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Abstract: Currently, public health is seriously threatened by the massive concentrations of emerging
contaminants. Treating emerging contaminants in water using effective methods has become a major
challenge worldwide. Photocatalytic technology, as an eco-friendly technology, has been recognized
as an effective means of removing contaminants from water. Among the various photocatalysts,
layered double hydroxides (LDHs), known as hydrotalcite-like materials, have been explored ex-
tensively in photocatalytic reactions due to their switchable properties and the large surface areas
of their unique two-dimensional structures. In this article, recent advances in the photocatalytic
degradation of emerging contaminants by LDH-based photocatalysts are reviewed. Firstly, the fun-
damental principles of the photocatalytic degradation of emerging contaminants using LDH-based
materials are briefly introduced. Various LDHs applied in the photocatalytic degradation of emerging
contaminants are broadly summarized into four types: pure-phase LDHs, interlayer-modified LDHs,
LDH-based composites, and layered double oxides (LDOs). Moreover, the synthesis process and
catalytic mechanism of LDH-based photocatalysts are also reviewed. An outlook on the problems
and future development of LDH-based photocatalysts in water remediation is provided at the end.

Keywords: layered double hydroxides; photocatalysis; emerging contaminants; degradation

1. Introduction

With the current massive population growth and economic development, one of the
most significant issues is the effect of pollution in the environment on human health [1].
Emerging contaminants (ECs), causing adverse effects on human health, have become a
pressing issue for ecosystems in the water environment over the past few decades [2]. As a
response, advanced oxidation processes (AOPs) are effective techniques for the treatment
of emerging contaminants [3]. Advanced oxidation technologies include photochemical
oxidation, catalytic wet oxidation, ozonation, electrochemical oxidation, and Fenton or
Fenton-like oxidation, resulting in the generation of the hydroxyl radical (•OH), hydrogen
peroxide (H2O2), the superoxide radical (•O2

−), and singlet oxygen (1O2) to remove
organic pollutants [4,5]. Among AOPs, photocatalytic oxidation is an eco-friendly, green,
and sustainable technique for contaminant removal because it uses the Sun’s energy [6,7].
Photocatalytic reactions are chemical reactions that convert light energy into chemical
energy under the action of catalysts.

As promising photocatalysts, layered double hydroxides (LDHs) have attracted in-
creasing attention in numerous fields, such as water treatment, CO2 reduction, and water
splitting, due to their supramolecular structures and specific properties [8–10]. Li and
Zhang et al. found that LDH-based materials have received widespread attention in the
field of photocatalysis and display significant application potential in the design and fabri-
cation of photocatalysis due to the versatility in their compositions and architectures [11,12].
LDHs are known as hydrotalcite-like materials. All of the LDHs are widely defined by
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the general molecular formula [M(1−x)
2+Mx

3+(OH)2]x+(An−)x/n•mH2O·, where M2+, M3+,
and An− represent divalent cations (e.g., Zn2+, Cu2+, Ni2+, Mn2+, Mg2+), trivalent cations
(e.g., Al3+, Co3+, Fe3+), and anions (e.g., NO3

−, Cl−, CO3
2−, SO4

2−, PO4
3−) [13–15]. LDHs

are composed of layered two-dimensional (2D) sheets, and the structures of LDHs are
similar to that of brucite (Mg(OH)2) [16–18], where the −OH groups are hexagonally closely
packed around magnesium cations to construct an octahedral structure, and the octahedral
structures are stacked by sharing hydroxyl groups in each stacked sheet layer, in which
the valances and charges are balanced (Figure 1). The structural unit of an octahedron
consisting of one magnesium cation combined with six hydroxyl groups (−OH) is the most
basic structural unit in brucite-like sheets [19]. The distinctive supramolecular structures of
LDHs offer great potential in regulating and controlling energy levels at the quantum level
due to the precisely controlled atomic compositions of the host and guest layers. When the
trivalent cations are substituted for divalent cations, the host layers possess more positive
charges to balance the negative charges of the guest layers. The charge density of the sheets
can be managed by varying the M2+/M3+ ratio, which affects the charge density of the
interlayer gallery. Furthermore, LDHs can contain exchangeable interlayer anions [20–22].
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Electronic structures determine the properties of LDHs. Changes in the components
of LDHs affect the energy gap, the redox potential of the conduction and valence bands,
and the separation efficiency of hole–electron pairs [23]. First, in terms of the cations of
the host layers, the elements in the sheets of LDHs can be replaced by any unsaturated
metal (e.g., Zn, Fe, Co, or Ni), which helps to transfer electrons and enhance the light
absorption [24,25], and any high-valence metal (e.g., Ti and Sn) can act as an electron
trap to capture photoelectrons [26,27]. Among the various LDHs, ZnTi-LDHs, ZnCr-
LDHs, and MgAl−LDHs are classical catalysts that exhibit fascinating photocatalytic
performance, and the differences in their components cause marked variations in their
energy gaps [28]. The doping of metal cations in sheets can enhance the photocatalyst’s
properties by introducing charge defects and promoting charge separation [25,29]. The
LDH-based ternary composites reviewed by Sun et al. all exhibited excellent photocatalytic
performance, which was attributed to the enhanced electron–hole separation efficiency
due to doping with metals [30]. Second, the anion located in the interlayer gallery can be
exchanged as long as the anion does not dissolve the metal ions from the host layers [31].
Interlayer regions can offer molecular rendezvous points due to their high absorptivity.
This contributes to the improvement of the photocatalytic performance. Third, interlayer
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elements may combine with foreign elements to form heterogeneous structures on the
surfaces of the host layers. Heterogeneous structures not only affect the structures of LDHs
but also influence the photocatalytic performance. In this review, we focus on LDH-based
photocatalysts for the removal of emerging contaminants from water (Figure 2). Figure 3
displays the number of published papers on the topics of “photocatalysis” and “LDH”.
The number of papers published on contaminant removal has grown rapidly over the
last decade, indicating that more and more researchers are being attracted to this area of
science.

