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Abstract: Thiamethoxam is a second-generation neonicotinoid pesticide that is used worldwide. In
this study, a three-dimensional electrode-enhanced ozone catalytic oxidation system (3DE-GAC-O3)
was constructed to pretreat thiamethoxam wastewater, with granular active carbon as the particle
electrode. The effects of catalytic oxidation time, current density, ozone concentration, initial thi-
amethoxam concentration, pH, and particle electrode dosage on thiamethoxam degradation were
investigated. A response surface method based on the Box–Behnken design was employed to opti-
mize the 3DE-GAC-O3 process. The results revealed that the 3DE-GAC-O3 system exhibited higher
efficiency compared with the 3D electrode method, ozone catalytic oxidation, or 2DE-O3. The optimal
operating conditions included a particle electrode dosage, ozone concentration, current density,
solution pH, catalytic oxidation time, and initial thiamethoxam concentration of 18 g/dm3, 12 g/h,
25 A/m2, 7, 300 min, and 500 mg/dm3, respectively. The corresponding chemical oxygen demand
removal rate reached 93.86 ± 0.95%. Thiamethoxam degradation followed a second-order reaction
kinetics equation, and the rate constant decreased with increasing the initial thiamethoxam concentra-
tion. Free-radical quenching experiments indicated that both O2·− and ·OH were present within the
3DE-GAC-O3 system, with ·OH being the predominant species. A GC-MS analysis revealed the for-
mation of several intermediate products, which were characterized based on the mass fragmentation
pattern. Additionally, a probable degradation pathway for thiamethoxam was proposed. Therefore,
3DE-GAC-O3 is an efficient method for the pretreatment of thiamethoxam wastewater.

Keywords: three-dimensional electrode; ozone; catalytic oxidation; thiamethoxam; granular
activated carbon

1. Introduction

Thiamethoxam is a second-generation neonicotinoid pesticide with a broad insectici-
dal range and a high insecticidal efficacy [1,2]. It has been used extensively in agricultural
production [3]. The global thiamethoxam market was valued at around $2300 million in
2022. However, its widespread use has resulted in significant amounts of thiamethoxam-
contaminated wastewater. Thiamethoxam’s stable structure makes biological degradation
challenging and time-consuming [4]. The physico-chemical process is an essential pretreat-
ment method to break down the structure of thiamethoxam and, therefore, improve its
biodegradability [5].

The common physico-chemical methods for pesticide wastewater include the ad-
sorption process [6], the plasma degradation process [7], photocatalytic oxidation [8], wet
catalytic oxidation [9], Fenton oxidation [10], supercritical water oxidation [11], and ozone
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catalytic oxidation [12]. Ozone catalytic oxidation has been an attractive approach due to
fast and stable degradation, easy operation, and no secondary pollution [13,14]. However,
the mass-transfer efficiency of ozone from the gas phase to the liquid phase is limited,
thus leading to a relatively low ozone utilization and low degradation efficiency for high
concentrations of pesticide wastewater [15].

Electrochemical three-dimensional (3D) electrode technology is based on electrochem-
ical reactions that degrade organic pollutants. A three-dimensional electrode system is
created by adding the particle electrode as the third pole to the initial two-dimensional elec-
trode system. It is more favorable to the electrochemical reaction than the two-dimensional
(2D) electrode system because it has more active sites and a greater specific surface area.
The degradation mechanism involves both direct oxidation-reduction reactions of organic
pollutants on the electrode and the generation of active hydroxyl radicals during the elec-
trolysis process to facilitate organic degradation [16]. Previous research has demonstrated
that the mass transfer of liquid-phase ozone can be efficiently enhanced by an electric
field [17]. Hence, a combined electrode–ozone catalytic oxidation technology may be fea-
sible to improve ozone utilization and, therefore, enhance the mineralization capacity of
recalcitrant pollutants. Wang et al. [18] employed a combined 3D electrolysis, granular
activated carbon (GAC) and an ozone process (3DE-GAC-O3) to treat nitrobenzene (initial
nitrobenzene concentration 6 mg/dm3). The TOC removal efficiency of 3DE-GAC-O3
increased by 38.95% compared with that of ozone alone at 120 min. Zhan et al. [19] also
found that the combination of the 3D electrochemical process with ozonation could achieve
a synergistic effect for pollutant degradation in pharmaceutical-production wastewater.
However, the efficacy of the 3D electrolysis and ozonation combination process in treating
wastewater with high concentrations of thiamethoxam is currently unknown.

