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Abstract: Highly porous carbon xerogels (CXGs) were synthesized to be used as support 

for PtRu nanoparticles. Metal particles were deposited on CXGs by means of the sulfite 

complex method for the first time. Catalysts so-obtained were submitted to thermal 

treatment in H2, at different temperatures, in order to increase the particle size and thus the 

intrinsic activity. Physico-chemical characterizations included N2 physisorption, X-Ray 

diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. 

Highly dispersed alloyed PtRu particles were obtained, with crystal sizes ranging from 1.6 

to 2.0 nm. PtRu-catalysts were tested in half-cell for the methanol oxidation reaction 

(MOR). The resulting thermal treatment was effective in increasing both particle size and 

catalytic activity toward MOR. 

Keywords: carbon xerogel; platinum-ruthenium catalyst; methanol oxidation reaction; 

sulfite complex method 
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1. Introduction 

Pt–Ru catalysts are well known for their high activity towards the electro-oxidation of methanol [1–5]. 

Nevertheless, drawbacks such as slow oxidation kinetics and methanol crossover make the efficiency 

of the Direct Methanol Fuel Cells (DMFC) still insufficient for practical applications [1]. Therefore, 

further optimizations of the anode material and the membrane are necessary for the development and 

commercialization of DMFC. In this context, an attractive approach for the anode, which appears as a 

possible solution to reduce metal loading and increase the catalytic efficiency, is the use of novel 

carbonaceous materials as electrocatalyst supports [6–9]. The nature of the support, as well as the 

interaction between the latter and the metal, has been demonstrated to be extremely important, given 

that it determines the physico-chemical properties of catalysts, such as dispersion, stability and 

morphology of metallic crystallites [10–12]. In addition, characteristics of the support can also 

determine the electrochemical properties of catalysts by altering mass transport, active electrochemical 

area and metal nanoparticle stability during the cell operation [13,14].  

Among the numerous new carbon materials that can be found in the literature, carbon xerogels, 

cryogels and aerogels constitute an interesting alternative to carbon blacks [15,16]. These materials are 

obtained either by supercritical drying or evaporative drying of organic gels, followed by pyrolysis. 

Their texture is fully controllable within a wide range of pore sizes and distribution via the synthesis 

process of the organic gel [14]. The use of carbon gels as catalysts supports has been previously 

reported. Catalysts supported on carbon gels (aerogels, cryogels and xerogels) showed higher activities 

towards methanol oxidation and oxygen reduction, in comparison to catalysts supported on commercial 

carbon blacks, such as Vulcan [12,15–18]. Vulcan XC-72R, with a surface area of ca. 250 m2 g−1, has been 

commonly used as a catalyst support, especially in DMFC anode catalyst preparation. However, an 

accessible and sufficiently large surface for maximum catalyst dispersion has been argued to be a 

necessary but insufficient condition for obtaining optimized carbon-supported catalysts. First of all, 

Vulcan has a preponderance of small pores that cannot be filled with polymer molecules. This portion 

inside the micropores has less or even no electrochemical activity due to the difficulty in reactant 

accessibility. Besides, the poor surface chemistry of this carbon material makes its impregnation with 

the metallic precursor difficult. 

Some studies have dealt with different preparation methods of catalysts onto this kind of supports. 

Arbizzani et al. developed PtRu catalysts, prepared by both chemical and electrochemical routes, on 

mesoporous cryo- and xerogel carbons [18]. Their results were compared to those obtained with 

Vulcan-supported PtRu, resulting in almost double specific catalytic activity when Vulcan was 

substituted by the former carbons. Job et al. reported the use of the ‘Strong Electrostatic Adsorption’ 

(SEA) method to prepare Pt/carbon xerogel catalysts, exhibiting high Pt dispersion at high metal 

content [15]. Figueiredo et al. prepared Pt catalysts supported on carbon xerogels by impregnation 

with H2PtCl6, studying the effect of different reduction protocols [12].  