Catalysts 2024, 14, x FOR PEER REVIEW 3 of 24 
 

 

composites reviewed by Sun et al. all exhibited excellent photocatalytic performance, 
which was attributed to the enhanced electron–hole separation efficiency due to doping 
with metals [30]. Second, the anion located in the interlayer gallery can be exchanged as 
long as the anion does not dissolve the metal ions from the host layers [31]. Interlayer 
regions can offer molecular rendezvous points due to their high absorptivity. This con-
tributes to the improvement of the photocatalytic performance. Third, interlayer elements 
may combine with foreign elements to form heterogeneous structures on the surfaces of 
the host layers. Heterogeneous structures not only affect the structures of LDHs but also 
influence the photocatalytic performance. In this review, we focus on LDH-based photo-
catalysts for the removal of emerging contaminants from water (Figure 2). Figure 3 dis-
plays the number of published papers on the topics of “photocatalysis” and “LDH”. The 
number of papers published on contaminant removal has grown rapidly over the last dec-
ade, indicating that more and more researchers are being attracted to this area of science. 

 
Figure 2. Schematic illustration of LDH-based photocatalysts for photocatalytic removal of emerg-
ing contaminants in water. 

 
Figure 3. The number of published papers on photocatalysis and LDHs (literature search on the 
Web of Science database). 

  

Figure 2. Schematic illustration of LDH-based photocatalysts for photocatalytic removal of emerging
contaminants in water.

Catalysts 2024, 14, x FOR PEER REVIEW 3 of 24 
 

 

composites reviewed by Sun et al. all exhibited excellent photocatalytic performance, 
which was attributed to the enhanced electron–hole separation efficiency due to doping 
with metals [30]. Second, the anion located in the interlayer gallery can be exchanged as 
long as the anion does not dissolve the metal ions from the host layers [31]. Interlayer 
regions can offer molecular rendezvous points due to their high absorptivity. This con-
tributes to the improvement of the photocatalytic performance. Third, interlayer elements 
may combine with foreign elements to form heterogeneous structures on the surfaces of 
the host layers. Heterogeneous structures not only affect the structures of LDHs but also 
influence the photocatalytic performance. In this review, we focus on LDH-based photo-
catalysts for the removal of emerging contaminants from water (Figure 2). Figure 3 dis-
plays the number of published papers on the topics of “photocatalysis” and “LDH”. The 
number of papers published on contaminant removal has grown rapidly over the last dec-
ade, indicating that more and more researchers are being attracted to this area of science. 

 
Figure 2. Schematic illustration of LDH-based photocatalysts for photocatalytic removal of emerg-
ing contaminants in water. 

 
Figure 3. The number of published papers on photocatalysis and LDHs (literature search on the 
Web of Science database). 

  

Figure 3. The number of published papers on photocatalysis and LDHs (literature search on the Web
of Science database).

2. Fundamental Principles of Photocatalysis

Various LDHs take advantage of their own unique properties to produce active species
under light excitation, which causes the non-selective mineralization of organic com-
pounds [12]. The photocatalytic principles are based on the generation of the excited states
of semiconducting materials by exposure to light [32]. In the structures of LDHs, an octa-
hedral unit consisting of one metal cation that is combined with six hydroxyl groups can



Catalysts 2024, 14, 252 4 of 23

serve as “a small semiconductor” [29,33,34]. In the excited state of an LDH, electrons (e−)
and holes (h+) separate themselves from electron–hole pairs when the energy of a photon
matches or exceeds the energy gap of the LDH [35]. Electrons from the valence band edge
farther away rapidly fill the conduction band, and holes remain in the valance band. The
excited electrons and holes subsequently migrate to the surfaces, and then the holes and
electrons can interact with water and oxygen molecules on the surfaces of the catalyst,
where oxidation reactions, mediated by holes, produce hydroxyl radicals, and the reduction
reactions promoted by electrons convert molecular oxygen into superoxide radicals. The
photocatalytic process involved in the mechanism of the photocatalytic production of active
species is shown in Figure 4.
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Photocatalytic processes must promote photogenerated electron transfer to adsorbed
particles provided that the potentials of the valence and conduction bands of the LDH
suppress the redox potential of the adsorbed particles [33,37,38]. For oxidation or reduction,
the potential of the valence band (versus the vacuum level) of the LDH must be more
positive than the oxidation potential of the reactants serving as acceptors (versus a normal
hydrogen electrode (NHE)), whereas the potential of the conduction band (versus the
vacuum level) must be more negative than the reduction potential of the reactants serving
as donors versus the NHE [39]. In brief, the redox potential of the adsorbed species must
be located in the reaction region between the top of the valence band and the bottom of the
conduction band of the LDH. The redox potentials of common active oxygen species are
presented in Figure 5 [40,41].
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To utilize active species to completely mineralize organics, the photocatalysis must be
enhanced by optimizing the electronic architectures of the LDHs. Photocatalysts should
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meet the following requirements to exhibit good performance: (1) greater light absorption
capacities in a wider light spectrum; (2) higher specific surface energies to attract sufficient
molecules; (3) heterostructure or morphology features to improve the rate of photoinduced
electron transition and to restrain the recombination of photogenerated carriers.