In this study, a 3D electrode-enhanced ozone catalytic oxidation system (3DE-GAC-O3)
was supported on granular active carbon (GAC), which was previously prepared and
demonstrated significant catalyst activity, as the catalyst and particle electrode. The 3DE-
GAC-O3 system was used to degrade high-concentration thiamethoxam wastewater.

The purpose of the study is to (1) investigate the effects of reaction time, current density,
ozone concentration, initial thiamethoxam concentration, pH, and particle electrode dosage
on thiamethoxam degradation by 3DE-GAC-O3; (2) optimize the 3DE-GAC-O3 process
by a response surface method based on the Box–Behnken design; (3) explore the reaction
kinetics, and identify the intermediate products; and finally, propose a probable degradation
pathway for thiamethoxam.

2. Results and Discussion
2.1. Comparison of 3DE-GAC-O3, GAC-O3, 3DE-GAC, and 2DE-O3

Significant differences in the treatment efficiencies of thiamethoxam wastewater were
observed among GAC-O3, 3DE-GAC, and 3DE-GAC-O3 (Figure 1). Within the experimen-
tal reaction time, the COD concentration of the wastewater treated with the integrated
technology was consistently lower compared with that treated with GAC-O3 and 3DE-
GAC. At a reaction time of 300 min, the COD removal rate achieved by the integrated
technology was 92.81%, which is 26.36% higher than that achieved by GAC-O3. This
demonstrates the three-dimensional electrode electrochemical-enhanced ozone catalytic
oxidation of thiamethoxam. During the electrochemical oxidation process, the carbon-felt
cathode generates H2O2 in situ (Equation (1)), which can react with ozone to produce
·OH (Equation (2)). Compared to 3DE-GAC, the COD removal rate in 3DE-GAC-O3 is
51.71% higher, indicating the enhanced effect of ozone introduction. Ozone can react with
organic contaminants either by directly oxidizing them or indirectly through the oxidation
by ·OH [20]. In addition, ozone can elevate the conductivity of the solution and, conse-
quently, enhance the current density, which in turn, may lead to an increased removal rate
of pollutants [21].
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the granular activated carbon (GAC) enhanced O3 decomposition and generation of ‧OH 
[23]. The GAC-loaded metal has been reported to possess more active sites and higher 
catalytic activities due to enhanced electron-transfer abilities [20]. Furthermore, particle 
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of the 3D electrode reactor has the ability to oxidize contaminants by electrocatalytically 
generating various types of potent oxidizing agents.  

  

Figure 1. Thiamethoxam degradation efficiencies achieved by three-dimensional electrode-enhanced
ozone catalytic oxidation (3DE-GAC-O3), ozone catalytic oxidation (GAC-O3), three-dimensional
electrode electrolysis (3DE-GAC), and two-dimensional electrode-enhanced ozone oxidation (2DE-
O3). Experimental conditions were: particle electrode dosage 15 g/dm3, current density 24 A/m2,
ozone concentration 12 g/h, pH 7, initial concentration of thiamethoxam 500 mg/dm3, and catalytic
oxidation time 300 min. c0 represents the initial COD concentration of thiamethoxam wastewater
(mg/dm3), and ct represents the COD concentration of thiamethoxam wastewater at time t (mg/dm3).

O2 + 2H+ + 2e− → H2O2 (1)

2H2O2 + 2O3 → •OH + HO•
2 + 3O2 + H2O (2)

Much higher COD removal rates were achieved using the 3DE-GAC-O3 than the
2D-O3 (Figure 1). This result is consistent with previous studies [19,22]. It is well known
that the granular activated carbon (GAC) enhanced O3 decomposition and generation of
·OH [23]. The GAC-loaded metal has been reported to possess more active sites and higher
catalytic activities due to enhanced electron-transfer abilities [20]. Furthermore, particle
electrodes can be polarized by an external electric field, thus forming a large number of
charged bipolar microelectrodes [24]. Similar to the main electrodes, the particle electrode
of the 3D electrode reactor has the ability to oxidize contaminants by electrocatalytically
generating various types of potent oxidizing agents.
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2.2. Effects of The Operating Parameters
2.2.1. Reaction Time