Carbon xerogels have also been employed as catalyst supports in previous studies of our group [19–21]. 

Carbon xerogels were used as support for Pt and PtRu nanoparticles, synthesized by an impregnation 

and reduction with sodium borohydride method. Catalysts performed higher activities than commercial 

catalysts Pt/C, ETEK and PtRu/C, ETEK, that are supported on Vulcan carbon black [19]. In another 

paper, we reported the synthesis of two carbon xerogels of different textural properties, which were 
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subsequently functionalized through several oxidation treatments. These carbon xerogels were used as 

supports in the preparation of several Pt catalysts which were characterized and tested for CO and 

methanol electro-oxidation, performing higher activities than Pt supported on Vulcan [20]. In another 

work, PtRu catalysts were prepared using a highly mesoporous carbon xerogel submitted to different 

oxygen functionalization treatments: diluted and concentrated nitric acid as well as gas-phase 5% 

O2−N2 oxidation. Catalysts with 20 wt% loading and equimolar Pt:Ru metallic phase were prepared 

using an impregnation procedure involving chemical reduction with formic acid. Catalysts supported 

on the carbon xerogel presented higher activities towards methanol oxidation than the catalyst 

supported on Vulcan prepared by the same procedure [21]. In comparison to the commercial carbon 

black Vulcan, carbon xerogel doubles the SBET value determined for Vulcan. Such features favour diffusion 

of reagents and products to and from active sites when using carbon xerogels as catalysts supports, instead 

of Vulcan, making catalysts more active. Although catalysts supported on carbon xerogels showed higher 

performances than when supported on Vulcan, not proper dispersion was achieved in these works for any 

of the methods assayed (impregnation and reduction with different reduction protocols), pointing out the 

need for further research in synthesis methods providing low crystallite size and high metallic dispersion. 

In general, the Pt/carbon gel catalysts are classically obtained via deposition from the liquid phase; 

in most cases, impregnation of the support by H2PtCl6 solutions is used and followed by various  

post-treatments, such as liquid phase reduction or drying followed by gas phase reduction under 

hydrogen [15]. Nevertheless, it has been noticed that the presence of chloride ions during the deposition 

can have a negative effect on the later performance of the catalysts for methanol oxidation [15]. In this 

paper a sulfite-complex based method is used for the first time for carbon xerogels, in order to avoid 

the use of chloride species. This preparation method presents an advantage over the straight reduction 

of chloride salts since no chloride ions are present during the deposition of the metals onto the support. 

Further, given that this method leads to small metallic particles, with a high dispersion, two thermal 

treatments at different temperatures were carried out, in order to slightly increase crystal and particle size, 

favoring catalytic activity towards methanol oxidation reaction (MOR). 

2. Results and Discussion 

2.1. Textural Properties of Carbon Xerogels and PtRu-Catalysts 

Carbon xerogel (CXG) was synthesized by a sol-gel method consisting on the polymerization and 

pyrolysis of resorcinol and formaldehyde. Subsequently, this carbon material was used as support for 

PtRu nanoparticles deposited by a sulfite complex method, based on the formation of colloids. PtRu 

metallic loading was calculated to obtain a 20 wt.% on the carbon support. Catalysts so obtained were 

divided in three aliquots: one as-prepared and the other two were treated under a H2 stream for 1 h at 

200 °C and 400 °C, respectively.  

Carbon xerogel shows a high surface area (see Table 1), and can be mainly considered as a 

mesoporous carbon, with 89% of its pore volume corresponding to mesopores, and average pore sizes 

of 23 nm. Textural properties of PtRu catalysts are also shown in Table 1. Catalysts were named as 

follows: PtRu/CXG-COL (given that the sulfite complex method is based on colloids), followed by 

TT-200 or TT-400 (standing for thermal treatment at 200 °C or 400 °C, respectively). Upon metallic 
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loading, surface area and pore volume decrease considerably, but still carbon materials conserve a 

highly developed porous structure. Note that mean pore size slightly decreases after metallic 

introduction but there is no significant selectivity regarding the deposition on micropores nor 

mesopores, indicating the presence of PtRu nanoparticles all over the CXG surface. It is also worthy of 

note that the porosity increases with thermal treatment in terms of both Brunauer-Emmet-Teller (BET) 

surface area and pore volume, maybe attributable to some carbon gasification from the CXG. 

