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Abstract: The practical application of formic acid production through the hydrogenation of CO2 has
garnered significant attention in efforts to tackle the challenges associated with (1) achieving net-zero
production of formic acid as a chemical feedstock and (2) improving hydrogen storage and transport.
This study focuses on demonstrating the continuous operation of a trickle bed reactor for converting
CO2 into formate using palladium on activated carbon (Pd/AC). Optimal temperature conditions
were investigated through a dynamic operation for 24 h, achieving the maximum productivity of
2140 mmolFA·gPdsurf.

−1·h−1 at 150 ◦C and 8 MPa, with an H2/CO2 ratio of 1:1; however, catalyst
deactivation was observed in the process. Stability tests performed under continuous operation
at 120 ◦C and 8 MPa with an H2/CO2 ratio of 1:1 indicated a gradual decline in productivity,
culminating in a 20% reduction after 20 h. A comprehensive analysis comparing fresh and spent
catalysts revealed that the diminished catalytic activity at elevated temperatures was attributed to the
partial sintering and leaching of Pd nanoparticles during the hydrogenation process. These findings
offer insights for the future development of novel Pd-based catalyst systems suitable for continuous
hydrogenation processes.

Keywords: CO2 hydrogenation; formic acid; heterogeneous catalyst; palladium; continuous process

1. Introduction

The urgent need for eco-friendly energy and chemical production driven by rapid
climate change has spotlighted CO2 hydrogenation to formic acid and its derivatives [1–3].
This approach not only repurposes emitted CO2 but also offers an efficient hydrogen
storage solution [4–7]. Recent successes in the use of formic acid as a fuel cell energy
source in public transport have highlighted its potential as a hydrogen-based economy [8].
Moreover, recent LCA-TEA reports highlight the positive impact of CO2-hydrogenated
formate (FA) production in thermo- or electrochemical catalytic systems, especially with
the rapidly emerging technology for the integration of renewable energy [9–14]. Electro-
chemical systems for producing formate are gaining prominence because of their efficient
integration with renewable energy sources and their potential to significantly reduce the
impact of global warming, showcasing promising electrolyzer performance [15–17]. How-
ever, the scalability of these systems to continuously produce concentrated formate and
the cost implications of the separation process require further development. The thermo-
catalytic systems face challenges in terms of economic aspects, such as high reactant costs,
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significant energy demands for purification, and lower catalytic efficiencies, hindering
their competitiveness against traditional fossil fuel-based processes. The development of
efficient catalytic systems is crucial for enhancing process efficiency from an economic
standpoint. Intensive research has focused on various catalytic systems, with a significant
emphasis on heterogeneous catalyst systems, which offer numerous advantages, such as
easy separation from the reaction medium [3,18–22]. Among these, Pd-based catalytic
systems have demonstrated exceptional performance [23,24]. However, most studies have
focused on simple batch reactions using Pd-based catalyst systems. However, for practical
applications in industrial processes, a thorough investigation of catalytic systems in feasible
reactor types is also essential to realize the full potential of the CO2-hydrogenated FA
production process.

Trickle-bed reactors are multiphase reactors with continuous and co-current flows
of liquid (in the downward direction) and gas (in the upward or downward direction)
reactants over a stationary (or fixed) solid catalyst. Throughout the history of industrial
processes, trickle-bed reactor systems have typically been used in diverse sectors such as
petroleum, fine chemicals, and biochemical fields, particularly contributing to hydrogena-
tion and hydrodesulfurization in refineries owing to various advantages such as facile
installments, minimal catalyst loading, and ease of catalyst separation [25,26]. From this
perspective, trickle-bed reactors show potential for the mass production of CO2-based
formic acid by hydrogenation. Building on this, our research team developed a Ru catalyst
supported on a covalent triazine framework and demonstrated its exceptional stability
through long-term performance evaluations using a trickle-bed reactor system [27–29].
Although extensive research is ongoing, the feasibility of Pd catalysts must be proven
during continuous process operations.

