop in the DAP selectivity at a higher conversion of CPO, indicating that DAP, once
formed, further reacts in the reaction medium. Traces of MCP are also identified as a
reaction product without a clear trend.
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CPO, 5.4 g DMC, 0.05 g catalyst and 533 K.

Here, it should be noted that all the products identified after the reaction can be
explained considering the reaction pathways shown in Scheme 2. It suggests that under
our operation conditions, in the presence of basic solid catalysts, the reaction of CPO with
DMC follows the three proposed pathways. Moreover, a further transformation of DAP
in the reaction medium with DMC can also occur. Therefore, to increase the selectivity
and consequently, the yield of DAP, route (a) in Scheme 2 should be promoted, whereas
the other nonselective routes (b and c) must be inhibited. The main challenge here is the
self-aldol condensation reaction of CPO to form the CPCP dimer and other oligomers, since
its maximum selectivity is higher than the DAP selectivity. In an attempt to inhibit the
undesired side products, the three routes mentioned above will be studied more in detail.

2.2. Study of the Selective Pathway (Route a) Using MgO and MgCO3 (HC) Catalysts

The DAP yield using these two catalysts is approximately 30% at high conversions
(Table S1). It has already been proven that route (c) in Scheme 2 is responsible for most of
the selectivity loss. Nonetheless, there are other factors to take into account when route (a)
in Scheme 2 is followed. Other side products could be formed before the synthesis of DAP,
and additionally, DAP could further react in the reaction media to give other products,
such as DMAP (Scheme 2). These two possibilities have been studied in more detail.

The selective pathway describes the synthesis of our target monomer DAP, where
CMCP (Scheme 2) is possibly the intermediate compound in this route. This intermediate
is highly reactive because of its acid proton located between the two carbonyl groups
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(Scheme 3a). It is possible that, instead of following the selective route, the base catalyst
abstracts this proton, synthesizing a different active intermediate that could end up giving
other unidentified products at the expense of the DAP yield (Scheme 3a). To evaluate this
hypothesis, a reaction using MCP as the substrate instead of CPO and MgCO3 (HC) as the
catalyst was conducted. In this case, due to the methyl group of the substrate, two possible
enolates can be formed once the MCP is deprotonated: the kinetic and thermodynamic
enolate. Given the use of high temperatures and low amounts of catalyst, the thermody-
namic enolate is favored (Scheme 3b) [27–29]. This means that the produced intermediate
lacks that acid proton found in CMCP. Since this proton is absent, this intermediate can
only synthesize DMAP through a ring-opening reaction (Scheme 3b). If the acid proton in
CMCP was responsible for the low DAP yields, in this second reaction (Scheme 3b), the
DMAP yield would be higher. However, the DMAP yield was 30%, comparable with the
29% of DAP obtained using CPO as the substrate (Table 1, entries 1 and 2). Consequently,
the consumption of the intermediate CMCP to form new compounds other than DAP can
be ruled out as a source of DAP selectivity loss.
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Table 1. Product distributions for MgCO3 (HC) and MgO catalysts using different substrates.

# Catalyst Substrate

Catalytic Results (%)

XSubs
YDAP

Route a
YMCP

Route b
YDMAP

Route b/Further a
YCPCP

Route c

1 MgCO3 (HC) CPO a 85 29 0 3 10
2 MgCO3 (HC) MCP a 80 0 - 30 0
3 MgCO3 (HC) DAP b 32 - - 5 -
4 MgO DAP b 32 - - 5 -

a Reaction conditions: 0.5 g of substrate, 5.4 g DMC and 0.05 g catalyst at 533 K during 2 h of reaction; b 1 g
of substrate.