The component adjustment of LDHs is an important factor that affects the energy
band and photocatalytic performance. First, in terms of the adjustment of the host sheets,
there are various options for electronic architectures, if the metal elements or ratios of
cations tend to change. For instance, when the Mg/Al ratio was varied from 2.0 to 3.5, the
energy band gap changed from 1.265 to 3.321 eV in a chlorine intercalated MgAl−LDH
according to DFT calculations. When Mg was replaced by Zn stepwise, the energy band gap
changed from 3.85 to 5.43 eV, as calculated from the ultraviolet photoelectron spectroscopy
(UPS) of a MgZnAl-CO3-LDH. Second, some complexes with photocatalytic activity can
be inserted into the interlaminar regions of LDHs, including inorganic anions, organic
anions, metal complexes, and organic semiconductor materials. Third, composites of
LDHs exhibit better photocatalytic behavior. The objects in the composites typically have
a narrower band gap or act as the reactive center of the reaction, which can improve the
photocatalytic performance. The complexes of LDHs can be divided into complexes with
metal oxides, LDHs loaded with precious metals, self-assembled composites of LDHs with
organic semiconductors, and mixed metal oxides (MMOs) obtained by calcining mixed
crystal LDHs. These are discussed in detail in this review. The types of LDHs used for
the photocatalytic degradation of organic pollutants are summarized in detail, including
pure-phase LDHs and derivatives of LDHs. These derivatives are divided into LDHs
modified in the interlayer space, composites based on LDHs, and derivatives of LDHs
by calcination, for LDHs containing different elements. Table 1 summarizes the synthesis
methods of LDH-based photocatalysts.

Table 1. Synthesis of LDH-based photocatalysts.

LDH Fabrication Method Condition Ref.

Mn–doped ZnAl–LDHs Co-precipitation 90 ◦C, 36 h [42]
Ag/Zn–Al LDH Mechanochemical operation 1200 rpm, 4 h [43]

ZnNiFe–CO3–LDHs Complexing agent-assisted homogeneous
precipitation technique 90 ◦C, 2 days [44]

Mg/Al/Ti–LDH Co-precipitation room temperature, 24 h [45]
MgAlSn–LDH Co-precipitation 433 K, 36 h [46]

Mn/Co/Ti–LDH Hydrothermal 140 ◦C, 36 h [47]
Co–Al LDH/GO Co-precipitation 80 ◦C, 24 h [48]

Ag@CN–LDH Hydrothermal treatment 120 ◦C, 24 h [49]
Mn/Ti–LDH Hydrothermal 140 ◦C, 48 h [50]

La–doped ZnCr–LDH Co-precipitation 160 ◦C, 24 h [51]
Pt/Zn–Ti–LDHs Co-precipitation 100 ◦C, 24 h [52]

CoAl–LDH/Bi2MoO6 Hydrothermal 120 ◦C, 12 h [53]
CoAl–LDH/g–C3N4 Hydrothermal 110 ◦C, 9 h [54]
Fe3O4@CuCr–LDH Co-precipitation 60 ◦C, 24 h [55]

TMU–5@Ni–Ti–LDH Hydrothermal 110 ◦C, 24 h [56]
g–C3N4/Ce–doped MgAl–LDH Solvothermal 160 ◦C, 6 h [57]

3. Pure-Phase LDHs

Today, a range of artificial LDHs with a pure single phase can be prepared [58]. Pure-
phase LDHs only exist in the ratios of M3+/(M2+ + M3+) ranging from 0.2 to 0.33 [59].
The X-ray diffraction patterns (XRD) of pure-phase LDHs include (003), (006), (009), (110),
and (113) characteristic reflections, and no other crystalline phases are detected in the
spectrum [60,61].
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Many LDH materials containing zinc have been studied previously, especially
ZnAl−LDHs. A ZnAl−LDH was used as a photocatalyst to activate and stabilize the
direct oxidative transfer process (DOTP) process on the surface of the catalyst (Figure 6a),
which resulted in the complete removal of tetracycline hydrochloride (TC) within 35 min
under visible light irradiation and a mineralization rate of up to 25% [62]. A zinc-iron-
LDH (ZnFe−LDH) was synthesized by chemical co-precipitation and different anions
were added to form a ZnFe−Cl−−LDH photocatalyst, and the concentration of dissolved
zinc and iron in the water for five consecutive tests fulfilled the discharge standard [64].
A ZnTi−LDH prepared with urea in the homogeneous co-precipitation method showed
the superior removal of colorless salicylic acid (SA) under visible light irradiation, which
was much higher than that of commercial P25. The Zn2+ and Ti4+ cations were highly
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dispersed on the brucite-like LDH sheets, effectively promoting charge separation and
leading to excellent photocatalytic activity [65]. In addition, a ZnTi−LDH with a laminated
architecture was deemed an effective and stable visible-light-induced photocatalyst [38,66].

Crystallite ZnAlTi−LDHs with M2+/M3+ molar ratios (3:1) were fabricated using the
simple co-precipitation method. Normally, M2+ would be replaced by M3+ to obtain the
general formula [Me1−x

2+Mex
3+(OH)2]x+(An−)x/n•mH2O. The best degradation efficiency

for diclofenac acid achieved was 93% after 120 min [67]. CuZnAl−LDHs with different
Zn/Cu/Al ratios was manufactured by the co-precipitation method and were successfully
applied for the photodegradation of naproxen (NPX) [68]. Compared to ZnAlTi−LDHs
and CuZnAl−LDHs, ZnNiFe−LDHs exhibited greater light adsorption capabilities, lower
band gaps, and good surface dispersion, producing remarkable photocatalytic performance
without any pre-processing or calcination [44]. The entire photodegradation process oc-
curred under visible light. These Zn−LDHs containing iron and nickel elements have high
application value in the degradation of emerging contaminants. Moreover, LDHs contain-
ing magnesium, nickel, or cobalt also exhibit high visible light responses. MgAl−LDHs are
also classical LDH materials. A simple impregnation–reduction method was used for the
synthesis of a MgAl−LDH, which was applied for the degradation of ciprofloxacin (CIP)
under visible light. Evidently, more than 77% of CIP was degraded within 50 min [69].
A MgAl−LDH with a Mg:Al molar ratio of 3:1 was synthesized by the co-precipitation
method, which exhibited excellent photocatalytic degradation efficiency (65%) for the
removal of diclofenac [70]. An innovative cobalt manganese material was prepared using a
co-precipitation method, and the CoMn−LDHs exhibited excellent performance with the
addition of peroxymonosulfate to deal with metronidazole (MTZ) under light irradiation
(Figure 6b). Quenching experiments of free radicals revealed that •OH and •SO4

