
Citation: Wei, Z.; Ji, Y.; Bielan, Z.; Yue,

X.; Xu, Y.; Sun, J.; Chen, S.; Yi, G.;

Chang, Y.; Kowalska, E.

Platinum-Modified Rod-like Titania

Mesocrystals with Enhanced

Photocatalytic Activity. Catalysts 2024,

14, 283. https://doi.org/10.3390/

catal14040283

Academic Editor: Roberto Fiorenza

Received: 19 March 2024

Revised: 10 April 2024

Accepted: 20 April 2024

Published: 22 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

catalysts

Article

Platinum-Modified Rod-like Titania Mesocrystals with Enhanced
Photocatalytic Activity
Zhishun Wei 1,2 , Yuanyuan Ji 1 , Zuzanna Bielan 3 , Xin Yue 1, Yuqi Xu 1, Jiajie Sun 1, Sha Chen 1,2,*,
Guoqiang Yi 1,2, Ying Chang 1,2 and Ewa Kowalska 1,3,*

1 Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Green
Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology,
Wuhan 430068, China; wei.zhishun@hbut.edu.cn (Z.W.); 102100464@hbut.edu.cn (Y.J.);
yuexin6912@163.com (X.Y.); 102300431@hbut.edu.cn (Y.X.); sjj73727@163.com (J.S.);
yiguoqiang@hbut.edu.cn (G.Y.); cy0025@hbut.edu.cn (Y.C.)

2 Hubei Longzhong Laboratory, Xiangyang 441000, China
3 Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland; zuzanna.bielan@uj.edu.pl
* Correspondence: chensha@hbut.edu.cn (S.C.); ewa.k.kowalska@uj.edu.pl (E.K.)

Abstract: Photocatalysis is considered as an environmentally friendly method for both solar energy
conversion and environmental purification of water, wastewater, air, and surfaces. Among various
photocatalytic materials, titania is still the most widely investigated and applied, but more efforts
must be carried out considering the synthesis of highly efficient photocatalysts for multifarious
applications. It is thought that nanoengineering design of titania morphology might be the best
solution. Accordingly, here, titania mesocrystals, assembled from crystallographically oriented
nanocrystals, have been synthesized by an easy, cheap, and “green” solvothermal method (without
the use of surfactants and templates), followed by simple annealing. The obtained materials have
been characterized by various methods, including transmission electron microscopy (TEM), scanning
electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD)
and diffuse reflectance spectroscopy (DRS). It has been found that the as-obtained photocatalysts
exhibit a unique nanorod-like subunit structure with excellent crystalline and surface properties.
However, pristine titania is hardly active for a hydrogen evolution reaction, and thus additional
modification has been performed by platinum photodeposition (and silver as a reference). Indeed, the
modification with only 2 wt% of noble metals results in a significant enhancement in activity, i.e., ca.
75 and 550 times by silver- and platinum-modified samples, respectively, reaching the corresponding
reaction rates of 37 µmol h−1 and 276 µmol h−1. Additionally, titania mesocrystals exhibit high
oxidation power under simulated solar light irradiation for the degradation of antibiotics within
the tetracycline group (tetracycline (TC), ciprofloxacin (CIP), norfloxacin (NOR) and oxytetracycline
hydrochloride (OTC)). It has been found that both experimental results and the density functional
theory (DFT) calculations confirm the high ability of titania mesocrystals for oxidative decomposition
of tetracycline antibiotics.

