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1. Thermal analyses 

 
Fig. S1.1. TG/DSC study of cyclohexylammonium -octamolybdate dihydrate (1). 

 

 
Fig. S1.2. TG/DSC study of cyclohexylammonium trimolybdate hydrate (2) 
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Fig. S1.3. TG/DSC study of anilinium trimolybdate dihydrate (5). 

 

2. Thermal stability studies by XRPD 

 

 
Fig. S2.1. XRPD/temp study of cyclohexylammonium -octamolybdate dihydrate (1). 
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Fig. S2.2. XRPD/temp study of cyclohexylammonium trimolybdate hydrate (2). 

 
Fig. S2.3. XRPD/temp study of anilinium trimolybdate dihydrate (5) 

 

3. Crystallographic data 
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Fig. S3.1 Cyclohexylammonium trimolybdate hydrate—Rietveld refinement plots (2). 

Due to strong asymmetry, the first peak at 5s was excluded from calculations. 

 

 

 
Fig. S3.2. Anilinium trimolybdate dihydrate—Rietveld refinement plots (5). 

 

Table S3.1. Cyclohexylammonium -octamolybdate dihydrate—interatomic distances 

(1). 

Mo – O 

(symm. code) 

Distance 

(esd) Å 

Mo – O 

(symm. code) 

Distance 

(esd) Å 

Mo1-O1 1.9140(19) Mo3-O1 1.9341(18) 

Mo1-O2 1.707(2) Mo3-O3 1.696(2) 

Mo1-O9 1.700(2) Mo3-O4 1.717(3) 

Mo1-O11 2.323(2) Mo3-O5^i^ 1.9193(15) 

Mo1-O12 1.9965(17) Mo3-O10 2.300(2) 

Mo1-O13 2.3278(16) Mo3-O13 2.4813(18) 
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Mo2-O8 1.709(3) Mo4-O5 1.8845(18) 

Mo2-O10^i^ 1.7559(18) Mo4-O6 1.704(3) 

Mo2-O11^i^ 1.9474(16) Mo4-O7 1.7173(16) 

Mo2-O12 1.9281(17) Mo4-O11 2.0168(18) 

Mo2-O13 2.1465(19) Mo4-O12 2.330(2) 

Mo2-O13^i^ 2.380(2) Mo4-O13^i^ 2.3047(16) 

(i)                 -x+2,-y-1,-z+1 

N2-C21 1.508(5) C25-C26 1.526(5) 

N4-C41 1.496(4) C41-C42 1.515(5) 

C21-C22 1.523(5) C41-C46 1.525(4) 

C21-C26 1.524(4) C42-C43 1.533(4) 

C22-C23 1.526(5) C43-C44 1.522(5) 

C23-C24 1.519(4) C44-C45 1.522(6) 

C24-C25 1.522(6) C45-C46 1.530(4) 

 

Table S3.2. Cyclohexylammonium trimolybdate hydrate—interatomic distances (2). 

Mo – O 

(symm. code) 

Distance 

(esd) Å 

Mo – O 

(symm. code) 

Distance 

(esd) Å 

Mo2-O1 2.33(3) Mo1-O1^iii^ 1.97(3) 

Mo2-O1^i^ 2.30(3) Mo1-O1^i^ 1.97(3) 

Mo2-O4 1.73(4) Mo1-O2 2.21(5) 

Mo2-O5 1.73(3) Mo1-O6 1.73(5) 

Mo2-O2^ii^ 1.99(3) Mo1-O3 2.28(4) 

Mo2-O3 2.03(2) Mo1-O7 1.71(5)  

(i)   -x+2,-y,-z+1; (ii)   -x+2,y-1/2,-z+1; (iii)   -x+2,y+1/2,-z+1 

 

Table S3.3. Anilinium trimolybdate dihydrate—interatomic distances (5). 