Another challenge to this route is the transformation of the formed DAP into DMAP
and other side products. To evaluate this possibility, DAP was exposed to each catalyst
under the same reaction conditions (Table 1, entries 3 and 4). In both cases, quite similar
results were obtained: a DAP conversion of 32% and a DMAP yield of 5%. Along with
DMAP formation, DAP transforms into another four unknown products detected using
GC (see chromatograms in Figures S2 and S3 of the Supporting Information). Therefore, it
can be concluded that, at least partially, the observed DMAP is formed by the methylation
of DAP and that part of the lack of carbon balance in the CPO transformation to DAP
is due to the transformation of DAP to compounds that cannot be quantified using GC.



Catalysts 2024, 14, 86 6 of 12

Consequently, the reaction time is an important variable, since the longer the reaction time,
the higher the yield of DAP, but the further transformation to DMAP and other products is
also favored; thus, a balance is required.

2.3. Cyclopentanone Methylation (Route b) Using KOCH3 Catalyst

We have also studied the methylation of CPO to form MCP and its further conver-
sion to DMAP (route b in Scheme 2). Since we found out that the potassium methoxide
(KOCH3) catalyst showed preference to the methylated products compared to other cata-
lysts, we have considered it more appropriate to use this basic catalyst in the study of this
nonselective route.

Figure 2 shows the conversion and yields at different temperatures using KOCH3 as
the catalyst. The yields of DMAP at all temperatures are higher than those of DAP. This
could mean that the transformation of DAP to DMAP occurs faster using this catalyst.
However, when the reaction was conducted at 473 K, the conversion of CPO is considerably
low, whereas the DMAP yield is almost double to that of DAP, indicating clearly that the
KOCH3 catalyst is more selective to route b. Furthermore, a new compound was observed
when the reaction was conducted at higher temperatures (503 and 533 K). Using GC–MS,
this product was identified as dimethyl 2,5-dimethyl adipate, a DAP with two methyl
groups labeled as DMMAP, a compound that comes from the further methylation of DMAP
with DMC under the operating conditions.
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Reaction conditions: 0.5 g CPO, 5.4 g DMC and 0.05 g catalyst for 2 h.

2.4. The Self-Aldol Condensation of CPO (Route c) Using MgCO3 (HC), MgO and
Ca(OCH3)2 Catalysts

The other nonselective and therefore competitive reaction for the synthesis of DAP is
the self-aldol condensation of CPO (route c in Scheme 2). The relevance of this route can be
previously observed in Figure 2, where a high CPCP yield at 473 K is reached, comparable
to the other product yields. However, this value decreases with the increase in temperature.
It suggests that temperature is an important variable in the selectivity towards the different
routes. In this case, and since route c required to be compared to the selective synthesis of
DAP (route a), the chosen basic catalysts were MgO and Ca(OCH3).

Figure 3 shows the use of MgO as the catalyst at 503 K and 533 K. In both cases,
the CPCP yield at a shorter reaction time is higher than the DAP yield. While the CPCP
yield goes up to 24% at 503 K before further reacting, with the increase in temperature
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(533 K), this maximum yield is only 16%. Regarding the behavior of Ca(OCH3)2 catalysts,
the difference between the CPCP yield is not so easily appreciated. While the maximum
at 503 K is 16%, at 533 K, it is 12% (see Figure 3). This finding shows a lower selectivity
for route c at higher temperatures. Nonetheless, the maximum DAP yield in all cases is
approximately 30%, which could be due to the competitive nature of the aldol condensation
reaction. The self-aldol condensation of CPO has proven to be one of the main challenges
of this reaction regardless of the temperature. While the selectivity for CPCP is higher than
that for DAP at shorter reaction times, a decrease in the yield of CPCP has been observed
as the reaction time increases, possibly due to its ability to continue to react with more CPO
to form oligomers [30].
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Reaction conditions: 0.5 g CPO, 5.4 g DMC and 0.05 g catalyst.

An approach to obtain a higher selectivity for DAP by eliminating the self-aldol con-
densation reaction is to use lower concentrations of CPO. Therefore, the CPO concentration
was decreased, while the amount of catalyst, MgCO3 (HC), was kept unchanged. In this
case, the most appropriate way is to represent the formation rate of the main products,
such as DAP and CPCP, against the concentration of CPO, which is shown in Figure 4 for
1 h of reaction.

