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Computational Details 

 

Figure S1. The methodology implemented for predicting and interpreting catalytic activities. 

 

Descriptor calculation and selection  
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Table S1. The selection of descriptors and the corresponding values of R2, Q2, RMSE, and MAE.  

No. 
Train 

R2 
Test 
R2 

Train 
MAE 

Test 
MAE 

Train 
RMSE 

Test 
RMSE 

Q2 

(n_split=4) 
124 0.999 0.846 0.055 0.874 0.068 1.198 0.558 
108 0.999 0.818 0.057 0.933 0.068 1.303 0.520 

35 0.999 0.817 0.086 0.968 0.108 1.305 0.531 

25 0.999 0.921 0.094 0.697 0.120 0.859 0.561 

20 0.999 0.730 0.101 1.225 0.128 1.589 0.484 

 

Overview of ML Models 

XGBoost 

XGBoost is an open-source algorithm that provides a fast and scalable way to train 

gradient-boosted tree models. XGBoost uses a gradient descent algorithm to minimize prediction 

errors and generates a model composed of a series of weak predictive models, typically in the 

form of decision trees. It employs an iterative approach, sequentially fitting decision trees to the 

residuals (errors) of the preceding model. This progressive refinement, where each tree learns 

from the shortcomings of its predecessor, leads to a cumulative improvement in prediction 

accuracy. The iterative generation of a robust learner can be expressed by Equation S1:  

                         𝑓(𝑥) =  ∑ 𝑓௝ே௝ୀଵ (𝑥) = 𝑦ො                            (S1) 

where f(x) represents the final predictive model, fj represents the weak learner after jth iterations, 

N is the total number of weak learners, and 𝑦ො is the predicted outcome. 

XGBoost provides the user with the flexibility to tailor the loss function and manage tree 

complexity through the incorporation of a regularization term into the objective function. 

XGBoost also uses two more techniques—shrinkage and column subsampling—to improve its 

performance. Shrinkage helps to reduce overfitting, while column subsampling helps to speed up 

the training process.  

 

CatBoost 
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CatBoost a gradient-boosting library that employs a consistent set of functions for building left 

and right splits in decision trees at each tree level. Similar to XGBoost, it builds multiple binary 

decision trees in each iteration to reduce the error. Moreover, CatBoost is particularly known for 

its efficiency in handling categorical data; it is also quite effective at handling regression 

problems. It employs a method known as ordered boosting to automatically identify and leverage 

the hierarchical arrangement of categorical variables, which enables the algorithm to grasp 

intricate data relationships and generate precise predictions. 

LightGBM 

Another gradient-boosting framework, LightGBM, employs two novel techniques to improve 

performance: gradient-based one-side sampling (GOSS) and exclusive feature bundling (EFB). 

GOSS downsamples the training data by focusing on instances with larger gradients, while EFB 

bundles mutually exclusive features together. These techniques can significantly speed up 

training and improve accuracy. In addition, LightGBM uses leaf-wise growth, while XGBoost 

uses level-wise growth. Leaf-wise growth is more efficient and can reduce overfitting. 

Extra Trees (ETRs) 

ETRs regression is an ML algorithm similar to RF. However, it diverges by generating a larger 

number of decision trees and making random selections of features and split points at each, which 

helps to improve the accuracy of the model by reducing overfitting. ETRs and RF systems exhibit 

two notable differences. First, ETRs utilize random points for partition nodes by selecting cutting 

points. Moreover, they mitigate bias by nurturing trees using the complete learning sample. The 

Extra Trees algorithm is less affected by noisy or irrelevant features than other machine learning 

algorithms, which can improve its performance. 