Figure 2a illustrates the effect of reaction time on the degradation of thiamethoxam in
wastewater by 3DE-GAC-O3. Evidently, as the reaction time increased, the COD removal
rate increased. As the reaction time increased from 60 to 300 min, the COD removal rate
increased from 46.6% to 91.4%. During the initial reaction stage (120 min), the COD removal
rate increased rapidly, essentially reaching 70.4% at 120 min. This can be attributed to the
synergistic action of the adsorption of GAC and the electric field [25]. Under appropriate
voltage/current density conditions, the activated carbon became polarized, thus forming
microelectrodes, enhancing its electroabsorption or oxidation capacity, and promoting
thiamethoxam degradation. In the later stages of the reaction, as the concentration of
thiamethoxam in the wastewater decreased, the amount of thiamethoxam diffused to the
electrode surface per unit of time decreased. This weakened the concentration gradient
effect and reduced the mass-transfer efficiency [26]. Consequently, the rate of increase in
the COD removal rate decreased during the later stages of the reaction.
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Figure 2. Effects of operating parameters on the thiamethoxam degradation. (a) reaction time;
(b) current density; (c) ozone concentration; (d) initial thiamethoxam concentration; (e) initial pH;
(f) particle electrode dosage. Experimental conditions were: particle electrode dosage 15 g/dm3,
current density 24 A/m2, ozone concentration 12 g/h, pH 7, initial concentration of thiamethoxam
500 mg/dm3, and catalytic oxidation time 300 min. c0 represents the initial COD concentration of
thiamethoxam wastewater (mg/dm3), and ct represents the COD concentration of thiamethoxam
wastewater at time t (mg/dm3).

2.2.2. Current Density

With an increase in current density, the COD removal rate first increased and then
decreased (Figure 2b). The COD concentration reached its lowest value (62.22 mg/dm3),
and the COD removal rate reached its maximum at a current density of 24 A/m2. Below
24 A/m2, the COD removal rate increased with the current density. This can be attributed
to the enhanced driving force of the electrochemical catalytic oxidation with an increasing
current density, which accelerates the rate of electron transfer, increases the degree of
repolarization of the activated carbon particle electrode, and generates more hydroxyl
radicals with a strong oxidative capacity (Equations (3) and (4)), thus leading to a higher thi-
amethoxam degradation rate [22]. However, when the current density exceeded 24 A/m2,
the COD removal rate decreased with increasing current density. This is because higher cur-
rent densities lead to more side reactions (hydrogen and oxygen evolution reactions), which
increase energy consumption, decrease current efficiency, and weaken the degradation
efficiency of thiamethoxam [27].

O3 + e− → O•−
3 (3)

O•−
3 + H2O → •OH + O2 + OH− (4)

2.2.3. Ozone Concentration

Ozone concentration is a critical factor that influences the number of active hydroxyl
radicals in the system, as well as affects the ozone mass-transfer rates and liquid-phase
ozone concentrations [28]. An increase in ozone concentration in the liquid phase acceler-
ated the formation of hydroxyl radicals and enhanced the degradation rate of thiamethoxam.
In particular, during the initial stages, when the thiamethoxam concentration is relatively
high, the consumption rate of ozone is high, and the liquid-phase ozone concentration
plays a crucial role in the degradation of thiamethoxam. However, when the ozone con-
centration becomes too high, excess ozone may react with hydroxyl radicals, thus leading
to the generation of relatively stable substances, such as peroxyl radicals and hydrogen
peroxide. This results in reduced ozone and hydroxyl radical concentrations in the solu-
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tion, which, in turn, decreases the degradation rate [29]. As shown in Figure 2c, with an
increasing ozone concentration, the COD removal rate initially increased rapidly and then
slightly decreased.