In this study, we investigated the continuous hydrogenation of CO2 to FA using a
commercially available palladium on activated carbon (Pd/AC) catalyst in a trickle-bed
reactor system. This study is the first attempt to assess the feasibility of using a Pd catalyst in
such a system through dynamic operations at varying reaction temperatures. In particular,
we analyzed the deactivation behavior of the Pd catalysts during extended continuous tests.
Through comprehensive characterization, we aimed to elucidate the causes of the decreased
catalytic activity and provide insights into the continuous application of Pd-based catalysts.

2. Results and Discussion
2.1. Continuous Hydrogenation of CO2 to Formate over Trickle-Bed Reactor
2.1.1. Preliminary Analysis on the Fresh Pd/AC Catalyst

Before continuous hydrogenation, inductively coupled plasma optical emission spec-
trometry (ICP-OES) was performed to determine Pd loading in the Pd/AC catalyst (Table 1).
The results revealed a Pd content of 4.45 wt% for the fresh Pd/AC catalyst. Given this
result, the catalytic activity of the catalyst during the continuous process was quantified
using formate productivity, which represents the moles of formate produced per mole
of surface-exposed Pd metal determined by the CO-chemisorption per hour. Further,
H2 temperature-programmed reduction (H2-TPR) was performed to understand the re-
dox property of the supported Pd species on the Pd/AC catalyst (Figure 1). Pd-based
catalysts absorb hydrogen even under ambient conditions and readily form palladium
hydride (PdHx). Consequently, the first negative peak at 63 ◦C indicates the decomposi-
tion of PdHx generated by the hydrogen absorption of Pd nanoparticles at the ambient
temperature [30,31]. The result also revealed that the reduction in PdO species began at ap-
proximately 150 ◦C and completed at approximately 400 ◦C. Considering this, the reduction
condition for the Pd/AC catalyst bed was determined to be 300 ◦C for 3 h. Additionally,
the dispersity of the Pd species was determined by the CO chemisorption, giving a Pd
dispersion of 29.4% with a mean diameter of 3.82 nm.
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Table 1. Characterization results on the fresh Pd/AC through ICP-OES, CO-chemisorption, and N2

adsorption and desorption isotherm analysis.

Sample Pd Content a

(wt%)
D b

(%)
d b

(nm)
SABET

c

(m2g−1)
Vpore

c

(cm3g−1)
dmean

c

(nm)

Fresh Pd/AC 4.45 29.4 3.82 1000 0.53 2.13
Spent Pd/AC 3.25 26.9 4.15 1090 0.61 2.24

a Pd content was determined by ICP-OES analysis. b Dispersity (D) and mean particle size (d) of the Pd species
were obtained from CO-chemisorption. c Porosity parameters were calculated based on N2 adsorption and
desorption analyses using the Teller (BET) method.
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Figure 1. H2-TPR analysis on fresh Pd/AC catalyst.

2.1.2. Dynamic Operation with a Variation of Reaction Temperature

Figure 2a presents the results of the dynamic hydrogenation of CO2 to formate in
a trickle-bed reactor utilizing a Pd/AC catalyst. To observe the temperature-dependent
catalytic activity and reaction behavior, the temperature of the trickle-bed reaction was
incrementally varied from a mild condition of 40 ◦C up to 150 ◦C. The Pd/AC catalyst bed
was fixed axially in the middle of the reactor and, before the reaction, was subjected to a
reduction process at 300 ◦C, aimed at eliminating any oxidation that may have occurred on
the catalyst surface when exposed to the atmosphere. The reaction feed for the trickle-bed
reactor system, such as CO2, H2O, or Et3N, was continuously supplied to the top of the
reactor using high-pressure liquid pumps, whereas the flow of H2 gas was controlled by
a mass flow controller. During this process, the reaction was conducted under a constant
pressure of 8 MPa, and the superficial velocity of CO2 was maintained at 1.67 cm·s−1.
At a low temperature of 40 ◦C, the Pd/AC catalyst demonstrated negligible catalytic
activity. However, a notable enhancement in catalytic efficiency was observed when
the temperature range was extended from 80 to 150 ◦C. Within this temperature range,
the average FA production over 3 h escalated from 420 to 1930 mmolFA·gPdsurf.