Keywords: antibiotic degradation; titania; nanoengineering; mesocrystals; photocatalysis; Pt nanoparticles

1. Introduction

Major current environmental problems include climate change, pollution, environmen-
tal degradation, and resource depletion. Accordingly, lots of research studies have been
carried out to solve these issues, covering both the limitation of human/animal activity
and environmental purification and recovery. Considering the latter, semiconductor-based
photocatalysis is regarded as a promising technology to utilize solar energy for environ-
mental purification and “green” generation of chemical fuels (e.g., via water splitting and
carbon dioxide reduction) [1–3]. To date, remarkable progress on applied photocatalysis
has been made, and various materials have already been developed [4–6]. Among them,
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titania (titanium(IV) oxide, TiO2) as a landmark semiconductor photocatalyst has been
extensively studied, mainly due to its high efficiency, low price, stability (thermal, chemical
and photochemical), and nontoxicity [7–10]. However, some problems connected with
titania should also be mentioned:

(i) Wide bandgap (ca. 3.20 eV), though profitable for good redox properties, also results
in low light harvesting efficiency—only the UV range of the solar spectrum can be
used;

(ii) Recombination of charge carriers (typical for all semiconductors);
(iii) Slow migration (transfer) of generated charge carriers (resulting from charge carriers’

recombination, permanent trapping in deep electron traps, amorphous phase content,
irregular structure, etc.).

Accordingly, various methods have been proposed to overcome all these problems,
such as surface modification (with ions of metals and nonmetals, complexes, clusters and
particles [11–15]), doping [16–18] (including self-doping [19–21]), and the formation of
heterostructures with other materials (mainly via type-II heterojunction and Z-/S-scheme
systems [22–25]). Indeed, modified titania photocatalysts exhibit both enhanced perfor-
mance under UV irradiation and activity under visible light. However, the appearance
of a vis response might also cause a decrease in UV activity since some modifiers (e.g.,
dopants) could work as a charge carriers’ recombination center. Accordingly, the overall
effect, i.e., the performance under both UV and vis irradiation, might not result in a real
activity increase in all cases.

Fortunately, another method of titania performance enhancement has been proposed,
i.e., nanoarchitecture design of titania photocatalysts. Indeed, it has been found that the
preparation of titania with well-controlled/defined morphology is an effective method to
overcome two (above mentioned) shortcomings (i.e., charge carriers’ recombination (ii) and
slow charges’ migration (iii)). Probably, the faceted titania particles are the simplest examples
of highly efficient structures with controlled morphology. For example, octahedral anatase
particles (OAP) with eight {101} facets (bipyramid) exhibit exceptionally high photocatalytic
performance, especially for reduction-based reactions and as a plasmonic photocatalyst (i.e.,
when modified with deposits of noble metals) because of the fast migration of photogen-
eration electrons via shallow electron traps [26–28]. Moreover, it has been found that the
introduction of additional facet(s) might be beneficial for activity enhancement. Indeed,
decahedral anatase particles (DAP) with eight {101} and two {001} facets exhibit the best
photocatalytic performance among dozens of titania samples [29–33]. It has already been
proven that spatial charge separation, i.e., electrons’ and holes’ migration towards {101} and
{001} facets, respectively, is the main reason behind the exceptionally good photocatalytic
performance of DAP [34]. However, it should be pointed out that not only the faster charge
carriers’ migration, but also other factors, e.g., the ability for water adsorption (resulting
in more efficient formation of reactive oxygen species), must be considered for the overall
performance [31,35–38]. For example, a recent study on mesoporous microballs built of
faceted anatase particles has shown that DAP-based samples exhibit higher photocatalytic
activity than OAP ones, despite worse charge carriers’ separation, due to their higher
hydrophilicity [39].

Next, more advanced titania structures have also been proposed, such as nanotubes [40,41],
inverse opals [42,43] and mesocrystals [44–46], which have exhibited improved photocat-
alytic properties. However, most proposed synthesis methods (especially on the prepara-
tion of mesocrystals) are based on the addition of organic compounds during synthesis,
which might cause both environmental issues and the possible impurity of the final prod-
uct [34,45,47–49]. Moreover, even with such advanced morphology formation, TiO2-based
photocatalytic materials could respond only to ultraviolet light (as already pointed above).
Accordingly, it is thought that surface modification with noble metals, especially platinum,
might cause the preparation of samples with the best performance under both UV and
vis ranges of irradiation (and is thus preferable for natural environmental conditions, i.e.,
under direct sunlight). This is caused by the double action of noble metals, i.e., as an
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electron sink, hindering the charge carriers’ recombination under UV (known for more
than forty years since the study by Allen J. Bard [50–53]), and as a “plasmonic sensitizer”
under vis (due to plasmon resonance feature via energy or/and “hot” electron transfer),
resulting in the appearance of a vis response [54–59].