Random Forest (RF) 

RF is a machine-learning algorithm that uses multiple decision trees to make predictions. Using 

bootstrap sampling, a random subset of the training data is created, and each base tree model is 

trained on this subset. This randomization of the subset aids in mitigating the potential for 

overfitting and enhances the algorithm's resilience. Then, all linear nodes in the tree are pruned. 
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This process is repeated for each base tree model, and the final prediction is made by averaging 

the predictions of all the trees. This algorithm can handle noisy and incomplete data, offers ease 

of tuning, and supports parallel computation. 

k-Nearest Neighbor (KNN) 

KNN is a simple and effective ML algorithm that can be used for both classification and regression 

tasks. It works by finding the k most similar data points to a target data point and then using the 

average or weighted average of the target values of those k neighbors to predict the target value of 

the new data point. KNN is a good basic algorithm to try first because it is easy to understand and 

implement, and it can often perform well with a small amount of data. However, it is important to 

note that KNN can be sensitive to the choice of the k value, and it can be computationally 

expensive to train and predict on large datasets. KNN can perform poorly on high-dimensional 

data because it becomes more difficult to calculate the distance between data points as the number 

of dimensions increases. 

Results and Discussion 

Table S2. Comparison of the bond lengths and bond angles between the calculated geometry and 
experimental data for complex 1, along with the standard deviation (δ). 

Complex 01 Experiment Calculated 
Bond lengths (Å)   

Ni(1)-Br(1) 2.3363 2.336 
Ni(1)-Br(2) 2.341 2.341 
Ni(1)-N(1) 2.063 2.06 
Ni(1)-N(2) 2.038 2.035 
N(1)-C(1) 1.289 1.291 
N(1)-C(13) 1.439 1.439 
N(2)-C(11) 1.28 1.282 
N(2)-C(58) 1.451 1.451 

δ - 0.114 
Bond angle (o)   

N(1)-Ni(1)-N(2) 83.4 76.943 
Br1(1)-Ni(1)-Br(2) 123.26 124.279 
N(1)-Ni(1)-Br(1) 109.8 110.476 
N(1)-Ni(1)-Br(2) 111.7 112.352 
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N(2)-Ni(1)-Br(1) 111.8 112.455 
N(2)-Ni(1)-Br(2) 109.9 110.574 

δ - 2.898 
 

Table S3. Comparison of the bond lengths and bond angles between the calculated geometry and 
experimental data for complex 34, along with the standard deviation (δ). 

Complex 34 Experiment Calculated 
Bond lengths (Å)   

Ni(1)-Br(1) 2.3205 2.32 
Ni(1)-Br(2) 2.3406 2.34 
Ni(1)-N(1) 2.014 2.011 
Ni(1)-N(2) 2.051 2.047 
N(1)-C(1) 1.279 1.281 

N(1)-C(45) 1.449 1.449 
N(2)-C(12) 1.296 1.298 
N(2)-C(13) 1.428 1.428 

δ - 0.124 
Bond angle (o)   

N(1)-Ni(1)-N(2) 82.85 77.292 
Br1(1)-Ni(1)-Br(2) 124.52 125.402 
N(1)-Ni(1)-Br(1) 115.21 115.707 
N(1)-Ni(1)-Br(2) 104.15 104.707 
N(2)-Ni(1)-Br(1) 108.24 108.836 
N(2)-Ni(1)-Br(2) 114.25 114.849 

δ - 2.964 

Table S4. Comparison of the bond lengths and bond angles between the calculated geometry and 
experimental data for complex 61, along with the standard deviation (δ). 

Complex 61 Experiment Calculated 
Bond lengths (Å)   

Ni(1)-Br(1) 2.3213 2.322 
Ni(1)-Br(2) 2.3267 2.326 
Ni(1)-N(1) 2.045 2.042 
Ni(1)-N(2) 2.015 2.012 
N(1)-C(12) 1.293 1.295 
N(1)-C(13) 1.432 1.431 
N(2)-C(1) 1.28 1.282 
N(2)-C(45) 1.446 1.446 
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δ - 0.118 
Bond angle (o)   

N(1)-Ni(1)-N(2) 82.72 77.436 
Br1(1)-Ni(1)-Br(2) 123.6 124.416 
N(1)-Ni(1)-Br(1) 110.3 110.87 
N(1)-Ni(1)-Br(2) 112.59 113.165 
N(2)-Ni(1)-Br(1) 113.44 113.984 
N(2)-Ni(1)-Br(2) 106.76 107.311 

δ - 2.827 
 

Table S5. Comparison of the bond lengths and bond angles between the calculated geometry and 
experimental data for complex 62, along with the standard deviation (δ). 