−1·h−1.
Correspondingly, the average turnover frequencies (TOFavg.) showed an increase from 45
to 205 h−1. However, a discernible decline in productivity was observed when the system
was operated at 150 ◦C for 3 h. Therefore, a temperature setting of 120 ◦C was identified
as the most favorable for subsequent operations. After dynamic operation, the stability
of continuous hydrogenation in the trickle-bed reactor system was evaluated for 20 h
(Figure 2b). The result confirms the promising stability; however, a gradual decrease in the
catalytic activity from 1030 to 800 mmolFA·gPdsurf.

−1·h−1 was observed. To determine the
underlying principle of the decline in catalytic activity, nitrogen adsorption and desorption,
X-ray photoelectron spectroscopy (XPS), transmittance electron microscopy (TEM), and X-
ray absorption spectroscopy (XAS) were used to analyze the changes in the physicochemical
properties of the fresh and spent catalysts.
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2.2. Comprehensive Characterizations by the Comparison of Fresh and Spent Catalysts
2.2.1. N2 Adsorption and Desorption Analysis

To elucidate the alterations in the pore structure of the Pd/AC catalyst, N2 adsorption–
desorption isotherms were obtained for both fresh and spent catalysts, as depicted in
Figure 3. The fresh Pd/AC catalyst displayed a notable adsorption onset at p/p0 < 0.1,
which is characteristic of type I and II isotherms (Figure 3a) [32]. This pattern suggests
the predominance of micropores within the activated carbon support. By contrast, the
isotherm profile of the catalyst recovered post-20-hour hydrogenation (Figure 3b) reveals a
trend similar to that of the fresh catalyst, indicating that the pore structure remains largely
unchanged throughout the reaction. The t-plot curves for both the fresh and spent catalysts,
shown in Figure 3c,d, demonstrate a sharp increase in the adsorption volume in the lower
p/p0 region up to 0.3, featuring a micropore volume of 0.398 cm3g−1 for the fresh catalyst
and 0.427 cm3g−1 for the spent catalyst. This indicates considerable adsorption within the
micropore structure. Moreover, the Brunauer–Emmett–Teller (BET) specific surface areas of
the fresh and spent Pd/AC catalysts were 1002 and 1095 m2g−1, respectively, which were
strikingly similar (as listed in Table 1). Hence, it was evident that the pore structure of the
catalyst underwent minimal alteration during continuous hydrogenation.
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2.2.2. Transmittance Electron Microscope Analysis

Variations in the dispersion state of the Pd species supported on the catalyst were
investigated using high-resolution transmission electron microscopy (HR-TEM), comparing
fresh and spent catalyst samples (Figure 4a,b). For both catalysts, a substantial distribution
of Pd nanoparticles was observed across the support structure. Fast Fourier transform (FFT)
analysis of the high-angle annular dark-field scanning transmission electron microscopy
(HAADF-STEM) images revealed that the lattice fringe d-spacing of the fresh catalyst
was 2.26 Å, aligned with the (111) plane of the face-centered cubic (fcc) lattice structure
of metallic Pd [33]. By contrast, the spent catalyst exhibits a lattice fringe d-spacing of
1.90 Å, corresponding to the (200) plane of the metallic Pd species. However, particle size
distribution (PSD) analysis highlighted the differences between the two catalysts. The
mean PSD of the Pd nanoparticles in the fresh catalyst is 3.74 nm, whereas that of the
spent catalyst increased to 4.02 nm. This suggests that the Pd nanoparticles undergo partial
sintering under reductive hydrogenation conditions.
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2.2.3. X-ray Diffraction Analysis