− were
produced in the CoMn-LDH/PMS system, and •SO4

− was more reactive than •OH for
the decomposition of MTZ [63]. All these LDHs containing cobalt lead to the superior
stability of photocatalysts and visible light responses. Using a co-precipitation method,
as-synthesized LDHs containing Ni displayed high photocatalytic activity (92.5%) for
chlorpyrifos (CP) under visible light excitation [71].

4. Interlayer-Modified LDHs

The interlayer spaces of LDHs modified by inorganic or organic compounds such as
inorganic anions, organic acids/bases, and organic complexes offer remarkable photocata-
lysts for organic contaminant removal [12]. They are usually synthesized by the calcination
restructuring technique or the anionic exchange method. The inherent “memory effect”
of LDHs produced by calcination allows them to rebuild themselves; in turn, LDHs with
ionic compounds or organic compounds in the interlayer space are obtained [72]. Inorganic
anions can be brought into the interlayer corridor through an anion exchange process em-
ploying corresponding salts. The positive layer structure can in turn store various negative
anions in the interlayer gallery [73]. In addition, LDHs can also realize the intercalation of
organics through organic self-assembly after exfoliation or in situ growth on organics, and
these LDH materials modified by organics have shown strong interlacing interactions and
adsorption capabilities towards organic contaminants [74–76].

The most common anions used for the intercalation of LDHs are oxyacid anions. Elhalil
et al. presented ZnAl−CO3

2−−LDH composites obtained via the co-precipitation method.
The catalyst was used to efficiently remove caffeine from water [77]. ZnFe−SO4

2−−LDH
nanocomposites were also fabricated by a chemical co-precipitation process. Subsequent
modification with graphene oxide generated a ZnFe−SO4

2−−LDH/GO catalyst with ZnFe
single bonds, and the degradation efficiency for ofloxacin (OFX) reached 71.19% after
150 min under light irradiation (Figure 7a) [64]. In addition, visible-light-responsive
NiAl−LDH composites with MoS4

2− were manufactured via solvent-free techniques
(Figure 7b) [78]. All these LDHs modified by oxyacid anions or organic anions in the
interlayer space show excellent photocatalytic performance.
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Polyoxometalates (POMs) are a class of metal–oxygen cluster substances with sieve-like
structures, and their photocatalytic activity originates from their unique structures [79,80].
POM-intercalated LDHs have attracted considerable attention due to the adjustable layer
space and absorbability. POM−LDHs were first used as photocatalysts to decompose an
aqueous solution of hexachlorocyclohexane (HCH) under mild conditions [81]. A novel
polymetallic oxygenate (POM)-intercalated ZnAl−LDH was prepared by the aqueous ion
exchange of the LDH precursor with the POM anion phosphomolybdic acid (PMA), which was
subsequently used to degrade bisphenol A (BPA) in an aqueous solution [82]. Polyoxometalate-
pillared Zn/Al/Mn−LDHs were rapidly manufactured by directly exchanging the anions. The
as-prepared catalysts exhibited high photocatalytic degradation performance for aqueous
organochlorine pesticides such as hexachlorocyclohexane through a first-order reaction [83].

An organometallic complex can also be inserted into LDHs. For instance, Tang et al.
showed that ZnAl−LDH composites could be modified by an organic substance [FeEDTA]−

in the interlayer gallery. These composites were synthesized by a convenient and effective
anion exchange method. The maximum decolorization efficiency and TOC removal rate
of the catalyst for azocarmine B (ACB) under optimal conditions could reach 97.27% and
90.36%, respectively [84]. CaAl−LDHs were heterogenized by inserting ferrate into the
interlayer space. The LDHs intercalated by ferrate exhibited outstanding photocatalytic
properties for phenol degradation via a heterogeneous photocatalysis mechanism [85].
All these ferric complexes exhibit increased adsorption and photocatalytic properties
after intercalation.



Catalysts 2024, 14, 252 9 of 23

5. LDH-Based Composites

LDH-based composites are fabricated from the recombination of primary LDHs with
other photocatalytic materials, including inorganic semiconductors, organic polymers,
quantum dots, and metal nanoparticles [86,87]. Composite hybrids possess new properties,
and, hence, exhibit better photocatalytic properties. These high-performance composites
can form photocatalytic heterostructures. Compared to single-phase elements as photocata-
lysts, LDH composites not only maintain the characteristics of each element, but also show
enhanced photocatalytic properties through promoting the separation of photogenerated
electron–hole pairs and extending the light absorption range.