Therefore, this work has proposed a simple solvothermal method, followed by an-
nealing, for the synthesis of rod-like titania mesocrystals without using any additional
template and morphology-regulating materials. For the further improvement of photocat-
alytic performance in both oxidation and reduction reactions, the effect of platinum (and
silver as a reference) deposition on the surface of titania mesocrystals has been investigated.
Additionally, the DFT calculations have been performed in order to understand the possible
mechanism of antibiotics’ degradation.

2. Results and Discussion
2.1. Structural Characterization of Unmodified Rod-like Titania Mesocrystals

The successful preparation of titania mesocrystals (the white powder after solvother-
mal reaction) has been confirmed by various methods. Firstly, the crystalline properties of
unmodified samples have been investigated, and the obtained data are shown in Figure 1.
Indeed, PTR sample (before annealing) shows almost no peaks in the XRD pattern, confirm-
ing its practically amorphous characteristics. In contrast, the XRD pattern of the annealed
sample (TR) possesses highly intensive peaks, matching the standard anatase JCPDS card
well (JCPDS-21-1272) [59]. Accordingly, it has been found that the TR sample is composed
of pure anatase phase of titania with high crystallinity. Moreover, based on the Scherrer
equation, i.e., D = (Kλ)/(βcosθ), where D, K, λ, β and θ are the mean size of the crystalline
domains, a dimensionless shape factor, the X-ray wavelength, the line broadening at the
full width at half maximum (FWHM) of analyzed peak (here 101) and the Bragg angle,
respectively, the crystallite size of anatase, equal to 32 nm, has been estimated.
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Figure 1. XRD patterns of PTR and TR samples.

Next, the morphology of samples has been examined, and the representative SEM
and TEM images of PTR and TR samples are shown in Figures 2 and 3, respectively. In the
case of amorphous sample (Figure 2), it is clear that it is in the form of porous rods (similar
to rhubarb stalks), with an average length of about 1 µm. An enlarged image, shown in
Figure 2b, reveals that each structure consists of diminutive nanorod-like subunits.
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The detailed analysis of titania sample after annealing (TR sample) has been performed
by transmission electron microscopy (TEM), and the results are shown in Figure 3a–e. Sim-
ilarly to the PTR sample, the TR one exhibits a rod-like morphology, composed of fine
nanorod-like subunits, with visible gaps between them (Figure 3a,b). However, high-
resolution TEM (HRTEM) images (Figure 3c,d) reveal the crystal nature of this sample with
the lattice spacing of the nanorod-like subunits of about 0.37 nm, indicating that the rods
have grown in the direction of (101) [60]. Additionally, the selective area electron diffraction
(SAED) analysis, presented in Figure 3e, shows the [101] zone axis of anatase phase, indi-
cating a single-crystal-like structure with highly ordered directional distribution. Moreover,
the slightly elongated diffraction spots indicate a certain lattice mismatch between the
boundaries, which corresponds well to the structural characteristics of mesocrystals [61].