Mo – O 

(symm. code) 

Distance 

(esd) Å 

Mo – O 

(symm. code) 

Distance 

(esd) Å 

Mo1-01 1.82(6) Mo2-01^i^ 2.50(12) 

Mo1-O2 1.95(9) Mo2-O3 1.74(5) 

Mo1-O3 1.94(8) Mo2-O5^i^ 2.19(7) 

Mo1-O4 1.95(8) Mo2-O6 2.62(12) 

Mo1-O5 1.94(9) Mo2-O11 1.94(9) 

Mo1-O6 2.10(8) Mo2-O12 1.95(8) 

 

Mo3-01 2.36(11)   

Mo3-O3 2.38(8)   

Mo3-O5^ii^ 1.96(6)   

Mo3-O6^ii^ 2.54(12)   

Mo3-O22 1.94(8)   

Mo3-O23 1.94(8)   

(i)                 -x+1,y-1/2,-z+1/2       (ii)                -x+1,y+1/2,-z+1/2 

 

4. Kinetic modelling and catalytic results 
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Kinetic models were developed considering perfectly stirred, isothermal batch reactors 

and the corresponding material balance according to equation (1): 

���

��
= ��          (1) 

where �� is the molar concentration of species � (M), � is the reaction time (h)  and  �� is 

the reaction rate of species �. The material balances closed in 100 % for Cy (considering 

CyOx), Lin (considering mono- and diepoxides, and LinFur) and Ole (considering 

OleOx). 

 

4.1.  cis-Cyclooctene reaction 

For Cy, the (simplest) kinetic model A considers an irreversible, first-order reaction of 

Cy (Scheme S1) according to equations 2 and 3 with the rate constant ��� (h-1): 

��Cy

��
= − ��� �Cy       (2) 

��CyO

��
=  ��� �Cy       (3) 

 

 

Scheme S4.1. Mechanistic proposal for the reaction of Cy considered for kinetic models 

A, B and C. 

 

For Cy, the kinetic model B considers the second-order reaction of Cy with TBHP 

(ROOH; �ROOH,0 = initial molar concentration of oxidant, 1.6 M) to CyO plus tert-butanol 

(ROH) (Scheme S4.1), according to equations 1, 4-8 with the rate constant ���,� (M-1 h-1): 

��Cy

��
= − ���,� �Cy�ROOH      (4) 

��CyO

��
=  ���,� �Cy�ROOH      (5) 
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��ROOH

��
= − ���,� �Cy�ROOH      (6) 

��ROH

��
=  ���,� �Cy�ROH      (7) 

For Cy, the kinetic model C considers second-order reactions (Scheme S4.1), 

contemplating the kinetics of formation of active species MoOOR from the interactions 

between molybdenum (�Mo,0 = initial molar concentration of molybdenum, 0.01 M) and 

the oxidant ROOH (�ROOH,0  = 1.6 M), according to equations 1, 8-13 with the rate 

constants �� and �� (M-1 h-1), and ��� (h-1): 

��Cy

��
= − �� �Cy�MoOOR      (8) 

��CyO

��
=  �� �Cy�MoOOR       (9) 

��ROOH

��
= − �� �Mo�ROOH + ����MoOOR     (10) 

��ROH

��
=  �� �Cy�MoOOR      (11) 

��MoOOR

��
= �� �Mo�ROOH − ����MoOOR −  �� �Cy�MoOOR   (12) 

��Mo

��
= −�� �Mo�ROOH   + ����MoOOR    (13) 

 

The three kinetic models A–C fitted the experimental results well: Fobj in the range 

1.9958×10-5-4.7000×10-2 for model A; 2.9022×10-4-8.8100×10-2 for model B; and 9.5088×10-7-

3.9000×10-2 for model C. Figures S4.1-S4.3 shows the experimental and calculated curves, 

indicating relatively good fittings. 

