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Section S1 Statistical calculation methods of HRTEM 

The morphological details of the (Ni)MoS slab were statistically calculated by the 

published formula[1,2]: 

Average slab length:  
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Average stack number:  
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In Eq.(S1) and Eq.(S2), the length and stacking number of slab i are represented by li 

and Ni, respectively, while the number of (Ni)MoS2 slabs whose length is li is represented 

by ni. The dispersion degrees of Mo species (DMo) were calculated by Eq.(S3)[3,4]: 
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In Eq. (S3), the number of Mo atoms at the edge locations and the total number of Mo 

atoms in the MoS2 slabs are represented by Moe and Mot, respectively; ni is the number of 

Mo atoms alongside one edge of the MoS2 slab, as determined by the length (  𝑙𝑖 =

3.2(2𝑛𝑖 − 1)�̇�) and t stands the statistical number of MoS2 slabs. 

Figure S1 Raman spectra of the synthesized catalysts 

 

Figure S1. Raman spectra of the synthesized catalysts. 

To further confirm the states of the Mo species over the synthesized catalysts, Raman 

characterization was performed, and the recorded spectra are displayed in Figure S1. 

Peaks at 948 cm-1 are assigned to the symmetric Mo=O terminal stretches of Mo7O246- spe-

cies, and these Mo oxide species are considered to have a weak MSI[5]. Peaks centered 

around 845 and 323 cm-1 are due to the stretching and bending vibration of Mo=O in tet-

rahedrally coordinated molybdate like MoO42-, which has strong MSI[6]. Bands at 644 and 

510 cm-1 are assigned to the typical anatase phase[7].  

It can be concluded from Figure S1 that the intensity of the peaks at 948cm-1 and 

845cm-1 of titanium-containing catalysts do not have a significant variation. In other 

words, the formation of tetrahedrally coordinated molybdate has been facilitated in tita-

nium-containing catalysts. Additionally, with the incorporation of titania, the Raman 

band assigned to the polymolybdenum shifts to a higher frequency. The increase of the 

Raman shifts not only indicates the progressively higher degree of polymerization of Mo 

anions[8,9] but also indicates the stronger MSI[10]. In such a case, large polymolybdenum 

clusters were formed but avoided MoO3 formation, which could be verified from the XRD 

catalyst patterns of Figure S2.  



 

Moreover, for titanium-containing catalysts, the diffraction peak was relatively broad 

at 890-1000cm-1, which has been overlapped with the Mo=O stretching vibrations at 

948cm-1. The broad feature of this peak indicated the existence of a well-dispersed amor-

phous phase of MoOx on the TiO2-Al2O3 support surface[11]. 
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Figure S2. Wide-angle XRD patterns of the synthesized catalysts. 

XRD characterization methods have also been used to evaluate the dispersion of ac-

tive metals on the supports. The orthorhombic MoO3 characteristic peaks are identified at 

2θ of 13°, 23.42°, 26°, 27.52°, and 39° (JCPDS card no. 05-0508), whereas the anatase peaks 

are identified at 2θ of 26°, 39° and 67°. As shown in Figure S2, the intensity of all diffraction 

peaks of synthesized catalysts, especially anatase characteristic peaks, is similar to the 

pure supports, indicating that MoO3 is well-dispersed on the supports. 
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