The microstructural characteristics of the fresh and spent Pd/AC catalysts were
meticulously analyzed using wide-angle X-ray diffraction (XRD) to gain insight into the
crystallinity of the support materials and the phase change of the supported Pd species
(Figure 5). The XRD analysis results, as shown in Figure 5, show distinct patterns that are
crucial for understanding the structural properties of the catalysts. The patterns feature
broad and low-intensity peaks at 2θ values of approximately 23◦ and 42◦. These angles
correspond to the (002) and (100) planes of carbon, respectively. The broadness and low
intensity of these peaks suggest the amorphous nature of the carbon material, highlighting
the lack of long-range crystalline order that is typically associated with graphitic structures.
Furthermore, the analysis revealed distinct and strong peaks at 2θ values of approximately
40◦ and 47◦, marked with diamonds in the figure. These peaks are attributed to the (111)
and (200) planes of the metallic Pd species, respectively. The presence of these peaks is
consistent with the TEM results. Furthermore, diffraction peaks at 2θ values of 34◦ and
43◦ were observed (marked with circles), indicating the presence of PdO species in the
fresh catalyst. XRD analysis revealed notable changes in the Pd/AC catalyst before and
after use. Specifically, an increase in the intensity of peaks at 2θ values of 40◦ and 47◦ and
disappearance of the peaks at 34◦ and 43◦ were observed for the spent Pd/AC catalyst
in comparison to the fresh catalyst. This increase in peak intensity is a clear indication of
the sintering of the supported Pd nanoparticles, which suggests that these nanoparticles
coalesced into larger particles and simultaneously reduced the PdO species during the
continuous hydrogenation process.
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2.2.4. X-ray Photoelectron Spectroscopy Analysis

The oxidation states of the Pd species in both the fresh and spent catalysts were
meticulously examined using X-ray photoelectron spectroscopy (XPS), which provided a
crucial understanding of the chemical environment and electronic structure of the catalysts,
as shown in Figure 6. The detailed C1s XPS spectra of the fresh and spent Pd/AC catalysts
are shown in Figure 6a,b, respectively. The spectra reveal multiple peaks at the binding
energies of 284.8, 286.3, 287.4, 289.0, and 291.0 eV, which correspond to various carbon
bonds: C–C/C–H (indicative of graphitic or hydrocarbon structures), C–O (alcohol or
ether functionalities), C=O (carbonyl groups), C–O=O (carboxylate groups), and π – π*
transitions (associated with conjugated or aromatic systems), respectively. Furthermore, the
analysis of the Pd 3d5/2 XPS spectrum of the fresh Pd/AC catalyst, presented in Figure 6c,
reveals two distinct peaks. These peaks correspond to the metallic palladium (Pd0) at a
binding energy range of 335.7–336.1 eV and palladium in a +2 oxidation state (Pd2+) at
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a range of 337.3–338.1 eV [34,35]. The presence of these peaks indicates the coexistence
of metallic and oxidized forms of Pd on the catalyst surface. Notably, the intensity of
the peak associated with Pd2+ was significantly higher than that of Pd0, with a ratio of
approximately 2.8:1, suggesting the predominance of oxidized PdO species. This oxidation
is likely due to exposure to atmospheric conditions during catalyst preparation or storage.
Conversely, the spent Pd/AC catalyst exhibited a notable shift in the Pd 3d5/2 XPS profile
(Figure 6d). This shift was characterized by a significant change in the ratio of Pd2+ to Pd0,
which changed to 0.19:1. This dramatic shift indicated the reduction in the PdO species to
a more metallic state under the reductive conditions of the hydrogenation process. This
observation is in line with the partial sintering of the Pd nanoparticles, as evidenced by the
TEM and XRD analyses.
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2.2.5. X-ray Absorption Spectroscopy Analysis