Complex 62 Experiment Calculated 
Bond lengths (Å)   

Ni(1)-Br(1) 2.3374 2.337 
Ni(1)-Br(2) 2.3192 2.318 
Ni(1)-N(1) 2.07 2.067 
Ni(1)-N(2) 2.039 2.036 
N(1)-C(12) 1.28 1.282 
N(1)-C(13) 1.44 1.44 
N(2)-C(1) 1.282 1.284 
N(2)-C(45) 1.449 1.449 

δ - 0.115 
Bond angle (o)   

N(1)-Ni(1)-N(2) 81.96 76.676 
Br1(1)-Ni(1)-Br(2) 122.2 123.051 
N(1)-Ni(1)-Br(1) 110.4 110.869 
N(1)-Ni(1)-Br(2) 110.07 110.646 
N(2)-Ni(1)-Br(1) 105.99 106.555 
N(2)-Ni(1)-Br(2) 119.01 119.638 

δ - 2.854 

 

 

 

Table S6. Detailed information of the 25 selected descriptors. 
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No. Molecular descriptor Category 
1 MOMI-YZ                                    Moment of inertia 
2 GATS4e                                      Autocorrelation 
3 AATS8p                                      Autocorrelation 
4 Avg electroph. react. index for a N atom    Molecular orbital related 
5 Moment of inertia A                         Geometrical 
6 Balaban index                               Topological 
7 FNSA-3 fractional PNSA (PNSA-3/TMSA) CPSA 
8 GATS8e                                      Autocorrelation 
9 AATS7p                                      Autocorrelation 

10 RDF65m                                     Radial distribution function 
11 MOMI-XZ                                    Moment of inertia 
12 Relative number of single bonds                   Constitutional 
13 GATS3e                                      Autocorrelation 
14 RDF120m                                    Radial distribution function 
15 SIC1                                        Information content 
16 Min (>0.1) bond order of a Ni atom Molecular orbital related 
17 Polarity parameter/square distance        Electrostatic 
18 MATS4m                                     Autocorrelation 
19 ATSC4i                                      Autocorrelation 
20 AATS4i                                      Autocorrelation 
21 MATS5i                                      Autocorrelation 
22 ATSC8m                                     Autocorrelation 
23 Min nucleoph. react. index for a C atom     Molecular orbital related 
24 SIC4                                        Information content 
25 LOBMIN                                     Length over breadth 
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Figure S2. Triangular matrix of correlations among the selected 25 descriptors and activity. 

 
Figure S3. R2 and RMSE scores as functions of different percentages of training data. 
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Table S7. Hyperparameters of the ML models. 

Model Parameter Search Range  Value 

 
 
XGBoost 
 

n_estimators 
max_depth 
learning_rate 
alpha 
lambda 

[200, 300, 400, 500, 600, 700] 
[1, 2, 3, 4, 5, 7, 9, 11, 12] 
[0.01, 0.1, 0.2, 0.3, 0.5] 
[0.03, 0.05, 0.09, 0.1, 0.2] 
[0.01, 0.1, 0.5, 0.8, 1.0] 

200 
3 

0.1 
0.1 
0.1 

 
CatBoost 

Iterations 
learning_rate 
max_depth 

[50, 100, 200, 350, 550, 800] 
[0.05, 0.1, 0.2, 0.5, 0.6] 
[1, 2, 3, 5, 6, 7, 8, 9] 

100 
0.2 
5 

 
 
Extra Trees 
 

n_estimators 
max_features 
min_samples_split 
max_depth 

[100, 200, 500, 700, 800, 1000] 
[2, 5, 10, 15, 20, 25, 30, 35] 
[2, 3, 6, 9, 12, 14, 15] 
[5, 10, 20, 25, 30, None] 