During the past decade, titanium dioxide (TiO2) has attracted great attention due to
its excellent photochemical properties [88]. TiO2 composite catalysts are being studied
as promising photocatalysts due to their enhanced photocatalytic performance [89]. Nu-
merous reports have covered the effects of LDH composites containing titanium dioxide
on the photodegradation of organic pollutants. Nano-sized titanium dioxide supported
on LDH composites (TiO2/ZnAl−LDH, TiO2/CuZnAl−LDH, TiO2/ZnFe−LDH, and
TiO2/CuZnFeTi−LDH) was manufactured by convenient precipitation methods to dis-
perse anatase titanium dioxide seed crystals on the surfaces of LDHs. The increased pore
space and optical spectral characteristics were due to the modification of the titanium
dioxide and the copper, trivalent iron, or tetravalent titanium cations in the layers of
the LDHs. As a result, the as-prepared nanocomposites exhibited greater photocatalytic
activity than P25 (TiO2) [90]. In addition, an advanced strategy to improve the photo-
catalytic activity efficiency is to combine the LDHs with other functional units, and such
units can be organic materials. Organic composite materials of LDHs exhibit the excellent
photodegradation of pollutants. A Ti3C2/ZnTi−LDH@MXene composite was prepared
by the convenient hydrothermal method. The Ti3C2/ZnTi−LDH based on MXene re-
markably improved the adsorption of ibuprofen and the photocatalytic performance of
Ti3C2/ZnTi−LDH@MXene [91]. LDHs can also be combined with carriers to increase the
specific surface areas. For example, ZnTi−LDH/h−BN composites were prepared by a
convenient co-precipitation method and exhibited photocatalytic performance of 95% for
diazepam (DZP) degradation under visible light, where the h−BN template was confirmed
to be excellent carrier (Figure 8a) [92].
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The combination of LDHs containing magnesium with metal oxides has become a hot
spot in the field of photocatalysis. A novel g−C3N4/MgZnAl−LDH (M−CN/cLDH) with a
porous flower-like nanostructure was prepared by a template method, being self-assembled
from laminated hybridized flakes. The efficient catalytic activity of the three-dimensional
structure for antibiotics in seawater was ascribed to the synergistic effect of adsorption and
photocatalysis [94]. Moreover, a series of innovative LDHs containing cobalt have been
reported in recent years. A Zn−Co−LDH@biochar (Zn−Co−LDH@BC) was prepared via
the hydrothermal method, where cobalt and zinc were uniformly dispersed on the surface
of the biochar, and its specific surface area was significantly larger than that of the pristine
BC. The excellent catalytic performance of the catalyst was attributed to the enhancement
of the photogenerated carrier separation and the inhibition of the agglomeration of the
LDH nanostructures by the addition of cobalt hydroxide and BC, respectively [95]. Three-
dimensional CoMn−LDH/rGO composites were fabricated for the first time via a simple
hydrothermal method, and the particular structure could help to improve the recycling
efficiency of catalysts (Figure 8b) [93]. A novel two-dimensional stacked heterostructure, a
direct Z-scheme, composed of oxygenic carbon nitride and ultrathin CoAl−LDH bridged by
hydrogen bonds, was fabricated via in situ growth synthesis. The decomposition activity of
the as-prepared complex was superior to that of oxygenic carbon nitride and an unmodified
CoAl−LDH owing to the strong electronic coupling effect caused by the heterostructured
interface. Moreover, the process of charge transfer in the Z-scheme heterostructure system
may also occur with other LDHs with similar structures [96].

There have also been some recent reports on the application of new LDH materi-
als containing nickel. A noble nanohybrid containing nickel, Ni2P/NiCo−LDH, was
manufactured by a simple calcination method, and the composites were more efficient
photocatalysts than the unmodified NiAl−LDH. Unique Co−P bonds were formed in
the material during the preparation process, which not only facilitated light absorption
but also reduced the interfacial transfer resistance of the catalyst and improved its charge
separation efficiency [97]. Cs0.33WO3/NiAl−LDH composites were manufactured by a
convenient solvothermal synthesis method and studied as photocatalysts to decompose
tetracycline (TC) under visible light irradiation for the first time [98]. CoNi−LDH/ZnIn2S4
was synthesized by a simple hydrothermal method, and the composite was a 1D/2D S-
scheme heterojunction in which the bulk 1D CoNi nanowires were uniformly and densely
anchored on the surfaces of the 2D ZIS nanosheets [99].



Catalysts 2024, 14, 252 11 of 23

6. Layered Double Oxides (LDOs)

LDHs can be converted into layered double oxides (LDOs) after calcination at
300–600 ◦C, which not only maintains the topological properties of the LDHs but also
results in better photocatalytic activity and greater adsorption capacities [100,101]. A sig-
nificant feature of these calcined products is the “memory effect”, in which the collapsed
structure can reconstruct the original layered structure after the adsorption of various
anions [102].

A series of ZnAl−LDHs with various molar ratios of Zn to Al was calcined to prepare
corresponding LDO composites by optimizing the synthesis parameters, and the adsorption
properties for organic pollutants and the photocatalytic performance for photodegradation
were explored. ZnAl−LDO carriers were obtained by calcining ZnAl−LDH at different
temperatures, and subsequently Ag2O/Ag nanoparticles were modified on the carriers to
obtain Ag2O−Ag/LDO, whose photocatalytic activity for TC degradation was related to the
calcination temperature [103]. The Z-type ZnAl−LDO/Ag2S heterojunction was constructed
by electrostatic self-assembly and chemical deposition, in which LDO nanosheets were loaded
on Ag2S nanoparticles. The photocatalyst was found to have excellent structural and per-
formance stability [104]. For further research on the ZnO−ZnAl2O4 system, ZnO−ZnAl2O4
materials with different cationic molar ratios (molar ratios = 1, 3 and 5) have been fabricated
by calcination, and these exhibited superior photocatalytic decomposition activity towards
caffeine (97.32%) in an aqueous solution, for which the dispersal of zinc oxide particles and
the adsorption capacity were the most significant factors [105].