Figure 7 illustrates the findings from the X-ray absorption spectroscopy (XAS) analysis
conducted on both the fresh and spent catalysts. This analysis provided precise insights into
the electronic properties and coordination characteristics of the supported Pd species with
exceptional sensitivity. The X-ray absorption near edge structure (XANES) spectra showed
that the energy absorption thresholds for both the fresh and spent Pd/AC catalysts were
closely aligned with that of the Pd foil reference (Figure 7a). This observation indicates
that the supported Pd species were primarily in a metallic state with a Pd0 oxidation
state [36]. Figure 7b shows the extended X-ray absorption fine structure (EXAFS) spectra
of the Pd/AC catalysts. The EXAFS spectra revealed peaks corresponding to Pd–O and
Pd–Pd at radial distances of 1.48–1.51 Å and 2.48–2.51 Å, respectively. A notable decrease
in the intensity of the Pd–O coordination for the spent Pd/AC catalyst was observed
following continuous hydrogenation, suggesting the reduction and partial sintering of
the Pd nanoparticles. This inference is further substantiated by fitting analyses using the
Pd–O and Pd–Pd contributions derived from the reference materials (Figure 8a–d). For
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the fresh Pd/AC catalyst, the coordination numbers (CN) were determined to be 1.78 for
the Pd–O bond and 3.83 for the Pd–Pd bond (Table 2). In comparison, the spent Pd/AC
catalyst exhibited altered CN values, with 0.91 for the Pd–O bond and 6.09 for the Pd–Pd
bonds. These results demonstrate a reduction in the Pd–O component of the spent catalyst,
attributable to the hydrogenation process. Additionally, the increased CN for the Pd–Pd
bond indicates post-reaction sintering of the Pd nanoparticles.
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Based on the results of a continuous carbon dioxide hydrogenation reaction using a
trickle-bed reactor and an in-depth analysis of the catalyst recovered after the reaction, this
study confirmed that the activity of the Pd/AC catalyst gradually decreased over long
reaction durations. This decline in activity was attributed to the leaching of Pd nanopar-
ticles owing to the continuous feed flow and sintering caused by exposure to a reducing
environment. The sintering of the nanoparticles due to leaching and reduction results in ir-
reversible deactivation, which cannot be reversed by catalyst regeneration. Therefore, from
a practical perspective, this catalyst is not suitable for long-term reactions. The fundamental
reason for these outcomes is believed to be the limitations of the activated carbon supports.
Recent trends in the research on FA production through carbon dioxide hydrogenation
have shown that in catalyst systems based on Pd and various single-atom catalysts, strong
interactions between the support surface and supported metals significantly enhance the
stability of the supported metal catalysts under reducing conditions [37–44]. Furthermore,
catalyst supports based on metal oxides and organic materials improve the stability of
catalysts during hydrogenation reactions by confining the Pd nanoparticles within their
unique pore structures. Continuous hydrogenation reactions have the advantage of being
simple and operable under scalable conditions within a thermodynamic conversion system.
However, the process still faces challenges, such as low reaction efficiency owing to the
continuous reaction feed flow and short residence time. As discussed previously, the
development of innovative synthetic methods that can precisely control the chemical state
of a support surface is crucial. Simultaneously, developing supports that can effectively
confine Pd nanoparticles within a costructure while enhancing the mass transfer efficiency
of the reactants is of great importance.
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Table 2. Details of the EXAFS fitting parameters.

Sample Bond CN R
(Å)

σ2

(Å2)
E0

(eV)

Fresh Pd/AC
Pd-O 1.78 2.01 ± 0.02 0.0015 2.737
Pd-Pd 3.83 2.74 ± 0.02 0.0071 −2.432

Spent Pd/AC Pd-O 0.91 1.98 ± 0.02 0.0010 2.858
Pd-Pd 6.09 2.77 ± 0.01 0.0098 −1.725

3. Materials and Methods
3.1. Materials

Pd/AC catalyst was purchased from Sigma-Aldrich, St Louis, MO, USA and used
without further purification. Triethylamine (>99%) were procured from Samchun Pure
Chemical Company, Pyeongtaek, Republic of Korea. Double-distilled water was used in all
experiments. All the gases (99.99% in purity) used in this study were supplied by Shinyang
Company, Seoul, Republic of Korea.

