
1

Communication

Catalytic Activity Prediction of α-Diimino Nickel
Precatalysts toward Ethylene Polymerization by Machine
Learning
Zaheer Abbas 1,2, Md Mostakim Meraz 1,2, Wenhong Yang 3,*, Weisheng Yang 3 and Wen-Hua Sun 1,2,*

1 Key Laboratory of Engineering Plastics and Beijing National Laboratory for Molecular
Science, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

2 University of Chinese Academy of Sciences, Beijing 100049, China
3 PetroChina Petrochemical Research Institute, Beijing 102206, China
* Correspondence: whyang@iccas.ac.cn (W.Y.); whsun@iccas.ac.cn (W.-H.S.)

Computational Details

Figure S1. The methodology implemented for predicting and interpreting catalytic activities.

Descriptor calculation and selection

2

Table S1. The selection of descriptors and the corresponding values of R2, Q2, RMSE, and MAE.

No.
Train

R2
Test
R2

Train
MAE

Test
MAE

Train
RMSE

Test
RMSE

Q2

(n_split=4)
124 0.999 0.846 0.055 0.874 0.068 1.198 0.558
108 0.999 0.818 0.057 0.933 0.068 1.303 0.520

35 0.999 0.817 0.086 0.968 0.108 1.305 0.531

25 0.999 0.921 0.094 0.697 0.120 0.859 0.561

20 0.999 0.730 0.101 1.225 0.128 1.589 0.484

Overview of ML Models

XGBoost

XGBoost is an open-source algorithm that provides a fast and scalable way to train

gradient-boosted tree models. XGBoost uses a gradient descent algorithm to minimize prediction

errors and generates a model composed of a series of weak predictive models, typically in the

form of decision trees. It employs an iterative approach, sequentially fitting decision trees to the

residuals (errors) of the preceding model. This progressive refinement, where each tree learns

from the shortcomings of its predecessor, leads to a cumulative improvement in prediction

accuracy. The iterative generation of a robust learner can be expressed by Equation S1:

 𝑓(𝑥) = ∑ 𝑓 (𝑥) = 𝑦 (S1)

where f(x) represents the final predictive model, fj represents the weak learner after jth iterations,

N is the total number of weak learners, and 𝑦 is the predicted outcome.

XGBoost provides the user with the flexibility to tailor the loss function and manage tree

complexity through the incorporation of a regularization term into the objective function.

XGBoost also uses two more techniques—shrinkage and column subsampling—to improve its

performance. Shrinkage helps to reduce overfitting, while column subsampling helps to speed up

the training process.

CatBoost

3

CatBoost a gradient-boosting library that employs a consistent set of functions for building left

and right splits in decision trees at each tree level. Similar to XGBoost, it builds multiple binary

decision trees in each iteration to reduce the error. Moreover, CatBoost is particularly known for

its efficiency in handling categorical data; it is also quite effective at handling regression

problems. It employs a method known as ordered boosting to automatically identify and leverage

the hierarchical arrangement of categorical variables, which enables the algorithm to grasp

intricate data relationships and generate precise predictions.

LightGBM

Another gradient-boosting framework, LightGBM, employs two novel techniques to improve

performance: gradient-based one-side sampling (GOSS) and exclusive feature bundling (EFB).

GOSS downsamples the training data by focusing on instances with larger gradients, while EFB

bundles mutually exclusive features together. These techniques can significantly speed up

training and improve accuracy. In addition, LightGBM uses leaf-wise growth, while XGBoost

uses level-wise growth. Leaf-wise growth is more efficient and can reduce overfitting.

Extra Trees (ETRs)

ETRs regression is an ML algorithm similar to RF. However, it diverges by generating a larger

number of decision trees and making random selections of features and split points at each, which

helps to improve the accuracy of the model by reducing overfitting. ETRs and RF systems exhibit

two notable differences. First, ETRs utilize random points for partition nodes by selecting cutting

points. Moreover, they mitigate bias by nurturing trees using the complete learning sample. The

Extra Trees algorithm is less affected by noisy or irrelevant features than other machine learning

algorithms, which can improve its performance.