Table 1. Brunauer-Emmet-Teller (BET) surface area and pore volumes obtained from N2 

adsorption isotherms for the carbon xerogel and the PtRu-catalysts prepared. 

Sample SBET (m2 g−1) 
Vpore p/p0 ≈ 1 
(cm3 g−1) 

Vmeso BJH 
(cm3 g−1) 

Vmicro (cm3 g−1) 
Mean 

pore size 
(nm) 

CXG 528 1.79 1.66 0.14 23 

PtRu/CXG-COL 271 0.51 0.59 0.08 19 

PtRu/CXG-COL-TT200 278 0.57 0.46 0.09 18 

PtRu/CXG-COL-TT400 332 0.66 0.55 0.11 18 

2.2. PtRu-Catalysts Characterization 

PtRu crystal sizes, shown in Table 2, were calculated from the XRD patterns (shown in Figure 1) 

and using the Debye-Scherrer equation on the Pt (220) reflection. PtRu crystal size ranges from 1.6 to 

2.0 nm.  

Table 2. PtRu crystal size obtained by XRD and PtRu concentration in the synthesized catalysts. 

Sample 
% w/w 
PtRu 

Atomic 
ratio 
Pt:Ru 

PtRu 
crystal 

size 

Lattice 
parameter

XRu in PtRu alloy 

 TGA XRF nm nm Vegard’s law 
Antolini’s 

equation [22] 

PtRu/CXG-COL 25 1.6 1.6 0.386 0.35 0.49 

PtRu/CXG-COLTT200 25 1.6 1.8 0.387 0.39 0.37 

PtRu/CXG-COLTT400 25 1.6 2.0 0.385 0.43 0.50 

The highly developed surface area of these carbon materials is the controlling parameter 

determining such a low crystal size. Thermal treatment proved to be effective in increasing the catalysts 

crystal size. The amount of Ru alloyed with Pt ranges from 0.35 to 0. 43 when calculated using Vegard’s 

law, and slightly higher when using Antolini`s equation [22]. Antolini and co-workers [22] obtained 

similar values of XRu, however, a little smaller. The higher XRu in the alloy in comparison to Antolini’s 

work, might be due to the small crystal size, favoring inclusion of Ru in the fcc structure of Pt. This is 

confirmed by the lattice parameter that decreases from 0.392 nm (from pure Pt) to ca. 0.385 due to the 

contraction of the lattice, indicating the formation of the alloy between Pt and Ru. In the case of 

PtRu/CXG-COL-TT200 and PtRu/CXG-COL-TT400 catalysts, it is possible that H2 treatment favored 
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the further inclusion of Ru in the fcc network. The metallic loading was slightly higher than the 

nominal 20 wt.% in all cases. X-ray fluorescence analysis yields similar to Pt/Ru ratios for all  

catalysts prepared. 

Figure 1. Diffractograms obtained by XRD for the synthesized PtRu catalysts. 
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TEM images, shown in Figure 2, were acquired for PtRu catalysts in order to analyze the metal 

dispersion obtained. A uniform distribution of the active phase is obtained in all cases. The remarkably 

enhanced dispersion of the metal compounds achieved through this sulfite complex method lead us to 

conclude that, in terms of active phase dispersion, the surface of the carbon support is optimally 

covered by the metallic particles. Histograms obtained confirmed the results obtained from XRD. 