2.2.4. Initial Thiamethoxam Concentration

At initial thiamethoxam concentrations of 150, 250, 500, 625, and 750 mg/dm3, the
COD removal rates were 88.12%, 87.35%, 91.61%, 80.90%, and 83.40%, respectively. Ev-
idently, as the initial thiamethoxam concentration increased, the COD removal rate de-
creased. However, note that the quantity of COD removed increased with increasing the
initial thiamethoxam concentration (Figure 2d). Zhao et al. [30] reported that, as the initial
thiamethoxam concentration increases, the molar ratio of thiamethoxam to ozone also
increases, thus leading to higher ozone consumption. This can enhance the mass-transfer
driving force of ozone from the gas phase to the liquid phase, thereby improving the
ozone utilization efficiency and promoting thiamethoxam degradation. However, when
the thiamethoxam concentration is excessively high, the thiamethoxam degradation rate
decreases. This may be because of the high concentration of thiamethoxam, which is
more likely to generate deposits on the electrode surface. This reduces the active area on
the electrode surface, thereby hindering the electrochemical reactions and decreasing the
electrochemical degradation efficiency [31].

2.2.5. Initial pH

Extreme acidity and alkalinity are detrimental to thiamethoxam degradation. Herein,
the maximum COD removal rate (91.4%) was achieved at pH 7 (Figure 2e). Additionally, no
significant differences were observed in the COD removal rates between pH 3 and 11, and
between pH 5 and 9. Note that, under acidic conditions, the ozone mass-transfer efficiency
decreases, thus leading to reduced ozone levels in the liquid phase, which weakens both
the direct and indirect oxidation reactions of ozone on thiamethoxam [32]. However,
acidic environments can enhance solution conductivity and electrolyte mobility, thereby
improving electrochemical oxidation [33]. Research indicates that indirect ozone oxidation
reactions are more likely to occur under neutral or slightly alkaline conditions [34]. These
reactions involve a series of chain reactions that generate highly oxidative ·OH radicals
(Equations (5)–(8)), which enhance the degradation of thiamethoxam [35]. However, under
alkaline conditions, the electrochemical oxidation of the 3D electrode may be inhibited.

O3+HO−
2 → O•−

3 + HO•
2 (5)

O3 + OH− → HO−
2 + O2 (6)

HO•
3 → •OH + O2 (7)

O•−
3 + H+ ↔ HO•

3 (8)

2.2.6. Particle Electrode Dosage

Different dosages of particle electrodes had a significant impact on the degradation
effectiveness (Figure 2f). As the particle electrode dosage increased, the COD removal
rate initially increased and then decreased. The maximum COD removal rate (93.59%)
was achieved at a particle-electrode dosage of 20 g/dm3. However, when the particle
electrode dosage was further increased to 30 g/dm3, the COD removal rate decreased to
83.89%. Essentially, increasing the number of particle electrodes increases the concentration
of polarized particles in the reactor, thereby enhancing electrochemical oxidation [36].
Simultaneously, more particle electrodes catalyze the active sites for ozone, thus intensifying
the indirect oxidation reactions of ozone. However, beyond a certain threshold, an excess
of particle electrodes saturates the effective polarization. Moreover, an excessive amount of
particle electrodes deposited at the bottom of the device can increase the short-circuiting
current proportion, thereby reducing the degradation efficiency of thiamethoxam [37].
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2.3. Response Surface Methodology Optimization

Table S2 lists the process conditions and results of 17 runs using the Box–Behnken
design. A second-order polynomial regression model was used to fit the response surface
experimental data, thereby resulting in a quadratic regression model for the COD removal
rate (Y1) in terms of the following independent variables: particle electrode dosage (X1),
current density (X2), and ozone concentration (X3).

Y1 = 93.86 − 1.23X1 + 2.27X2 + 1.04X3 − 1.29X1X2 + 1.27X1X3 − 0.55X2X3 − 2.18X2
1

−7.20X2
2 − 6.50X2

3
(9)

An analysis of variance (ANOVA) indicated that the F-value of the model was 81.25,
with p < 0.0001 (Table S3), thus indicating that the model was highly significant and the
differences in the fitted model were statistically significant. The coefficient of determination
(R2) for the regression equation was 0.9905, thus implying that 99.05% of the variation
in the response values originated from the selected factors; this indicates a good fit for
the model. The p-value for the lack of fit was 0.6779 (>0.05), thus suggesting that other
factors had minimal interference with the experimental results, and the experimental
residuals were due to random errors. The adjusted R2 value was 0.9783, and the coefficient
of variation (C.V.%) was 0.9858, thus indicating that the regression equation explained
97.83% of the experimental data. The order of magnitude of the influence of each factor
on the thiamethoxam removal rate was X2 > X1 > X3, with the particle electrode dosage
and current density having a highly significant impact on the thiamethoxam removal rate,
whereas the ozone concentration had a significant effect. The order of the influence of the
interaction terms on the COD removal rate was X1X2 > X1X3 > X2X3, and the order of the
influence of the quadratic terms on COD removal rate was X2