2.2. Characterization of the Pt-Modified Rod-like Titania Mesocrystals

For the activity improvements, the rod-like titania mesocrystals (TR sample) have
been modified with platinum nanoparticles (NPs). Obviously, the basic morphology of
the TR sample has not been changed, and the Pt/TR photocatalyst keeps a rod-like shape,
composed of titania mesocrystals, as shown in Figure 4a. There is only one difference
between the Pt/TR and TR samples, i.e., the presence of platinum deposits, uniformly
distributed on the whole sample surface in the case of the latter. It has been found that Pt
NPs contain the lattice stripes of (111) orientation with lattice spacing of about 0.25 nm
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(Figure 4b,c), which indicates that the mesocrystals’ morphology is decisive for the for-
mation of facet-oriented Pt NPs, as similarly reported by Kelly et al. for lattice parameter
evolution in Pt NPs (during sintering and grain growth) [62].
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Next, the surface properties of Pt/RT sample have been evaluated by X-ray photoelec-
tron spectroscopy (XPS). Interestingly, it has been found that +4 oxidation state is the only
oxidation state of titanium in this sample, as clearly observed on deconvoluted Ti 2p peaks,
showing two single peaks at ca. 458.9 eV and 464.6 eV for Ti 2p3/2 and Ti 2p1/2, respectively
(Figure 5a). This is in contrast to many other studies on titania (pristine and modified with
noble metals), where usually at least a small percentage of a reduced form of titanium (Ti3+)
coexists in the sample [26,59,63,64]. Accordingly, it might be proposed that the formation
of perfectly crystallized structure, such as titania mesocrystals, results in the preparation
of samples with almost no defects. Similarly, the deconvolution of oxygen peak (O 1s)
has resulted in the presence of only two forms of oxygen, i.e., Ti-O (oxygen in the crystal
lattice of titania) and hydroxyl groups with a binding energy of ca. 530.0 eV and 531.2 eV,
respectively (Figure 5b). According to the literature, the oxygen peak usually consists of
three to five oxygen species, including O-Ti bonds in titania and titanium(III) oxide, O-H
bonds in hydroxyl groups, O-C and O=C bonds and adsorbed water (H2O) [64–67]. This
finding also confirms the high crystal/surface purity of the titania mesocrystals obtained in
this study. The XPS analysis of carbon shows only two peaks at ca. 284.8 eV and 288.25 eV,
corresponding to C-C and C-OH bonds, respectively [68] (Figure 5c). Titania samples
usually contain three forms of carbon, such as C-C, C-OH and C=O, resulting mainly from
the atmosphere during the samples’ preparation [66–68]. In the case of platinum, three
different oxidation states could be distinguished, i.e., (i) the main form of zero-valent state
(Pt0) at 71.2 eV and 74.5 eV, (ii) +2 oxidation state (Pt2+) at 72.1 eV and 75.4 eV, and (iii) +4
oxidation state (Pt4+) at 73.2 and 76.5 eV (Figure 5d). This indicates that though platinum
has been successfully reduced during photodeposition (as expected), either the reduction
reaction has been incomplete (low probability considering highly reduced conditions),
or some stabilized forms of oxidized platinum have been formed. For example, it has
been reported that Pt-Ti-O bonds might be formed during platinum reduction [69]. Al-
though, there is no peak at Ti 2p spectrum indicating Pt-Ti-O bonds (at ca. 457 eV [69]),
the possibility of other oxidized forms of platinum (e.g., blocks for Pt(II) complexes [70] or
Ptn+/Pt0 clusters [71,72]), stabilized within either platinum NPs, titania (on the surface or
encapsulated in it) or at the Pt/TiO2 interface, could not be rejected.
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and (d) platinum (Pt 4f) of Pt/TR sample.