At 1 h of reaction, the formation rate of DAP raises from 21.6 to 212.4 mmol h−1·g−1,
while the CPO concentration decreases from 9.3 to 2.3 wt%, since both the CPO conversion
and DAP selectivity increase (Figure S4). On the other hand, the formation rate of CPCP is
low (ca. 65 mmol h−1·g−1) and remains practically constant regarding the concentration of
the starting solution. These values result from the fact that the conversion of CPO and the
CPCP selectivity decrease (Figure S4).
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The self-aldol condensation of CPO is the most relevant competitive reaction in the
synthesis of DAP, and more research will be required to fully understand how to sup-
press this side reaction and obtain high DAP yields. At short reaction times (1 h), it has
been observed that the CPO concentration is key to slowing down the advance of this
unwanted reaction.

2.5. DAP Productivity for Different Basic Solid Catalysts

The productivity of the desired product (DAP) was calculated and compared with the
results from other authors and collected in Table 2. MgCO3 (HC) and MgO obtained yields
up to 30% at 533 K after 2 h (Table S1, entries 11 and 15), giving productivities of 3.00 and
2.90 g·gcat

−1·h−1, respectively (Table 2, entries 2 and 3). On the other hand, the reaction
using Ca(OCH3)2 at 533 K proved to be faster, with a 25% yield after 1.5 h, and therefore,
a productivity of 3.45 g·gcat

−1·h−1 (Table 2, entry 1). These values are higher than those
previously reported on basic catalysts, where the productivities are below 1.5 g·gcat

−1·h−1

(Table 2, entries 4–6). The use of less catalyst and shorter reaction times allowed us to
achieve a higher productivity, being relevant parameters to implement this process at the
industrial scale [31].

Table 2. Productivities of the best catalysts in optimized conditions.

# Catalyst CPO/DMC (wt%) Cat/CPO (wt%) T (K) t (h) Prod DAP (g/gcat·h) Ref

1 Ca(OCH3)2 9.3 10 533 1.5 3.45 This work
2 MgCO3 (HC) 9.3 10 533 2 3.00 This work
3 MgO 9.3 10 533 2 2.90 This work
4 MgO 14.0 14.0 533 5 1.09 [25]
5 MgO 2.2 42.0 533 3 0.65 [24]
6 CeO2-nanorod 2.2 42.0 533 5 0.69 [24]

The data presented in this work confirm that the synthesis of DAP (selective pathway)
is a challenge. The most relevant nonselective competitive pathways that we have demon-
strated to occur are as follows: (i) the methylation with DMC towards DMAP, either by
the reaction of MCP with DMC or the methylation of the product of interest (DAP) in the
reaction medium and (ii) the self-aldol condensation of the CPO to its dimer CPCP. The
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successive condensation to higher MW oligomers cannot be ruled out at a high tempera-
ture and long reaction times. The relevance of each one will depend on the catalyst used
and the operating conditions. Nonetheless, the CPO self-aldol condensation route is the
main barrier to reaching a high DAP selectivity. Unfortunately, the strategies followed by
decreasing both the methylation and CPO self-aldol condensation in favor of the selective
route have not been satisfactory at high CPO conversions, and more work needs to be
performed in this direction.

In addition to looking for new compositions of basic catalysts that are more selective
for the synthesis of DAP, another interesting approach would be to carry out this reaction
in a continuous flow to study the DAP selectivity with the space velocity and catalyst
deactivation. Lastly, the nature and strength of the basic sites of the catalyst could be
interesting topics in future studies, since they could be important factors to control the
reaction selectivity.