Random Forest (RF)

RF is a machine-learning algorithm that uses multiple decision trees to make predictions. Using

bootstrap sampling, a random subset of the training data is created, and each base tree model is

trained on this subset. This randomization of the subset aids in mitigating the potential for

overfitting and enhances the algorithm's resilience. Then, all linear nodes in the tree are pruned.

4

This process is repeated for each base tree model, and the final prediction is made by averaging

the predictions of all the trees. This algorithm can handle noisy and incomplete data, offers ease

of tuning, and supports parallel computation.

k-Nearest Neighbor (KNN)

KNN is a simple and effective ML algorithm that can be used for both classification and regression

tasks. It works by finding the k most similar data points to a target data point and then using the

average or weighted average of the target values of those k neighbors to predict the target value of

the new data point. KNN is a good basic algorithm to try first because it is easy to understand and

implement, and it can often perform well with a small amount of data. However, it is important to

note that KNN can be sensitive to the choice of the k value, and it can be computationally

expensive to train and predict on large datasets. KNN can perform poorly on high-dimensional

data because it becomes more difficult to calculate the distance between data points as the number

of dimensions increases.

Results and Discussion

Table S2. Comparison of the bond lengths and bond angles between the calculated geometry and
experimental data for complex 1, along with the standard deviation (δ).

Complex 01 Experiment Calculated
Bond lengths (Å)

Ni(1)-Br(1) 2.3363 2.336
Ni(1)-Br(2) 2.341 2.341
Ni(1)-N(1) 2.063 2.06
Ni(1)-N(2) 2.038 2.035
N(1)-C(1) 1.289 1.291
N(1)-C(13) 1.439 1.439
N(2)-C(11) 1.28 1.282
N(2)-C(58) 1.451 1.451

δ - 0.114
Bond angle (o)

N(1)-Ni(1)-N(2) 83.4 76.943
Br1(1)-Ni(1)-Br(2) 123.26 124.279
N(1)-Ni(1)-Br(1) 109.8 110.476
N(1)-Ni(1)-Br(2) 111.7 112.352

5

N(2)-Ni(1)-Br(1) 111.8 112.455
N(2)-Ni(1)-Br(2) 109.9 110.574

δ - 2.898

Table S3. Comparison of the bond lengths and bond angles between the calculated geometry and
experimental data for complex 34, along with the standard deviation (δ).

Complex 34 Experiment Calculated
Bond lengths (Å)

Ni(1)-Br(1) 2.3205 2.32
Ni(1)-Br(2) 2.3406 2.34
Ni(1)-N(1) 2.014 2.011
Ni(1)-N(2) 2.051 2.047
N(1)-C(1) 1.279 1.281

N(1)-C(45) 1.449 1.449
N(2)-C(12) 1.296 1.298
N(2)-C(13) 1.428 1.428

δ - 0.124
Bond angle (o)

N(1)-Ni(1)-N(2) 82.85 77.292
Br1(1)-Ni(1)-Br(2) 124.52 125.402
N(1)-Ni(1)-Br(1) 115.21 115.707
N(1)-Ni(1)-Br(2) 104.15 104.707
N(2)-Ni(1)-Br(1) 108.24 108.836
N(2)-Ni(1)-Br(2) 114.25 114.849

δ - 2.964

Table S4. Comparison of the bond lengths and bond angles between the calculated geometry and
experimental data for complex 61, along with the standard deviation (δ).