Next, the photoabsorption properties of pristine (TR) and noble metal-modified
mesocrystals (platinum (Pt/TR) and silver (Ag/TR) as a reference) have been investi-
gated, and the obtained data are shown in Figure 6. As expected, the photoabsorption of
the TR sample (unmodified TiO2 mesocrystals) is limited to the UV range (absorption edge
at ca. 396 nm; Figure 6a), with a corresponding bandgap energy of ca. 3.13 eV, calculated
from the Tauc plot (Figure 6b), which is a typical value for anatase titania (3.1–3.3 eV,
depending on the crystal properties and defects’ type/content [31,73–75]). After the surface
modification with noble metals, the color of the samples changed from white to brown and
grey for Ag/TR and Pt/TR, respectively. The photoabsorption at the visible-light range
appears due to the localized surface plasmon resonance (LSPR) of these metals [76–79]. In
the case of silver, a clear LSPR peak with a maximum at ca. 470 nm indicates the presence
of spherical 20-50 nm sized Ag NPs [80–82]. In the case of platinum, usually, there is strong
photoabsorption at the whole visible range (a typical grey color of platinum-modified
samples) rather than a single LSPR peak (as shown in Figure 6a) [26,64,83–85]. Importantly,
the presence of noble metals should not influence the bandgap energy since NPs are only
deposited on the surface of titania. Indeed, as shown in Figure 6b, the bandgap energy is
practically the same for all samples (a slight “apparent” shift might be observed towards
larger energy since plasmon resonance of noble metals overlaps with photoabsorption
by titania).



Catalysts 2024, 14, 283 7 of 16
Catalysts 2024, 14, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 6. Photoabsorption properties of pristine and modified samples: (a) DRS spectra, and (b) 
Tauc plots. 

2.3. Photocatalytic Performance Evaluation 
The photocatalytic activity of pristine and modified titania mesocrystals has been 

investigated in both reduction and oxidation reactions. At first, the methanol 
dehydrogenation with H2 generation was conducted, and the obtained data are shown in 
Figure 7. It should be pointed out that sole irradiation does not cause any effect, whereas 
the unmodified TR sample can hardly generate any hydrogen under full-light spectrum 
irradiation, with a H2 evolution rate of only 0.5 µmol·h−1. This is typical for pristine titania 
samples, being known for inactivity for hydrogen generation reaction due to high 
overvoltage of hydrogen evolution [26,64]. Accordingly, noble metals are commonly used 
as a cocatalyst for hydrogen formation. Indeed, the presence of silver and platinum results 
in a significant enhancement in activity by ca. 74 and 550 times, reaching reaction rates of 
37 µmol h−1 and 276 µmol h−1, respectively. It should be pointed out that under UV 
irradiation, noble metals could play a double function when deposited on the surface of 
wide-bandgap semiconductors, i.e., (i) as a sink for electrons, hindering charge carriers� 
recombination (the formation of the Schottky barrier); and (ii) as a cocatalyst for some 
surface reactions (e.g., formation of hydrogen molecules). Much higher activity of Pt/TR 
than Ag/TR corresponds well to the higher work function of platinum than silver, and 
thus more efficient electron transfer from the conduction band of titania (and the larger 
Schottky barrier), as well as the smaller overvoltage for hydrogen generation [86–88].  

 
Figure 7. Photocatalytic activity for H2 generation on rod-like titania mesocrystals: unmodified (TR) 
and modified with platinum (Pt/TR) and silver (Ag/TR). 

Figure 6. Photoabsorption properties of pristine and modified samples: (a) DRS spectra, and (b) Tauc plots.

2.3. Photocatalytic Performance Evaluation

The photocatalytic activity of pristine and modified titania mesocrystals has been
investigated in both reduction and oxidation reactions. At first, the methanol dehydrogena-
tion with H2 generation was conducted, and the obtained data are shown in Figure 7. It
should be pointed out that sole irradiation does not cause any effect, whereas the unmodi-
fied TR sample can hardly generate any hydrogen under full-light spectrum irradiation,
with a H2 evolution rate of only 0.5 µmol·h−1. This is typical for pristine titania samples,
being known for inactivity for hydrogen generation reaction due to high overvoltage of
hydrogen evolution [26,64]. Accordingly, noble metals are commonly used as a cocatalyst
for hydrogen formation. Indeed, the presence of silver and platinum results in a significant
enhancement in activity by ca. 74 and 550 times, reaching reaction rates of 37 µmol h−1