Catalysts submitted to subsequent thermal treatment produced larger particle sizes (around 2.4 nm and 

3.1 nm for PtRu/CXG-COL-TT200 and PtRu/CXG-COL-TT400, respectively) as a consequence of the 

intended metallic particle sintering to a certain extent, in comparison to the untreated catalyst, 

PtRu/CXG-COL, with a particle size distribution centered at 1.9 nm.  

Figure 2. Representative TEM micrographs of the PtRu electrocatalysts (a) PtRu/CXG-COL; 

(b) PtRu/CXG-COL-TT200 and (c) PtRu/CXG-COL-TT400. 
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Figure 2. Cont. 
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XPS was used to identify the oxidation state of Pt and Ru on the surface of the different catalysts 

prepared. Pt and Ru peaks were deconvoluted as described in [23]. Figure 3 shows an example of the 

deconvolution of Pt 4f7/2 and Ru 3p3/2 signals for the catalyst PtRu/CXG-COL, whereas Table 3 shows 

the results of this deconvolution.  

Figure 3. XPS signals for (a) Pt and (b) Ru for the catalyst PtRu/CXG-COL. 
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Figure 3. Cont. 
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For all the catalysts studied, Pt0 was found to be the predominant species on their surface. There is, 

however, an important contribution of oxidized Pt2+, as well as of Pt4+, to a lower extent. In contrast, 

RuO2 is the predominant species in all catalysts, followed by Ru0. Catalysts submitted to thermal 

treatment in reducing atmosphere present higher amounts of reduced metals, as expected, increasing 

with treatment temperature. Pt/Ru atomic ratios determined by XPS are similar, and in all cases 

superior, to the values obtained by XRF, showing a surface particularly enriched in Pt.  

Table 3. Binding energies of the Pt 4f7/2 and Ru 3p3/2 signals for catalysts prepared, 

determined by XPS. 

Sample 

Pt 4f7/2 Ru 3p3/2 Pt/Ru 

Species 
Intensity 

(%) 
Species 

Intensity 

(%) 
 

PtRu/CXG- COL 

Pt 46.8 Ru 34.6 

2.2 PtO 44.7 RuO2 53.0 

PtO2 8.5 RuO2·xH2O 12.4 

PtRu/CXG-COL-TT200 

Pt 54.2 Ru 38.2 

2.2 PtO 36.6 RuO2 50.2 

PtO2 9.2 RuO2·xH2O 11.6 

PtRu/CXG-COL-TT400 

Pt 63.9 Ru 48.1 

1.9 PtO 21.1 RuO2 44 

PtO2 15 RuO2·xH2O 7.9 

2.3. Catalytic Activity towards MOR 

Electrochemical surface areas were determined by CO stripping for the three catalysts under study, 

as shown in Table 4. 

(b) 
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Table 4. Electrochemical active surface area (ECSA) for PtRu catalysts, determined by  

CO stripping. 

Sample ECSA/m2·g−1 PtRu 

PtRu/CXG-COL 56.9 

PtRu/CXG-COLTT200 35.9 

PtRu/CXG-COLTT400 30.4 

ECSA decreases when catalysts are submitted to thermal treatment, due to the increase in the 

particle size and the agglomeration of the metallic particles. 

Methanol electro-oxidation polarization curves, obtained at room temperature, are shown in Figure 4. 

PtRu/CXG-COL-TT400 presents the highest mass activity towards methanol oxidation, as a result of 

its higher crystal size and amount of reduced metals, Pt0 and Ru0. It is clear that crystal/particle size 

has a huge influence on the electrocatalytic activity. Methanol electro-oxidation is in fact a  

structure-sensitive process. Several studies point to a loss of effective surface area as particle size 

increases, resulting in lower catalytic activity. However, other authors state that there is an optimal 

particle size for achieving maximal catalytic activity, in a certain system. Frelink et al. [24] evaluated 

different Pt/Vulcan carbon black supported catalysts prepared through different methods and stated 

that for Pt particle sizes (determined by TEM) in the range 1.2–4.5 nm, a decrease in size resulted in a 