A series of MgAl−LDOs containing different amounts of B,N co-doping (MA#C(B,N))
were applied to the photodecomposition of TC in aqueous solutions. The photocatalytic
efficiency of the MA#C(B,N) nanosheets was significantly higher than that of the LDO and
BN [106]. During the catalyst synthesis process, Au3+ was reduced to Au nanoparticles in
situ on the MgAl−LDH surface by utilizing the oxygen vacancies in the unique electronic
environment, and finally Au/MgAl−LDH (Au/LDH) composites were formed (Figure 9a).
The study of strong metal–vacancy interactions in composites provides new opportunities for
the removal of cinnamyl alcohol from water [107]. Meanwhile, a MnFe−LDO was found to
be useful for the photocatalytic degradation of pollutants in water. A simple co-precipitation–
calcination technique was used to synthesize a low-cost MnFe−LDO-biochar photocatalyst
with pronounced interconnected pores and folded edges, which correlated with the surface
adsorption and photocatalytic performance of the catalyst [108]. A MnFe−LDO−biochar,
prepared by the co-precipitation–calcination method, was also used for the photocatalytic
degradation of TC. The catalyst had a large specific surface area and high photocurrent
response, and the synergistic effect of the LDO and biochar was extremely prominent [109]. A
three-dimensional flower-like cobalt-bearing layered double oxide/graphitic carbon nitride
(Co−SLDO/CN) structure was prepared by sulfate anion induction, where the sulfate anions
and the involvement of the calcination process induced the formation of oxygen vacancies
(Figure 9b). Moreover, the incorporation of carbon nitride (CN) inhibited the aggregation of
the Co−SLDH and provided it with nucleation sites [110].
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7. LDH-Based Photocatalysts for Oxidative Degradation of Emerging Contaminants

Emerging organic pollutants such as pharmaceutical and personal care products
(PPCPs), PFOA, and pesticides have serious impacts on human health and ecosystems,
and it is critical to treat these pollutants using environmental technologies. LDH-based
photocatalysts have been widely used to treat organic pollutants in water due to the flexible
tenability, the dispersion of metals, and the chemical composition. Table 2 summarizes
the research results on the removal of emerging pollutants by LDH-based photocatalytic
materials during the last decade.

Table 2. Summary of LDH-based materials for photocatalytic removal of emerging contaminants.

Pollutant LDH Degradation
Efficiency Light Irradiation Ref.

Ibuprofen ZnFe−MMOs 95.7%, 90 min 500 W Xe lamp (λ = 300 nm) [111]
Caffeine ZnO−ZnAl2O4 100%, 210 min UV mercury lamp (400 W) [105]

ACB ZnAl−LDHs/[FeEDTA] 97.27%, 180 min UV light [84]
Caffeine Ca/ZnO−Al2O3 98.5%, 70 min UV light [112]

SA ZnTi−LDH 65%, 6 h 250 W Xe lamp [65]
Diethyl phthalate Fe3O4@CuCr−LDH 70%, 120 min solar simulator lamp (λ > 400 nm) [55]

TC In2S3/Zn–Al−LDHs 92.2%, 30 min visible light (λ > 400 nm) [113]
BPA Bi2MoO6/Zn−Al−LDH 96%, 300 min visible light [114]

Lomefloxacin Bi2O3/CuNiFe−LDHs 84.6%, 40 min visible light (67 mW/cm2) [115]
CIP M−RM/LDH 97.4%, 60 min visible light (λ = 380–780 nm) [116]

TC MgAl−LDH/
(BiO)2CO3

97.2%, 105 min visible light [117]

Rifampicin ZnCr−LDH/rGO 87.3%, 60 min LED lamp [118]
BPA Cu/ZnO/CoFe−CLDH 80%, 6 h visible light (λ = 380–780 nm) [119]

Rifampicin ZnCr LDH/BC 100%, 40 min LED lamp [120]
CP Co−Al−LDH/g−C3N4−CoFe2O4 97.2%, 150 min 50 W LED lamp [121]

NTP Ag@AgCl/ZnAl−LDH 100%, 45 min visible light (780 nm > λ > 420 nm) [122]
NTP Ag/Ag3PO4/Zn–Al−LDH 100%, 60 min visible light (780 nm > λ > 420 nm) [123]
NTP Bi2WO6/Ag3PO4/Zn−Al−LDH 100%, 90 min visible light (780 nm > λ > 420 nm) [124]
NTP Cu2O/ZnAl−LDH 78%, 210 min visible light (λ > 420 nm) [125]



Catalysts 2024, 14, 252 13 of 23

7.1. Photocatalytic Degradation of PPCPs

A wide variety of PPCPs are found in aquatic environments around the world due to
the growing needs of livestock, agriculture, and disease treatment [126]. Misused PPCPs
can enter the human body through bioconcentration and cause great harm to human health.
LDH-based catalysts, as an important class of layered materials, are excellent candidates
for the photocatalytic removal of PPCPs due to the synergistic effect of the active sites and
exhibit exceptional catalytic activation capabilities.

Gao et al. synthesized uniformly dispersed NiAl−LDH/reduced graphene oxide
(NiAlCe LDH/RGO) complexes with a large specific surface area, exhibiting excellent
degradation efficiency for ciprofloxacin (CIP) under visible light irradiation (94%), which
was significantly superior to that of the pristine NiAl−LDH (36%). The efficient catalytic
ability of the composite was attributed to the fast photogenerated charge separation, caused
by the presence of RGO and Ce [127]. In addition, highly crystalline TiO2/ZnAl−LDH
composites formed by synthesis after impregnation with TiO2 exhibited catalytic pho-
todegradation efficiency towards sulfamethoxazole (SMX) of more than 90% after five
recycling experiments, in which •OH was the main reactive oxygen species in the degrada-
tion process [128]. Similarly, an aluminum-containing CoAl−LDH modified with N-doped
carbon quantum dots (NCQDs), which was grown on hollow graphite carbon nitride
spheres (HCNS) to form g−C3N4@LDH/NCQDs composites, exhibited superior degrada-
tion activity for TC than the pure LDH and HCNS under visible light. The hollow structure
of the composite provided a generous number of active sites for the catalytic reaction, and
the synergistic interaction between the multiple components facilitated the separation and
transfer of the photogenerated carriers (Figure 10) [129].
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Xiong et al. [130] embedded Cu2O nanoparticles onto the main laminate of a ZnTi−LDH
by in situ reduction to form a CuZnTi−LDH, whose optoelectronic properties and pho-
tocatalytic degradation performance could be adjusted by varying the doping amount
of Cu. UV–vis DRS spectra showed that the absorption peaks of the composites were
significantly higher than that of the ZnTi−LDH when the (Cu2+/(Zn2++Cu2+)) molar ratio
was 0.10, suggesting that the doping of Cu2O significantly improved the light-absorbing
ability of the LDH. The results of a photoluminescence (PL) analysis showed the high
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separation efficiency of the photogenerated electron–hole pairs in the composites. Ulti-
mately, under visible light irradiation, the •OH-dominated reactive species produced by the
CuZnTi−LDH degraded 71.6% of TC within 120 min, and the outstanding catalytic perfor-
mance was attributed to the p–n heterostructure, which promoted the effective separation
of electron–hole pairs and facilitated charge transfer.