3.2. Characterization Methods

H2 temperature-programmed reduction (H2-TPR) and CO-chemisorption analyses
were performed using a BELCAT II (MicrotracBEL Corp, Osaka, Japan). For H2-TPR, we
utilized a 5% H2/Ar carrier gas at a flow rate of 30 mL·min−1, with temperature increasing
from 40 to 650 ◦C at 10 ◦C·min−1. Prior to analysis, samples were dried at 150 ◦C for an
hour under argon flow. For CO-chemisorption, samples underwent pretreatment with a
5% H2/Ar mixture at 300 ◦C for 1 h at 50 mL·min−1 flow rate, followed by CO adsorption
using a 10% CO/He mixture at 25 ◦C through pulse injection over eight cycles. Sample
preparation for ICP involved the Ethos 1 system, with Pd quantification performed using
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an Avio 500 ICP-OES analyzer (Perkin-Elmer, Boston, MA, USA). TEM imaging and EDS
mapping were conducted on a TEM-Talos (F200X) operating at 200 kV with a LaB6 source.
Line-profile analysis was carried out using a TEM-Tecnai (F20 G2) at 50 to 200 kV, offering
less than 23 nm resolution and 25 to 1,030,000× magnification. High-resolution STEM
images of Pd nanoparticles were obtained from a double Cs-corrected Titan Themis TEM
(FEI; TitanTM 80-300). N2 adsorption/desorption isotherms were analyzed using a BEL
sorp mini II system, with surface areas calculated via the Brunauer–Emmett–Teller (BET)
method. XPS measurements were performed on a PHI 5000 Versa Probe spectrometer
(Ulvac-PHI, Chigasaki, Japan) using a monochromatized Al Kα source. HPLC analysis
was conducted with a YL 9100 Plus system (YL Instruments Co., Ltd. Seoul, South Korea),
featuring a RI detector and an Aminex HPX-87H column, operated at 50 ◦C with a 5 mM
H2SO4 eluent at 0.6 mL·min−1 flow rate. XAFS spectra were collected at the Pohang
Accelerator Laboratory (PLS-II, 3.0 GeV, Pohang, South Korea) 10C Wide XAFS beamline,
analyzed using Demeter 0.9.26 software, and EXAFS fitting was performed with an S0

2

value of 0.791 to determine coordination numbers.

3.3. Continuous Hydrogenation of CO2 to Formate over Trickle-Bed Reactor

The continuous hydrogenation process was carried out in a custom-built stainless-
steel bar reactor. Inside the reactor, Pd/AC was positioned centrally, with glass wool and
beads filling the remaining space. The reactor was pressurized to 8 MPa with 1:1 ratio of
H2 and CO2, and the temperature was raised up to the targeted temperature of 40 and
150 ◦C using an electric furnace. A back-pressure regulator maintained the pressure at
the set temperature, while a mass flow controller regulated the H2 gas flow. Liquid CO2
from a siphon cylinder was controlled via a high-pressure liquid pump and vaporized
before entering the reactor through a heated line. Distilled water and Et3N were also
supplied to the reactor using another high-pressure liquid pump. The liquid products
were collected and analyzed using high-performance liquid chromatography. The FA
productivity and surface exposed Pd content were then calculated using Equations (1)
and (2). After the reaction, the spent catalyst was retrieved from the reactor and washed
with water (100 mL × 3) through filtration. Then, the recovered catalyst was dried under
vacuum at 80 ◦C before further characterization.

Formate productivity
(

mmolFA·gPdsurf.
−1·h−1

)
=

production rate of HCOO−
(

mmolFA·h−1
)

Surface exposed Pd content (g Pdsurf.
) (1)

Surface exposed Pd content
(
gPdsurf.

)
= Pd content (g)× Dispersity of Pd (%)

100 (%)
(2)

4. Conclusions

This study successfully demonstrates the viability of using a Pd/AC catalyst in a
trickle-bed reactor for the continuous hydrogenation of CO2 to formate. Optimal operating
conditions were established, with the reactor achieving maximum FA productivity at
150 ◦C and 8 MPa. However, the most favorable operating temperature was identified
as 120 ◦C, where a balance between productivity and catalyst stability was observed.
Over time, a gradual decrease in catalytic activity was noted, with a 20% reduction after
20 h of continuous operation. Detailed analyses, including HR-TEM, XPS, TEM, and
XAS, provided insights into the physicochemical changes in the catalyst. These analyses
revealed that deactivation of the catalyst, primarily due to partial sintering and leaching
of Pd nanoparticles, was a key factor affecting the performance. Furthermore, the study
confirmed the presence of metallic Pd species in both fresh and spent catalysts, with a
notable shift in the coordination numbers after the reaction. These findings are instrumental
in guiding the development of more efficient Pd-based catalyst systems for sustainable
formic acid production, highlighting the importance of catalyst stability and optimization
of operating conditions in continuous processes.
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