decrease in methanol oxidation activity, whereas for sizes larger than 4.5 nm, the methanol oxidation 

activity remained almost constant. They explained this fact in terms of a high affinity towards oxygen 

of very small particles, resulting in a largely covered Pt-OH surface which left insufficient sites for 

methanol adsorption. Even if it is also true that higher particle sizes may offer a higher amount of 

exposed crystal active phases—(111) planes have been claimed to be the most active [25]—differences 

in catalytic activity towards methanol oxidation may not only be related to the effect of particle size, 

but also to surface chemistry in the different catalytic systems [26]. Pt and Ru oxidation state can 

strongly determine the catalytic activity. In fact, Garcia and co-workers [26] proved that the presence 

of Pt and Ru oxides do not permit the dehydrogenation step, i.e., breaking of C–H bonds, in the 

molecule of methanol. 

The results of chronoamperometric tests of methanol oxidation are shown in Figure 5. The results at 

constant 0.60 V vs. RHE follow the same trend as the one observed in the methanol oxidation 

polarization curves. The catalyst PtRu/CXG-COL-TT400 shows the highest catalytic activity, followed 

by the catalyst PtRu/CXG-COL-TT200 and PtRu/CXG-COL; this is, in increasing order of PtRu 

particle size. Taking into account the decrease of electrochemical surface area from both the increase 

of PtRu particle size and the slight degree of agglomeration, the increase of MOR activity is attributed 

to the better intrinsic activity of the biggest particles, in this study 2.0 nm according to XRD and 

3.1 nm according to TEM analysis [26].  
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Figure 4. Polarization curves for the electro-oxidation of methanol in a 2 M CH3OH +  

0.5 M H2SO4 solution at room temperature for the PtRu carbon-supported catalysts. Scan 

rate = 0.02 V s−1. 
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Figure 5. Current density vs. time curves recorded in a 2 M CH3OH + 0.5 M H2SO4 

solution at room temperature for the PtRu carbon-supported catalysts at E = 0.60 V vs. RHE. 
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3. Experimental Section  

3.1. Carbon Xerogel Synthesis 

CXG was synthesized as described in [27] by the pyrolysis at 800 °C of an organic gel obtained by 

the polycondensation of resorcinol and formaldehyde in stoichiometric ratio (2 mol of formaldehyde 

per mol of resorcinol). The gelation and curing process took place at an initial pH of 6.0 and using 

sodium carbonate as catalyst (0.04 mol% with respect to total content of resorcinol + formaldehyde). 

Curing of the organic gel was carried out for 24 h at room temperature, 24 h at 50 °C and 120 h at  

85 °C. Subsequently, remaining water was exchanged with acetone and the gel was dried under 

subcritical conditions before its pyrolysis. Pyrolysis took place at 800 °C under a nitrogen atmosphere 

for 3 h. 
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3.2. Catalysts Preparation 

PtRu nanoparticles were deposited on the synthesized carbon xerogels by the sulfite complex 

method (a type of colloidal method) never reported before for carbon xerogels. A 20 wt.% nominal 

metal concentration on CXGs was chosen. Sulfite complexes of Pt and Ru, in appropriate amounts, 

were decomposed by hydrogen peroxide to form aqueous colloidal solutions of Pt-Ru oxides. These 

particles were adsorbed on CXGs. The amorphous oxides on CXGs were thus reduced in a hydrogen 

stream to form metallic particles. The reduction process was considered complete when no significant 

H2 consumption was detected in the outlet stream by using a thermal conductive detector (TCD). Two 

aliquots of this catalyst were further treated in hydrogen atmosphere at 200 °C and 400 °C for 1 h, with 

the aim of evaluating the effect of this thermal and reducing treatment in the features of the catalysts, 

mostly in terms of increased metallic crystal size. These catalysts were named PtRu/CXG-COL-TT200 

and PtRu/CXG-COL-TT400, respectively. 