7.2. Photocatalytic Degradation of Perfluorooctanoic Acid (PFOA)

Perfluorooctanoic acid (PFOA) is extensively applied in leather textiles, fire extin-
guishing agents, lubricants, and other industrial objects and is regarded as a persistent
organic pollutant due to its stable chemical structure, high temperature resistance, and
resistance to conventional treatment techniques [131,132]. The PFOA content in water
should not be greater than 70 ng/L, based on the United States Environmental Protection
Agency (USEPA) regulations [133]. PFOA has been found in drinking water and sewage
and proven to be potentially toxic to animals and humans. Therefore, effective methods to
remove PFOA from water are urgently needed.

Tang et al. synthesized a direct Z-scheme CeO2@NiAl−LDH heterojunction, and the
catalyst CeO2@NiAl−LDHs possessed a core–shell structure (Figure 11) and could be used
for the photocatalytic degradation of refractory PFOA. For example, 90.2% of PFOA could
be degraded over the catalyst within 325 min at the reaction temperature of 45 ◦C, an initial
pH of 9, and a catalyst dosage of 25 mg. Its degradation rate constant was 36.1 mg g−1 h−1

under a xenon lamp with an irradiation intensity of 500 W, which was much greater than
that of NiAl−LDHs and CeO2. The authors suggested that the improved photocatalytic
performance may have been due to the formation of an internal electric field that originated
from the discrepancy in the phase work function of the CeO2 and NiAl−LDHs, accelerating
the transfer of electrons. They also conducted a detailed study of the degradation kinetics
and thermodynamics and obtained details of the reaction order and rate equation. In
addition, studies on the degradation pathways indicated that PFOA is eventually oxidized
to carbon dioxide and water [134].
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Figure 11. (a) TEM image of CeO2@NiAl−LDHs. (b) Degradation efficiency of PFOA by different
samples under visible light. (c) Illustration of charge transfer process and built-in electric field (BIEF)
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Yang et al. obtained flower-shaped microspheres of Bi5O7I/ZnO, which is an n–n
heterojunction catalyst. The authors used zinc nitrate and aluminum nitrate as raw ma-
terials to first synthesize Zn−Al hydrotalcite, and then supported BiOI on the Zn−Al
hydrotalcite to obtain the precursor BOI0.04−BHZA. After further calcination at 400 ◦C, the
final product Bi5O7I/ZnO was obtained. They determined the optimal loading of BOI on
hydrotalcite by performing PFOA degradation experiments. The formation of the n–n het-
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erojunction expanded the photoresponse of the catalyst to the visible light region, improved
the carrier separation efficiency, and thus led to excellent photocatalytic performance. Fi-
nally, Bi5O7I/ZnO could remove about 91% of PFOA under visible light irradiation within
6 h, which was 2.4, 2.9, and 1.8 times higher than that of Zn−Al hydrotalcite, BiOI, and
BOI0.04−BHZA. The active species removal experiments showed that the holes played a
dominant role in the whole experimental process. Combined with the study of density
functional theory, it was found that the holes mainly attacked the carboxyl groups of PFOA
and decomposed the PFOA. The mechanism analysis showed that the rearrangement of the
Fermi levels caused the conduction bands of ZnO to receive electrons from Bi5O7I, thereby
promoting the separation of the photogenerated charge carriers [135]. Yang et al. prepared
metal oxide–titanium dioxide (MMO−TiO2). The degradation experiments showed that
300 mg/L of PFOA could be effectively removed, in an eco-friendly manner, within 240 min.
This enhanced degradation rate was mainly due to an increase in the specific surface of the
MMO−TiO2 structures and a decrease in electron–hole recombination [136].

7.3. Photocatalytic Degradation of Pesticides

Pesticides are effective in controlling the quantity and quality of crops and eliminating
pests in both agricultural and non-agricultural fields [137]. However, pesticide products are
highly toxic and their irrational use can seriously threaten human health and even lead to
poisoning [138]. LDHs have been used to treat pesticide residues in water bodies because
of their ability to detect the specific properties of pesticides.