Complex 61 Experiment Calculated
Bond lengths (Å)

Ni(1)-Br(1) 2.3213 2.322
Ni(1)-Br(2) 2.3267 2.326
Ni(1)-N(1) 2.045 2.042
Ni(1)-N(2) 2.015 2.012
N(1)-C(12) 1.293 1.295
N(1)-C(13) 1.432 1.431
N(2)-C(1) 1.28 1.282
N(2)-C(45) 1.446 1.446

6

δ - 0.118
Bond angle (o)

N(1)-Ni(1)-N(2) 82.72 77.436
Br1(1)-Ni(1)-Br(2) 123.6 124.416
N(1)-Ni(1)-Br(1) 110.3 110.87
N(1)-Ni(1)-Br(2) 112.59 113.165
N(2)-Ni(1)-Br(1) 113.44 113.984
N(2)-Ni(1)-Br(2) 106.76 107.311

δ - 2.827

Table S5. Comparison of the bond lengths and bond angles between the calculated geometry and
experimental data for complex 62, along with the standard deviation (δ).

Complex 62 Experiment Calculated
Bond lengths (Å)

Ni(1)-Br(1) 2.3374 2.337
Ni(1)-Br(2) 2.3192 2.318
Ni(1)-N(1) 2.07 2.067
Ni(1)-N(2) 2.039 2.036
N(1)-C(12) 1.28 1.282
N(1)-C(13) 1.44 1.44
N(2)-C(1) 1.282 1.284
N(2)-C(45) 1.449 1.449

δ - 0.115
Bond angle (o)

N(1)-Ni(1)-N(2) 81.96 76.676
Br1(1)-Ni(1)-Br(2) 122.2 123.051
N(1)-Ni(1)-Br(1) 110.4 110.869
N(1)-Ni(1)-Br(2) 110.07 110.646
N(2)-Ni(1)-Br(1) 105.99 106.555
N(2)-Ni(1)-Br(2) 119.01 119.638

δ - 2.854

Table S6. Detailed information of the 25 selected descriptors.

7

No. Molecular descriptor Category
1 MOMI-YZ Moment of inertia
2 GATS4e Autocorrelation
3 AATS8p Autocorrelation
4 Avg electroph. react. index for a N atom Molecular orbital related
5 Moment of inertia A Geometrical
6 Balaban index Topological
7 FNSA-3 fractional PNSA (PNSA-3/TMSA) CPSA
8 GATS8e Autocorrelation
9 AATS7p Autocorrelation

10 RDF65m Radial distribution function
11 MOMI-XZ Moment of inertia
12 Relative number of single bonds Constitutional
13 GATS3e Autocorrelation
14 RDF120m Radial distribution function
15 SIC1 Information content
16 Min (>0.1) bond order of a Ni atom Molecular orbital related
17 Polarity parameter/square distance Electrostatic
18 MATS4m Autocorrelation
19 ATSC4i Autocorrelation
20 AATS4i Autocorrelation
21 MATS5i Autocorrelation
22 ATSC8m Autocorrelation
23 Min nucleoph. react. index for a C atom Molecular orbital related
24 SIC4 Information content
25 LOBMIN Length over breadth

8

Figure S2. Triangular matrix of correlations among the selected 25 descriptors and activity.

Figure S3. R2 and RMSE scores as functions of different percentages of training data.

9

Table S7. Hyperparameters of the ML models.

Model Parameter Search Range Value

XGBoost

n_estimators
max_depth
learning_rate
alpha
lambda

[200, 300, 400, 500, 600, 700]
[1, 2, 3, 4, 5, 7, 9, 11, 12]
[0.01, 0.1, 0.2, 0.3, 0.5]
[0.03, 0.05, 0.09, 0.1, 0.2]
[0.01, 0.1, 0.5, 0.8, 1.0]

200
3

0.1
0.1
0.1

CatBoost

Iterations
learning_rate
max_depth

[50, 100, 200, 350, 550, 800]
[0.05, 0.1, 0.2, 0.5, 0.6]
[1, 2, 3, 5, 6, 7, 8, 9]