2 > X3
2 > X1

2. Figure 3 shows
the relationship between the particle electrode dosage, current density, and thiamethoxam
removal rate. Evidently, the interactions X1X2 and X1X3 had a significant impact on the
COD removal rate, with steep contour lines resembling ellipses, whereas the contour lines
for X2X3 were circular, thus indicating a weaker interaction.
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The optimal process parameters were a particle electrode dosage, current density,
and ozone concentration of 18.37 g/dm3, 25.48 A/m2, and 12.08 g/h, respectively. For
operational convenience, the chosen process conditions were 18 g/dm3, 25 A/m2, and
12 g/h, respectively, with a predicted optimum removal rate of 94.24%. The actual removal
rate of COD using the optimal process conditions was 93.86 ± 0.95%, which is in good
agreement with the predicted value.

2.4. Reaction Kinetics

Under the optimal conditions determined by response surface methodology, different
initial concentrations (150, 250, 500, 625, and 750 mg/dm3) of thiamethoxam wastewater
were treated. Samples were collected at 0, 60, 120, 180, 240, and 300 min, and the COD
concentration was measured. The experimental data were analyzed by fitting with zero-
order, first-order, and second-order kinetic equations (Equations (10)–(12)) to obtain the
kinetic parameters (Table 1).
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Table 1. The fitting results of zero-order, first-order, and second-order kinetic models for thi-
amethoxam degradation.

Thiamethoxam
Concentration (mg/dm3) Order of Reaction Reaction Equation Rate Constant

(k)
Correlation
Coefficient

MRD
(%)

150
Zero order ct = −0.5492t + 161.2691 0.5492 0.6313 2.70
First order lnct = −0.0104t + 5.3555 0.0104 0.9295 0.47

Second order 1/ct = 1.0834 × 10−4t + 0.0045 1.0834 × 10−4 0.9984 0.03

250
Zero order ct = −0.9418t + 296.0871 0.9418 0.7898 4.20
First order lnct = −0.0073t + 5.8572 0.0073 0.9477 0.67

Second order 1/ct =4.1482 × 10−5t + 0.0027 4.1482 × 10−5 0.9821 0.02

500
Zero order ct = −1.9281t + 535.1329 1.9281 0.6943 4.48
First order lnct = −0.0111t + 6.5513 0.0111 0.9666 0.91

Second order 1/ct = 3.5431 × 10−5t + 0.0014 3.5431 × 10−5 0.9925 0.15

625
Zero order ct = −2.1841t + 752.8043 2.1841 0.8649 6.11
First order lnct = −0.0058t + 6.7424 0.0058 0.9767 1.05

Second order 1/ct = 1.2178 × 10−5t + 0.0011 1.2178 × 10−5 0.9888 0.22

750
Zero order ct = −2.6307t + 880.5286 2.6307 0.7759 7.37
First order lnct = −0.0066t + 6.9385 0.0066 0.9544 1.41

Second order 1/ct = 1.2084 × 10−5t + 0.0009 1.2084 × 10−5 0.9987 0.36

Zero-order kinetic equation:
ct = c0 − k0t; (10)

First-order kinetic equation:

ln ct = ln c0 − k1t; (11)

Second-order kinetic equation:

1/ct = 1/c0 + k2t, (12)

where c0 is the initial COD concentration of thiamethoxam wastewater (mg/dm3); ct is the
COD concentration of thiamethoxam wastewater at time t (mg/dm3); k0 is the rate constant
of zero-order kinetic reaction (mg/(L·min)); k1 is the rate constant of first-order kinetic
reaction (min–1); k2 is the rate constant of second-order kinetic reaction (L/(mg·min)); and t
is the reaction time (min).