3. Materials and Methods
3.1. Reagents and Catalysts

The materials used as catalysts in the reactions were purchased from the follow-
ing: (i) Alfa Aesar (Haverhill, Massachusetts, USA), Mg5(CO3)4(OH)2·4H2O [labeled as
MgCO3 (HC)] and Ca(OH)2, purity 95%; (ii) Panreac (Madrid, Spain), MgCl2·6H2O; and
(iii) Sigma Aldrich (St. Louis, MO, USA), MgO nanopowder, KOCH3 95%, Ca(OCH3)2
97%, Na2CO3·10H2O ≥ 99.0%, (NH4)2CO3 ≥ 30.0% NH3 basis, CaCO3 99.95–100.05% dry
basis, CaO 99.9% trace metal basis, MgSO4 anhydrous ≥ 99.5%, Mg(NO3)2·6H2O ≥ 98%,
Ce(OH)4, CeO2/ZrO2 nanopowder 99.0% and CeO2 nanopowder.

The liquids used as solvents, reactants and products such as dimethyl carbonate 99%,
cyclopentanone 99%, dimethyl adipate ≥99% and dimethyl 2-methyl adipate were supplied
by Sigma Aldrich, and 2-methylcyclopentanone 99% by Acros Organics (Thermo Fisher
Scientific: Waltham, Massachusetts, USA). Finally, decane ≥ 99% was used as the internal
standard, and it was purchased from Sigma Aldrich. Mixtures at different concentrations
of these products have been used for the chromatographic calibration.

3.2. Catalytic Activity Measurements

The reaction was carried out in a batch stainless steel reactor (20 mL volume) with
an inner Teflon liner. The catalyst (0.05 g) was added first, followed by the CPO (0.5 g
or 6 mmol) and the solvent, DMC (5.4 g or 60 mmol). The reactor was inserted in an
aluminum block to maintain the temperature, and a thermocouple inserted in the block
was used to control the reaction temperature. The mixture was heated at a temperature
range between 473 and 533 K and stirred at 1200 rpm. The autogenous initial pressure was
between 20 and 25 bars. After the reaction, the reactor was placed in an ice bath to stop
the reaction. Afterward, an aliquot of the reaction (ca. 1.0 g) was taken from the mixture
and decane (0.05 g) was added as the internal standard. The solution was analyzed using a
gas chromatograph (6890N Agilent Technologies, Madrid, Spain) equipped with a flame
ionization detector and an HP-5 column. The CPO conversion, the product yields and the
productivities of the catalysts were calculated according to the following expressions:

CPO conversion(mol%) =
n0

CPO − nCPO

n0
CPO

× 100 (1)

Product yield(mol%) =
nprod

n0
CPO

× 100 (2)

Productivity
(

g·g−1
cat ·h

−1
)
=

YDAP·MWDAP/MWCPO
C/S·t (3)

with n0
CPO being the initial mole quantities introduced in the reactor, nCPO and nprod being

the mole quantities of CPO and the product after the reaction, YDAP being the DAP yield in
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%, MWDAP and MWCPO being the molecular weights of DAP and CPO, respectively, C/S
being the catalyst to substrate weight ratio in % and t being the time in hours. For the yield
calculation, the stoichiometric relationship was taken into account.

4. Conclusions

The main challenge in the synthesis of dimethyl adipate from cyclopentanone and
dimethyl carbonate using basic solid catalysts is the inhibition of the self-aldol condensation
of cyclopentanone. This reaction can further evolve by synthesizing heavy oligomers, con-
suming the cyclopentanone starting material, and therefore, limiting the yield of dimethyl
adipate. Other undesirable reactions such as the methylation of dimethyl adipate and cy-
clopentanone occur under the reaction conditions. The extent of these competitive reactions
will depend on the catalyst and operating conditions used such as the temperature, reac-
tion time, and concentration of cyclopentanone. The methylation of the dimethyl adipate
formed is favored with the reaction time, and the self-aldol condensation of cyclopentanone
with its concentration. Despite this, it can be remarked that we have achieved a dimethyl
adipate productivity up to 3.45 g·gcat

−1·h−1 under moderate reaction conditions.
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and 533 K. Figure S2: Chromatogram of DAP decomposition with MgCO3 (HC) as the catalyst.
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