100
0.2
5

Extra Trees

n_estimators
max_features
min_samples_split
max_depth

[100, 200, 500, 700, 800, 1000]
[2, 5, 10, 15, 20, 25, 30, 35]
[2, 3, 6, 9, 12, 14, 15]
[5, 10, 20, 25, 30, None]

100
25
2

None

Random Forest

n_estimators
max_features
min_samples_leaf
bootstrap
min_samples_split

[100, 150, 300, 500, 600, 900]
[5, 6, 8, 9, 12, 15, 18, 25]
[1, 2, 3, 5, 6, 8, 9]
[True, False]
[2, 3, 4, 6, 8, 9, 11]

100
9
1

True
2

k-Nearest Neighbors

n_neighbors
weights

[1, 2, 3, 4, 5, 7, 8, 10]
[uniform, distance]

4
distance

LightGBM

num_leaves

boosting_type

[10, 20, 30, 40, 50, 60, 70]

[gbdt, rf]

10

gbdt

The performance of ML models, in particular the XGBoost model, can be significantly

impacted by hyperparameters, such as the maximum depth, learning rate, and the number of

trees. Maximum depth controls the complexity of the ensemble model. Increasing the value of

the max depth enhances the model's ability to capture complex interactions between the input

and output variables but may also lead to overfitting. The learning rate is also known as a

shrinkage factor, which reduces feature weights to make the boosting process more conservative.

Smaller values of the learning rate effectively minimize the loss function and reduce the risk of

overfitting, while a higher number of trees helps prevent overfitting and contributes to

regularization. Furthermore, examining the relationship between deviance and the number of

iterations for the learning rate revealed consistent decreases in both training and testing errors,

10

indicating effective model training and strong generalization capabilities. Additionally, Figure S4

shows that early stopping halted training in less than 250 iterations instead of 500, indicating that

the model's performance did not improve after this iteration, thus preventing overfitting.

Figure S4. Training and test sets deviance against boosting iterations.

Dependency plots

In SHAP dependency plots, each dot within the plot represents an observation and accumulates

along each feature row to visualize density. The x-axis of the dot is determined by the SHAP

value of individual data points and the wide-area expresses the concentration of data points.

Furthermore, the dots are color-coded based on their original value for that particular feature,

ranging from red (higher) to blue (lower), indicating the feature's impact on the model. A higher

feature value corresponds to a redder dot color.

Permutation Feature Importance

The global impact of features on catalytic activity prediction is also determined with the

aid of PFI. Figure S5 illustrates the contribution of each feature to the prediction output based on

permutation importance. Following the permutation importance analysis, the five most important

11

features, ranked in descending order of significance, are MOMI-YZ, MOMI-XZ, AATS8p,

AATS7p, and SIC1. The feature’s value in the figure indicates the change in performance after

reshuffling. The rankings of most of the feature importance in both SHAP and PFI exhibit a

degree of similarity, as four key features (AATS8p, MOMI-XZ, MOMI-YZ, and AATS7p)

appear in the top five features by both methodologies. However, the differences in order can be

attributed to the fact that SHAP takes into account interaction effects among features, while PFI

only considers the impact of each feature on the model score individually without capturing any

interactions. It is noteworthy that SHAP offers a much more detailed analysis compared to PFI.

Figure S5. Feature importance ranking based on permutation feature importance (PFI).

Interpretation of RDF65m and RDF120m descriptors

This work utilized two radial distribution function (RDF) descriptors (RDF65m, RDF120m) to

characterize the local atomic environment around the central atom. These descriptors provide

information about the packing efficiency of the material. The RDF65m descriptor was calculated

12

at a distance of 6.5 Å, while RDF120m was calculated at a larger distance of 12.0 Å. These

descriptors take into account the atomic masses of the atoms in the calculation. This weighting

scheme emphasizes the contribution of heavier atoms to the overall mass distribution around the

central atom. A higher descriptor value indicates a denser packing of atoms around the central

atom, which can be associated with catalytic activity.