and 276 µmol h−1, respectively. It should be pointed out that under UV irradiation, noble
metals could play a double function when deposited on the surface of wide-bandgap
semiconductors, i.e., (i) as a sink for electrons, hindering charge carriers’ recombination (the
formation of the Schottky barrier); and (ii) as a cocatalyst for some surface reactions (e.g.,
formation of hydrogen molecules). Much higher activity of Pt/TR than Ag/TR corresponds
well to the higher work function of platinum than silver, and thus more efficient electron
transfer from the conduction band of titania (and the larger Schottky barrier), as well as the
smaller overvoltage for hydrogen generation [86–88].
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Additionally, it should be pointed out that the linear evolution of hydrogen during
irradiation confirms the high photo-stability of photocatalysts. Similar data have been
achieved for other titania samples modified with noble metals, resulting from the well-
known stability of titania as well as the stability of photo-deposited noble metals on its
surface (the metal leaching is not expected under UV irradiation since noble metals work
as an electron sink [26,64,89–92]).

In the next step, the photocatalytic performance of the obtained samples has been
evaluated for oxidative degradation of tetracycline hydrochloride (TC) antibiotic under sim-
ulated solar light. First, simple photolysis (without photocatalyst) has been performed, and
it has been confirmed that TC is not decomposed under sole irradiation. Then, adsorption–
desorption equilibrium was achieved within 30 min stirring in the dark, with only ca.
5% of TC adsorption for all samples. As expected, the Pt/TR sample exhibits the best
photocatalytic activity, with a TC degradation efficiency of 97.1% over 90 min of irradiation
(Figure 8a), and a constant reaction rate of 0.044 min−1 (calculated according to pseudo-
first-order kinetics formula), and thus showing ca. two times faster TC degradation than
other samples (Figure 8b).
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In order to further confirm the high activity of Pt/TR photocatalyst, other antibiotics
from the tetracycline group, such as ciprofloxacin (CIP), norfloxacin (NOR) and oxytetra-
cycline hydrochloride (OTC), have also been tested. Indeed, a very high decomposition
rate of all tested antibiotics was achieved, as shown in Figure 9. Accordingly, it might be
concluded that the Pt/TR sample has very high activity for both reduction and oxidation
reactions.
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In order to evaluate the (photo)stability of Pt/RT photocatalyst, recycling experiments
were performed, i.e., TC degradation was repeated five times with neither changing of
the photocatalyst nor of the reaction conditions. After each cycle, the photocatalyst was
only washed with water, and then freeze-dried before the next cycle. It was found that the
degradation efficiency decreased by ca. 20% after five cycles. It has been proposed that,
probably, an inefficient amount of photocatalyst is responsible for the activity drop since it
is impossible to recover all photocatalyst particles after each cycle. It should be pointed
out that in the case of photocatalytic reactions, usually the optimal conditions (maximum
photoabsorption) are reached for a much larger photocatalyst content (1–2 g/L [93]) than
that used here (0.3 g/L, to limit the cost of the photocatalyst containing platinum). There-
fore, the recycling experiments were additionally repeated for a much larger photocatalyst
amount, i.e., 1.5 g/L, as shown in Figure 10b. Indeed, it has been found that TC degradation
is both much more efficient (99%) and stable (same effect for five subsequent cycles) with
an increase in the photocatalyst content.
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The photocatalytic effect on antibiotics’ photodegradation was further verified by
density functional theory (DFT) calculation, based on the Fukui function, and the obtained
results are shown in Figures 11 and S1–S3, and Tables S1–S4. Based on the optimized TC
molecular structure (Figure 11a), the electrostatic potential (ESP) diagram, and occupied
(HOMO) and unoccupied (LUMO) molecular orbitals regions have been designated. It is
proposed that the blue parts, shown in Figure 11b, representing hydroxyl and carbonyl
regions, are vulnerable to radical attack and destruction. Meanwhile, Figure 11c shows that
the HOMO region of TC is mainly located in the phenolic hydroxyl group and benzene ring,
while the LUMO region of TC (Figure 11d) is located near the dimethyl group. Accordingly,
the benzene ring region in TC is relatively stable and difficult to be destroyed, whereas the
dimethyl group in LUMO region might be easily damaged by nucleophilic free radicals
(•O2