The second-order kinetic equations for thiamethoxam wastewater at different initial
concentrations yielded relatively high correlation coefficients, ranging from 0.9821 to 0.9987.
This indicated that the degradation of thiamethoxam by 3DE-GAC-O3 followed second-
order reaction kinetics. Moreover, the rate constant of the second-order reaction decreased
as the initial thiamethoxam concentration increased. The kinetic analysis demonstrated
a linear relationship between the reciprocal concentration of thiamethoxam and time. It
indicated that the half-life of the reaction did not remain constant but rather increased as
the concentration decreased. This could be explained by the fact that a decreasing reactant
concentration resulted in fewer molecular collision possibilities, which, in turn, decreased
the reaction rate.

2.5. Free-Radical Quenching Experiment

The primary free radicals within the reaction system were identified through free-
radical quenching experiments. Benzoquinone and TBA were employed to quench O2·−
and ·OH generated in 3DE-GAC-O3. The outcomes of these experiments are illustrated in
Figure 4. The COD removal of 3DE-GAC-O3 decreased significantly after the addition of
TBA. Specifically, the degradation rate decreased from 93.13% to 74.99%, 58.16%, and 46.16%
with the addition of 10, 20, and 30 mmol/L of TBA to the reaction solution, respectively.
Similarly, upon the addition of 10, 20, and 30 mmol/L of BQ to the reaction solution, the
COD removal rate decreased to 81.09%, 69.16%, and 60.17%, respectively. The decrease
observed was notably more pronounced with the addition of TBA than BQ. Therefore, it
was inferred that both O2·− and ·OH were present within the 3DE-GAC-O3 system, with
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·OH being the predominant species and O2·− acting as a synergistic agent in achieving the
effective removal of thiamethoxam.
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oxidation time 300 min. c0 represents the initial COD concentration of thiamethoxam wastewater
(mg/dm3), and ct represents the COD concentration of thiamethoxam wastewater at time t (mg/dm3).

2.6. Degradation Products and Degradation Pathway

Some studies have indicated that the thermal stability and high polarity of neonicoti-
noid compounds may affect the accuracy of GC-MS analysis, thus requiring the derivati-
zation of analytes before extraction [38]. However, some researchers believe that deriva-
tization is unnecessary [39,40]. In the pre-experiments, GC-MS analysis was conducted



Catalysts 2024, 14, 245 11 of 17

on samples with and without derivatization, and the results revealed that the absence of
derivatization had no significant impact on the GC-MS results. Using the same GC-MS
conditions, thiamethoxam standard samples were tested, and the results revealed consistent
peak retention times and main ion fragments (m/z), which matched the literature values for
thiamethoxam. The experimental retention time for thiamethoxam was 20.59 min. This indi-
cates that the substance in question was thiamethoxam. As the degradation time increased,
the abundance of the substance gradually decreased (Figure S1), thus demonstrating the
feasibility and effectiveness of the 3D electrode-enhanced ozone catalytic oxidation in the
degradation of thiamethoxam.

Based on the literature and the major ion fragments (m/z) in mass spectrometry (Figure S2),
eight intermediate degradation products were separated and identified (Table 2) [41–43]. Typ-
ically, the reactions between ozone and organic compounds can be categorized as elec-
trophilic, nucleophilic, and polar-addition reactions [44]. The molecular structure of thi-
amethoxam includes a hydrogenated oxadiazine ring and an aromatic five-membered
heterocycle. The hydrogenated oxadiazine ring is less stable and can be preferentially at-
tacked during degradation. Therefore, the degradation reaction pathway of thiamethoxam
is speculated to be as shown in Figure 5. Essentially, first, H2O undergoes a nucleophilic ad-
dition to the nitro group of thiamethoxam to form product 2 and nitric acid. Subsequently,
product 2 undergoes further demethylation to form product 3. During the oxidation of
ozone and the anode, the hydrogenated oxadiazine ring structure of product 2 opens,
thereby forming product 4. Simultaneously, in the presence of active hydroxyl radicals,
product 2 can generate a substance with a molecular structure of C10H17N3O3S, which
is the best precursor for products 7 and 8. However, this substance (C10H17N3O3S) is
not detected during degradation. Mir et al. [45] analyzed the possible route for the pho-
tocatalytic degradation of thiamethoxam; however, they did not detect C10H17N3O3S in
the experiments. Thus, this degradation product is unstable and can easily degrade into
subsequent products. Product 3 undergoes further catalytic decomposition, thus leading to
cleavage of the chain to form products 5 and 6. Product 6 forms through the nucleophilic
substitution of chlorine by hydroxyl radicals; additionally, it can also be produced through
a reduction reaction at the cathode to form product 9. Thus, thiamethoxam is not directly
mineralized; rather, it is transformed into intermediate degradation products before being
ultimately oxidized into small molecules, such as CO2 and H2O.