Hence, the simpler kinetic model A is reasonable and was used to obtain the results 

discussed in the main text. The assumptions of model A were considered for the kinetic 

modelling of the remaining olefins (Ole, Lin). 
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Fig. S4.1. Experimental data (markers) and calculated kinetic curves (lines) for Cy (o) 

and epoxide CyO (∆) concentration, based on the model A, for catalysts 1 (a), 2 (b), 3 (c), 

4 (d), 5 (e) and 6 (f), at 70 °C. 
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Fig. S4.2. Experimental data (markers) and calculated kinetic curves (lines) for Cy (o) 

and epoxide CyO (∆) concentration, based on the model B, for catalysts 1 (a), 2 (b), 3 (c), 

4 (d), 5 (e) and 6 (f), at 70 °C. 
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Fig. S4.3. Experimental data (markers) and calculated kinetic curves (lines) for Cy (o) 

and epoxide CyO (∆) concentration, based on the model C, for catalysts 1 (a), 2 (b), 3 (c), 

4 (d), 5 (e) and 6 (f), at 70 °C. 
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Table S4.1. Calculated data based on kinetic models A and B, for the Cy reaction, at 70 

°C. 

Catalyst 
 

Kinetic model Rate Constant 

kCy (model A) or kCy,B (model B) a 

Fobj 

1 A 1.3989 4.0500×10-2 

 B 1.1602 8.5700×10-2 

2 A 1.0774 4.7000×10-2 

 B 0.8841 8.8100×10-2 

3 A 6.3279 1.2000×10-3 

 B 5.8411 9.2000×10-3 

4 A 11.5946 1.9958×10-5 

 B 12.1012 2.9022×10-4 

5 A 10.9802 1.6000×10-3 

 B 11.0396 5.9689×10-4 

6 A 0.5565 1.8800×10-2 

 B 0.4580 2.3700×10-2 

a Expressed as h-1 and M-1 h-1 for the kinetic models A and B, respectively. 

 

Table S4.2. Calculated data based on kinetic model C, for the Cy reaction, at 70 °C. 

Catalyst 
 

Rate Constant  (h-1)  Fobj 

 k1 k-1 k2  

1 185.1133 0.1329 227.8703 1.4800×10-2 

2 114.8381 0.2376 213.0711 3.9000×10-2 

3 871.3442 0.1270 984.3523 1.7708×10-5 

4 1506.3 0.1000 1700.2 9.5088×10-7 

5 1438.3 0.5000 1636.4 2.0000×10-3 

6 179.8089 283.1966 153.9463 1.5500×10-2 
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4.2. Methyl oleate reaction 

For methyl oleate (Ole), the kinetic model was based on the mechanism presented in 

Scheme S4.2, considering irreversible, first-order reactions with rate constants ���� (h-1) 

(in parallel to model A for Cy), according to equations 1, 14-15:  

��Ole

��
= − ���� �Ole       (14) 

��OleOx

��
=  ���� �Ole       (15) 

 

Scheme S4.2. Mechanistic proposal for the reaction of the olefins, considering 

irreversible, first-order reactions (same as Scheme 1 of the main text, serves as guide). 
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Fig. S4.4. Experimental data (markers) and calculated kinetic curves (lines) for Ole (o) 

and OleOx (∆) concentration for catalysts 1 (a), 2 (b), 3 (c), 4 (d), 5 (e) and 6 (f), at 70 °C. 
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4.3. Methyl linoleate reaction 

For methyl linoleate (Lin), the kinetic modelling was based on Scheme S4.2 and 

considering irreversible, first-order reactions with rate constants �� (h-1) (in parallel to 

model A for Cy), according to equations 16-19:  

��Lin

��
= − ����,� �Lin       (16) 

��LinOx

��
= ����,� �Lin - ����,� �LinOx     (17) 

��LinDiOx

��
= ����,� �LinOx − ����,� �LinDiOx    (18) 

��LinFur

��
= −����,� �LinDiOx        (19) 

 

For all substrates, the equation systems were solved by numerical integration in Matlab 

(version 9.13), using appropriate initial conditions (at t = 0), and the solution was refined 

by minimizing the objective function (Fobj) presented in equation (20), giving the values 

of the kinetic constants (ki, h-1) by fitting the proposed model to the experimental data.  