− and •OH, formed during photocatalytic reactions [94–96]) due to their relatively
active properties [97]. Moreover, the electrophilicity (f−) and nucleophilicity (f+) values of
each atom in the TC molecule have been estimated by calculating Hirshfeld charges and
corresponding Fukui index values, as presented in Table S1. The high f− and f+ values
of the dimethyl atoms additionally indicate their high vulnerability [98]. Similar results
have also been achieved for other antibiotics (CIP, NOR and OTC molecules), presented
in the Supplementary Materials (Figures S2 and S3 and Tables S2–S4), confirming their
degradation ability by photocatalytic reactions.
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3. Experimental Section
3.1. Materials

Anhydrous methanol (CH3OH) and tetrabutyl titanate (TBOT) were purchased from
Sinopharm Chemical Reagent Ltd. (Shanghai, China). Chloroplatinic acid hexahydrate
(H2PtCl6·6H2O), silver nitrate (AgNO3), tetracycline hydrochloride (TC), ciprofloxacin
(CIP), norfloxacin (NOR) and oxytetracycline hydrochloride (OTC) were bought from
Aladdin (Shanghai, China).

3.2. Synthesis of Rod-like Titania Mesocrystals

Rod-like titania mesocrystals were prepared by a simple solvothermal process, fol-
lowed by annealing. Typically, TBOT (0.5 mL) and CH3OH (59.5 mL) were placed in a
100-mL Teflon liner, and then ultrasonically dispersed for 10 min to ensure the uniformity of
the reactants. After that, the Teflon liner was placed into an autoclave, and then thermally
treated at 200 ◦C for 24 h. After the reaction, the collected precipitate was washed twice
with anhydrous methanol and twice with deionized water, centrifuged, and freeze-dried at
−85 ◦C for 24 h. The obtained amorphous titania sample, marked as PTR, was annealed
in a muffle furnace at 500 ◦C for 2 h in order to obtain highly crystalline rod-like titania
mesocrystals, marked as TR.

3.3. Synthesis of Pt-Modified Rod-like Titania Mesocrystals

The surface of titania mesocrystals was modified with NPs of platinum (or silver in
the case of the reference sample) by the photodeposition method. This method is very
convenient due to the fast and complete deposition of the whole metal content (complete
reduction of metal cations [99]), and is thus often used for the surface modification of
wide-bandgap semiconductors with noble metals [50,53,100–102]. It is based on the photo-
generation of electrons, which are the main reductive species of respective metal cations. It
should be pointed out that the formation of electrons in/on irradiated semiconductors fa-
cilitates the direct deposition of formed metal NPs on the semiconductor surface (ensuring
the direct contact between semiconductor and noble metal). To avoid the recombination
of electrons with holes, methanol (or another hole scavenger) is usually added before
irradiation. Moreover, photodeposition is usually performed under anaerobic conditions to
avoid electron scavenging by oxygen (though sometimes photodeposition is performed
in the presence of oxygen/air, which might work as a morphology-control agent, e.g., to
obtain finer and/or more uniform NPs [64,103]). Accordingly, the TR sample (200 mg) was
dispersed with platinum precursor solution (2 wt% in respect to titania) in 25 mL of an
ultrapure water–methanol solution (50 vol%), followed by Ar bubbling for oxygen removal.
The sealed reaction tube was continuously illuminated for 1 h using a 400 W mercury lamp
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(Bofeida Technology Co., LTD., Shenzhen, China). The obtained sample, marked as Pt/TR,
was washed twice with methanol and twice with deionized water, centrifugally collected
and freeze-dried for 24 h. In order to confirm the significant enhancement in photocatalytic
activity by Pt nanoparticles, a reference sample with silver NPs was prepared analogously,
and marked as Ag/TR.