To effectively treat highly concentrated pesticides entering water sources, authors
have used S-doped Ni−Co−LDHs modified by Fe3O4 nanoparticles to form S-doped
Ni−Co LDH/Fe3O4 composites, which were studied for the photocatalytic degradation
of the pesticide CP. The experimental results showed that the k value (apparent rate
constant) of S-doped Ni−Co LDH/Fe3O4 was 0.018 min−1, and the degradation rate of
CP could reach 92.5% after 150 min when combined with the results of the experimental
parameter investigation [71]. Sheikhpoor et al. prepared the ternary catalyst Co−Al
LDH//g−C3N4−CoFe2O4, which was also used for the degradation of CP under visible
light (97.2%), and the catalytic activity of the composites was significantly higher than
that of the pure-phase g−C3N4 and CoFe2O4. The results of the capture experiments
confirmed that •OH was the main active species for CP degradation in the photocatalytic
process, and the degradation of CP could still reach 80% after five cycles [121]. Zheng
et al. fabricated Cu2O intercalated ZnAl−LDH (Cu2O/ZnAl−LDH) photocatalysts by a
hydrothermal method, which could completely degrade nitenpyram (NTP) in 210 min
and had a mineralization rate of 40%. In addition, the photocatalyst had some bactericidal
effects and treatment potential for waste leachates. It was shown that the efficient catalytic
activity was attributed to the synergistic effect of the intercalation structure and the crystal
surface [125].

S-scheme heterojunction construction has been considered as a promising strategy to
improve the photocatalytic performance. Bi2WO6/Ag3PO4/Zn−Al−LDH heterojunctions,
synthesized by Zheng et al., with a reef-like morphology, were used to treat NTP in water.
Interestingly, the uniformly distributed coral reef structure facilitated the enhancement
of the photocatalytic activity, and the heterogeneous structure effectively extended the
carrier lifetime. The directional transfer of photogenerated electrons due to the internal
electric field promoted the efficient separation and transport of the carriers, thus presenting
remarkable photocatalytic degradation capabilities. Eventually, the •O2

− and h+ generated
in the photocatalytic system enabled the S-scheme heterojunction to completely degrade
50 mg/L of NTP in 90 min (Figure 12) [124].
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Figure 12. (a) SEM images of Zn−Al−LDH, Ag3PO4, Bi2WO6, BWLDH0.3, and AP0.5BWLDH0.3.
The k-value of the AP0.5BWLDH0.3/PMS/Vis system for the removal of (b) NTP in simulated
natural water and (c) other typical organic pollutants. (d) The k−value for the cyclic degra-
dation of the AP0.5BWLDH0.3/PMS/Vis system. (e) The mechanics of photocatalysis in the
AP0.5BWLDH0.3/PMS/Vis system [124].

7.4. Photocatalytic Segradation of Other Contaminants

The presence of emerging contaminants such as endocrine-disrupting chemicals
(EDCs) and microplastics (MPs) has received a great deal of attention. Nonylphenol
(NP) is a nonionic surfactant and a typical EDC pollutant that is widely used in indus-
trial products such as ink and latex paint. Due to the wide application of NP, it is easily
introduced into water, but NP is not easily degraded [136,139,140]. Therefore, powerful
techniques need to be developed to remove NP. Arjomandi-Behzad et al. constructed a
core–shell cocatalyst consisting of nitrogen-doped hollow carbon spheres (N−HCS) as the
core and LDH nanoplates as the photoactive shell. As the supporter of an LDH, N−HCS
could effectively prevent the agglomeration of particles, increased the specific surface area
of the catalyst, and improved the electron transfer rate as an electron transfer channel,
leading to boosted photocatalytic performance. As expected, the LDH@N−HCS (15 wt%)
degraded 85% of NP at 180 min. The author claimed that there were four reasons for the
improved activity of the catalyst: (1) the core–shell structure promoted carrier separation;
(2) the addition of the LDH increased the specific surface area of the catalyst, which pro-
vided more reachable active sites for the degradation of pollutants; (3) the hollow structure
enhanced the capture of light by the photocatalyst; (4) N−HCS promotes charge transfer as
an electron reservoir [141].

MPs is a general term for plastic fragments with a particle size of less than 5 mm,
mainly including polyethylene, polypropylene, and so on. MPs accumulate in water and
migrate to various places with the flow of the water, and they can enrich heavy metal ions in
water due to their large specific surface area. Additionally, MPs accompanied by heavy met-
als can easily enter the human body and cause harm to human health [142,143]. Jiang et al.
prepared a CuMgAlTi−R400 composite photomaterial for the photocatalytic degradation
of polystyrene and polyethylene. They found that the particle sizes of polystyrene and
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polyethylene decreased by 54.2% and 33.7% after visible light irradiation. The decrease in
the particle size of the pollutants is beneficial as it increases the degradation rate. The results
of the EPR analysis showed that the hydroxyl radical and superoxide radical contributed to
the decomposition of polystyrene and polyethylene. This study provides a feasible strategy
for the effective control of MPs (Figure 13) [144].
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8. Conclusions

In summary, this review describes the synthesis strategies of LDH-based photocat-
alysts and the progress of their application in the field of photocatalytic degradation for
emerging contaminants over the past decade. A series of LDH-based photocatalysts with
synergistic effects can be obtained by the functional modification of pure-phase LDHs
through interlayer modification, surface compounding, and calcination. These LDH-based
photocatalysts, with excellent electronic structures and crystal structures, can effectively
remove emerging contaminants from water. Overall, these LDH-based photocatalysts
have superior degradation activity due to the following characteristics: high light absorp-
tion, wide optical absorption ranges, and high separation efficiency of holes and electrons.
Although LDH-based photocatalysts have shown exciting progress in the treatment of
emerging contaminants, there still remain several pressing challenges, notably the fol-
lowing: (1) the development of low-cost catalysts for the efficient treatment of pollutants
is necessary; (2) besides the treatment of PPCPs, LDH-based photocatalysts should be
used towards the photocatalytic degradation of other emerging contaminants (e.g., PFOA,
EDCs, nicotine, caffeine, etc.); (3) the degradation pathways and intermediate product
toxicity for emerging contaminants should be studied in detail, and attention should be
paid to the degree of mineralization of pollutants in LDH-based photocatalytic systems; and
(4) the development of LDH-based catalysts for practical application in the photocatalytic
degradation of emerging contaminants requires further research.
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