100 
25 
2 

None 
 
 
Random Forest 
 

n_estimators 
max_features 
min_samples_leaf 
bootstrap 
min_samples_split 

[100, 150, 300, 500, 600, 900] 
[5, 6, 8, 9, 12, 15, 18, 25] 
[1, 2, 3, 5, 6, 8, 9] 
[True, False] 
[2, 3, 4, 6, 8, 9, 11] 

100 
9 
1 

True 
2 

k-Nearest Neighbors 
 

n_neighbors 
weights 

[1, 2, 3, 4, 5, 7, 8, 10] 
[uniform, distance] 

4 
distance 

LightGBM 

 

num_leaves 

boosting_type 

[10, 20, 30, 40, 50, 60, 70] 

[gbdt, rf] 

10 

gbdt 

The performance of ML models, in particular the XGBoost model, can be significantly 

impacted by hyperparameters, such as the maximum depth, learning rate, and the number of 

trees. Maximum depth controls the complexity of the ensemble model. Increasing the value of 

the max depth enhances the model's ability to capture complex interactions between the input 

and output variables but may also lead to overfitting. The learning rate is also known as a 

shrinkage factor, which reduces feature weights to make the boosting process more conservative. 

Smaller values of the learning rate effectively minimize the loss function and reduce the risk of 

overfitting, while a higher number of trees helps prevent overfitting and contributes to 

regularization. Furthermore, examining the relationship between deviance and the number of 

iterations for the learning rate revealed consistent decreases in both training and testing errors, 
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indicating effective model training and strong generalization capabilities. Additionally, Figure S4 

shows that early stopping halted training in less than 250 iterations instead of 500, indicating that 

the model's performance did not improve after this iteration, thus preventing overfitting. 

 

Figure S4. Training and test sets deviance against boosting iterations. 

Dependency plots 

In SHAP dependency plots, each dot within the plot represents an observation and accumulates 

along each feature row to visualize density. The x-axis of the dot is determined by the SHAP 

value of individual data points and the wide-area expresses the concentration of data points. 

Furthermore, the dots are color-coded based on their original value for that particular feature, 

ranging from red (higher) to blue (lower), indicating the feature's impact on the model. A higher 

feature value corresponds to a redder dot color. 

Permutation Feature Importance 

The global impact of features on catalytic activity prediction is also determined with the 

aid of PFI. Figure S5 illustrates the contribution of each feature to the prediction output based on 

permutation importance. Following the permutation importance analysis, the five most important 
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features, ranked in descending order of significance, are MOMI-YZ, MOMI-XZ, AATS8p, 

AATS7p, and SIC1. The feature’s value in the figure indicates the change in performance after 

reshuffling. The rankings of most of the feature importance in both SHAP and PFI exhibit a 

degree of similarity, as four key features (AATS8p, MOMI-XZ, MOMI-YZ, and AATS7p) 

appear in the top five features by both methodologies. However, the differences in order can be 

attributed to the fact that SHAP takes into account interaction effects among features, while PFI 

only considers the impact of each feature on the model score individually without capturing any 

interactions. It is noteworthy that SHAP offers a much more detailed analysis compared to PFI. 

 

Figure S5. Feature importance ranking based on permutation feature importance (PFI). 

Interpretation of RDF65m and RDF120m descriptors  

This work utilized two radial distribution function (RDF) descriptors (RDF65m, RDF120m) to 

characterize the local atomic environment around the central atom. These descriptors provide 

information about the packing efficiency of the material. The RDF65m descriptor was calculated 
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at a distance of 6.5 Å, while RDF120m was calculated at a larger distance of 12.0 Å. These 

descriptors take into account the atomic masses of the atoms in the calculation. This weighting 

scheme emphasizes the contribution of heavier atoms to the overall mass distribution around the 

central atom. A higher descriptor value indicates a denser packing of atoms around the central 

atom, which can be associated with catalytic activity. 

 

 