Table 2. GC-MS identification of thiamethoxam and intermediates formed during the three-
dimensional electrode-enhanced ozone catalytic oxidation (3DE-GAC-O3) process.

Number Name Chemical Formula Structure Mass Fragmentation Pattern
(m/z)

1 Thiamethoxam C8H12ClN5O3S
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Table 2. Cont.

Number Name Chemical Formula Structure Mass Fragmentation Pattern
(m/z)
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Figure 5. Possible thiamethoxam degradation pathway by three-dimensional electrode-enhanced
ozone catalytic oxidation (3DE-GAC-O3).
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2.7. Economic Analysis

The operating expenses of 3DE-GAC-O3 encompass both power consumption and
material usage, including carbon-felt electrode and GAC. Considering a daily treatment
volume of 100 cube meters, the replacement cost for carbon-felt electrode and GAC amounts
to approximately 0.12 USD/m3. Notably, power-consuming equipment, such as the ozone
generator (16 kw) and voltage regulator (8 kw), contribute to the electricity cost, calculated
at a price of 0.11 USD/kW·h, totaling 0.64 USD/m3. Thus, the overall operating cost is
estimated to be around 0.76 USD/m3.

3. Materials and Methods
3.1. Chemicals

Thiamethoxam (C8H10ClN5O3S, 95.0% purity) was purchased from Macklin Bio-
chemical Co., Ltd. (Shanghai, China). The particle electrode used in the experiment was
laboratory made and composed of GAC with a particle size of 3.0 ± 0.2 mm. All the
reagents used in the experiments were of analytical grade (Table S1).

3.2. Experimental Device and Method

The experimental device utilized herein was a homemade Plexiglass case
(25 cm × 15 cm × 25 cm) with an effective volume of 8 L (Figure 6). The left and right
sides were equipped with electrode fixers, and the bottom was equipped with an aera-
tion tray with a diameter of 10 cm. Commercially available carbon felt was used as the
anode and cathode plate, and the carbon felt size was 250 mm × 250 mm × 3 mm. The
anode and cathode plates were connected to a DC-regulated power supply (WYJ-30V/10A,
Delixi Electric Co., Ltd., Wenzhou, China) using wires, and the aeration disc interface was
connected to a high-concentration ozone generator (FL-820ET, Feili Electrical Technology
Co., Ltd., Shenzhen, China) to provide ozone to the device. An electromagnetic air pump
(ACO-001, Raoping Xingcheng Aquarium Products Co., Ltd., Chaozhou, China) was used
to increase the aeration volume.

Thiamethoxam wastewater (8 L) was added to the reactor, and 1 g/dm3 NaCl was used
as the electrolyte. The pH of the wastewater was adjusted using 1 mol/L NaOH and HCl.
Samples were collected at specific intervals to measure the chemical oxygen demand (COD)
concentration and calculate the removal rate. The effects of the various catalytic oxidation
times (0, 60, 120, 180, 240, and 300 min), current density (8, 16, 24, 32, and 40 A/m2), ozone
intensity (6, 8, 10, 12, 14, and 16 g/h), initial thiamethoxam concentration (150, 250, 500,
625, and 750 mg/dm3), particle electrode dosage (10, 15, 20, 25, and 30 g/dm3), and pH (3,
5, 7, 9, and 11) on thiamethoxam degradation were studied to investigate their effects on
thiamethoxam degradation. The experiments were conducted in triplicate.