�obj = ∑ �∑ ���,��
calc

− ��,��
exp

�
���

��� ��     (20) 

where ��,��
calc

 and ��,��
exp

 are the calculated and experimental concentration values, 

respectively, at each instant of time n, and for specie m. 
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Fig. S4.5. Experimental data (markers) and calculated kinetic curves (lines) for Lin (o), 

LinOx (∆), LimDiOx (×) and LinFur (+) concentration for catalysts 1 (a), 2 (b), 3 (c), 4 (d), 

5 (e) and 6 (f), at 70 °C. 
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Fig. S4.6. cis-Cyclooctene epoxidation with TBHP, in the presence of the IPOM catalysts 

3–5, at 55 °C. Epoxide selectivity was always 100 %. 

 

 

Table S4.3.  Comparison of the catalytic results for 3–5 to literature data for IPOMs 

possessing anilinium derivatives as organic components, tested for the Cy/TBHP 

reaction, at 55 °C.a  
 

 

 

 

 

 

 

a Initial molar ratio Mo:olefin:oxidant = 1:100:153. b Dim. = Structural 

dimensionality. c t = Reaction time. d Conv. = Cy conversion (CyO selectivity was 

always 100 %). 

 

 

Catalyst Dim.b t (h)c Conv. (%)d Ref 

3 0-D 1/4 63/96 - 

4 1-D 1/4 87/100 - 

5 1-D 1 100 - 

(C8H12N)2[Mo3O10] 1-D 1/6 71/100 [1] 

(C7H10N)2[Mo3O10] 1-D 1/6 91/100 [1] 
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Fig. S4.7. Typical epoxidation catalytic test (with catalyst) (○) and contact tests (×) for 

cis-cyclooctene epoxidation with TBHP, in the presence of the IPOM catalysts 1 (a), 2 (b), 

3 (c), 4 (d), 5 (e) and 6 (f), at 70 °C. 

 

 

Fig. S4.8. ATR FT-IR spectra (a) and powder XRD patterns (b) of the original and 

recovered solids: 1 (a), 1-used (b), 2 (c), 2-used (d), 3 (e), 3-used (f), 5 (g), 5-used (h).  The 

results for 6 were previsouly published, demonstrating its good stability [19]. 

Compound 4 was structurally similar to 5. 
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Routine X-ray powder diffraction (XRPD) data were collected at ambient temperature 

on a Philips Analytical Empyrean diffractometer equipped with a PIXcel 1D detector, 

with automatic data acquisition (X’Pert Data Collector software v. 4.2) using 

monochromatized Cu Kα radiation (λ=1.54178 Å). Intensity data were collected by the 

step counting method (step 0.02°), in continuous mode, in the 2θ range 5–

60°. Attenuated total reflectance (ATR) FT-IR spectra were measured on a Bruker Tensor 

27 spectrometer equipped with a Specac Golden Gate Mk II ATR accessory  having a 

diamond top plate and KRS-5 focusing lenses (resolution 4 cm-1, 128 scans). 

 

 

 

 

Fig. S4.9. Kinetic constants as a function of density Dx (left) and n(oxo)/Mo ratio (right), 

for the Cy6N (a, b) and Anil (c, d) families of IPOM catalysts with different substrates 

(Cy (circles), Ole (squares) and Lin (triangles); the dotted lines are trendlines). 
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Fig. S4.10. Examples of GC chromatograms for the reaction of olefins (a) Cy, (b) Ole, (c) 

Lin, in the presence of 2/TBHP/TFT at 70 ºC. 

 