3.4. Physicochemical and Photocatalytic Characterization of Obtained Samples

Crystallographic analysis (XRD) was performed on an X-ray diffractometer (XRD,
Empyrean, Almelo, Netherlands). The morphology of the samples was determined using
scanning electron microscopy (SEM, Hitachi SU8010, Tokyo, Japan) and transmission
electron microscopy (TEM, JEOL JEM-F200, Tokyo, Japan). The light-absorption properties
were measured using diffuse reflectance spectroscopy (DRS, Macy UV-1800, Shanghai,
China). The bandgap energy of photocatalysts was calculated from the corresponding
Kubelka–Munk function. The oxidation states of elements were determined by X-ray
photoelectron spectroscopy (XPS, ULVAC-PHI5000 VesaProbe III, Chigasaki, Japan).

The photocatalytic activity was investigated in two reaction systems to check the
performance in both reduction and oxidation reactions. Accordingly, the former was
evaluated by hydrogen formation under ambient temperature (both the lamp and the
irradiated sample tubes were cooled down by circulating water, as shown in Figures 12
and S4). In a typical experiment, 50 mg of photocatalyst was suspended in 5 mL of an
ultrapure water solution containing methanol (50 vol%), followed by irradiation with a full
spectrum of 400 W mercury lamp. The amount of generated hydrogen was measured every
15 min using gas chromatography (GC, FULI GC9790II, Wenling, China).
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Figure 12. The photography of photoreactor system used for testing of hydrogen evolution reac-
tion: (1) inlet of cooling water, (2) outlet of cooling water, (3) sample holder, (4) 400 W Hg lamp,
(5) sample/tube reactors, (6) water bath, (7) magnetic stirrer.

The oxidation ability was tested for the degradation of the tetracycline (TC) antibiotic
and other antibiotics from the tetracycline group (ciprofloxacin (CIP), norfloxacin (NOR)
and oxytetracycline hydrochloride (OTC)) in a circulating cooling water system under
simulated solar light, as shown in Figure S5. The photocatalyst (30 mg) was dispersed in
100 mL of the antibiotic solution (30 mg/L), and the suspension was stirred continuously
in the dark for 30 min to achieve an adsorption–desorption equilibrium. Subsequently,
the suspension was irradiated with a full spectrum illumination of a 300 W Xe lamp
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(CEAULIGHT, Beijing, China), i.e., λ = 200~2500 nm, and the distance between the light
source and the reaction suspension of 10 cm. At regular time intervals, 3 mL of the
suspension was collected, centrifuged (to separate the photocatalyst), and analyzed with
UV–vis spectrophotometer (Macy UV–1800, Shanghai, China).

4. Conclusions

The rod-like titania mesocrystals could be easily prepared by a cheap, and simple
solvothermal method without the use of any morphology-control agents, and thus via a
“green” process. Although the properties and thus resulting activity of mesocrystals are
very good, they could not be used for methanol dehydrogenation since pristine titania
is inactive for a hydrogen evolution reaction (as well as simple photolysis without a
photocatalyst). However, the modification of mesocrystals’ surface with only 2 wt% of
noble metals causes a significant enhancement in activity (by as much as 550 times in the
case of platinum). Additionally, both pristine and modified titania rods exhibit high activity
for oxidative degradation of antibiotics from the tetracycline group, reaching even almost
complete (ca. 99%) and stable degradation (over five subsequent cycles) for a photocatalyst
content of 1.5 g/L. Both experimental data and theoretical calculations reveal the excellent
performance of platinum-modified titania mesocrystals for the decomposition of antibiotics
under solar-simulated light.

Accordingly, titania mesocrystals prepared by a “green” method and additionally
modified with a low content of noble metals (especially with platinum) are excellent
materials for solar-based environmental purification and fuel generation.
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