Three factors that significantly influenced thiamethoxam degradation were selected
as independent variables, with the COD removal rate as the response variable. Using
the Design-Expert 13 software, a response surface experimental design was conducted
following the Box–Behnken principle, with three factors at three levels, to determine the
optimal process conditions. The experimental data obtained under optimal conditions
were fitted using the reaction kinetics equation. To investigate the reactive oxygen species
in the 3DE-GAC-O3 reaction system, tert-butanol (TBA, 10, 20, and 30 mmol/L) and
benzoquinone (BQ, 10, 20, and 30 mmol/L) were used to quench the hydroxyl radicals (·OH)
and superoxide radicals (O2·−), respectively. Thiamethoxam and its intermediate products
were detected using gas chromatography–mass spectrometry (GC-MS). The samples were
pre-treated before analysis. Fifty mL of water samples were adjusted to almost neutral and
then extracted three times with 100 mL of dichloromethane. Afterward, the extract was
treated with anhydrous sodium sulfate to remove the water before measurement.
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3.3. Analytical Methods

Chemical oxygen demand concentrations were measured according to the Chinese
SEPA Standard Methods [46]. The intermediate products of thiamethoxam were detected
using a gas chromatography–mass spectrometry (GC-MS) instrument (Agilent 5975C, Agi-
lent, Santa Clara, CA, USA), a DB-5 chromatographic column (30 m × 250 µm × 0.25 µm).
High-purity helium gas was selected as the carrier gas with a flow rate of 1 mL/min. The
injection method was a splitless injection, with an injection-port temperature of 250 ◦C and
an injection volume of 1 µL.

The gas chromatography temperature program was as follows. The initial temperature
was set to 50 ◦C and held for 1 min and then increased at a rate of 10 ◦C/min to 210 ◦C,
at which it was held for 3 min. Subsequently, the temperature was further increased at
a rate of 10 ◦C/min to 250 ◦C, at which it was held for 5 min. The mass spectrometer
source temperature was set to 250 ◦C, with a solvent delay time of 4 min. The electron
impact (EI) energy was set to 70 eV, and data acquisition was performed in selected
reaction monitoring (SRM) mode. The mass spectrometry (MS) scan range was 50–500 m/z.
The obtained mass spectrometry data were analyzed using the AMDIS 32 software for
comparison and identification.

The COD removal rate was calculated using the following equation:

CODremovalrate (%) = (c0 − ct)/c0 × 100% (13)

where c0 presents the initial COD concentration of thiamethoxam wastewater (mg/dm3);
ct presents the COD concentration of thiamethoxam wastewater at time t (mg/dm3).

The mean relative deviation (MRD) was calculated by the following equation [47]:

MRD(%) =

n
∑

i=1

∣∣∣ct i,exp − ct i,cal

∣∣∣
ct exp ·n

× 100% (14)

where ct i,exp is the COD concentration of thiamethoxam wastewater at experimental point
i (mg/dm3); ct i,cal is the COD concentration of thiamethoxam wastewater at point i of
the experiment calculated by kinetic modeling (mg/dm3); ct exp is the mean values of
experimentally obtained COD concentration of thiamethoxam wastewater (mg/dm3); and
n is number of experimental points.
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3.4. Statistical Analysis

The results were presented as their mean and standard deviation (SD). All data
analyses were conducted using SPSS software (ver.17.0). One-way ANOVA was employed
to determine significant differences at a significance level of p < 0.05. Post hoc comparisons
were performed using Tukey’s honest significant difference (HSD) test.

4. Conclusions

A three-dimensional electrode can effectively enhance the ozone catalytic oxidation
treatment of thiamethoxam wastewater; when combined together, the COD removal rate
becomes significantly higher than those of ozone catalytic treatment and 3D electrode
electrolysis alone. The optimal 3DE-GAC-O3 process conditions for thiamethoxam degra-
dation included a particle electrode dosage, current density, ozone concentration, pH,
catalytic oxidation time, and initial thiamethoxam concentration of 18 g/dm3, 25 A/m2,
12 g/h, 7, 300 min, and 500 mg/dm3, respectively. The influence of current density, particle
electrode dosage, and ozone concentration on the COD removal rate was in the order of
current density > particle electrode dosage > ozone concentration. The thiamethoxam
degradation process conformed to a second-order reaction kinetics equation. Hydroxyl
radicals were identified as the predominant species, with O2·− serving as a synergistic
agent, contributing to the effective removal of thiamethoxam. GC-MS analysis was used
to monitor the degradation of thiamethoxam, and sufficient structural information was
obtained to identify the eight intermediates. The various compounds detected during the
degradation process demonstrated the feasibility and effectiveness of 3DE-GAC-O3 for
the degradation of thiamethoxam. Thus, 3DE-GAC-O3 is a promising technology for the
degradation of thiamethoxam in wastewater.
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