3.3. Physico-Chemical Characterization 

The textural and morphological features of the different carbon supports and catalysts prepared 

were determined by means of nitrogen physisorption at −196 °C (Micromeritics ASAP 2020). Textural 

properties such as specific surface area, pore volume and pore size distribution were calculated from 

each corresponding nitrogen adsorption-desorption isotherms applying the Brunauer-Emmet-Teller 

(BET) equation, Barrett-Joyner-Halenda (BJH) and t-plot methods. Thermogravimetric complete 

oxidation in air of both the carbon support and PtRu catalysts was used to determine the total amount 

of metal deposited, in a Setaram Setsys evolution thermogravimetric analyzer at atmospheric pressure, 

with a temperature program from room temperature to 950 °C with a constant rate of 5 °C min−1.  

X-ray fluorescence (XRF) measurements were also used to determine the Pt:Ru atomic ratio, by using 

a Bruker AXS S4 Explorer spectrometer. Catalysts were as well characterized by X-Ray Diffraction 

(XRD), using a Bruker AXS D8 Advance diffractometer, with a θ-θ configuration and using Cu-Kα 

radiation. Crystallite sizes were calculated from the Scherrer’s equation on the (220) peak for 

platinum. X-ray photoelectron spectrometry (XPS) analysis were performed using a ESCAPlus 

Omicron spectrometer equipped with a Mg (1253.6 eV) anode, 150 W (15 mA, 10 kV) power, over an 

area of sample of 1.75 × 2.75 mm. C 1s (280–295 eV), O 1s (526–540 eV) and Pt 4f (65–84 eV) signals 

were obtained at 0.1 eV step, 0.5 s dwell and 20 eV pass energy. Spectra were deconvoluted using 

CasaXPS software. Particle sizes were evaluated from TEM images obtained in a JEOL 2100F 

microscope operated with an accelerating voltage of 200 kV and equipped with a field emission 

electron gun providing a point resolution of 0.19 nm. The standard procedure involved dispersing 3 mg 

of the sample in ethanol in an ultrasonic bath for 15 min. The sample was then placed in a Cu carbon 

grid where the liquid phase was evaporated. 

3.4. Electrochemical Experiments 

A cell with a three-electrode assembly and an AUTOLAB potentiostat-galvanostat were used to 

carry out the electrochemical characterization. The counter electrode consisted on a pyrolytic graphite 

rod, while the reference electrode was a reversible hydrogen electrode (RHE). Therefore, all potentials in 
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the text are referred to the latter. The working electrode consisted of a pyrolytic graphite disk (7 mm) 

with a thin layer of the electrocatalyst under study deposited onto it. For the preparation of this layer, 

an aqueous suspension consisting of 3.6 mg of PtRu/CXG catalyst was obtained by ultrasonically 

dispersing it in Nafion solution 10% w/w (Sigma-Aldrich, St. Louis, MO, USA) (14.7 μL) and a 

mixture of ultrapure water (240 μL) (Millipore) and ethanol (240 μL) (Merck). Subsequently an 

aliquot of 40 μL of the dispersed suspension was deposited on top of the graphite disk and dried under 

inert atmosphere prior its use.  

Polarization curves were performed to study the electro-oxidation of methanol, in a 2 M CH3OH + 

0.5 M H2SO4 solution, at scan rate of 20 mV·s−1, between 0.05 and 0.8 V vs. RHE. 

Chronoamperometries were performed at 0.60 V vs. RHE in a 2 M CH3OH + 0.5 M H2SO4 solution, in 

order to evaluate the evolution of the electrocatalytic activity with time of the prepared catalysts in the 

electro-oxidation of methanol. All the experiments were carried out at room temperature, and current 

was normalized with respect to each catalyst metal amount (A/g PtRu). 

4. Conclusions  

PtRu nanoparticles were deposited on a highly mesoporous carbon xerogel for the first time by a 

sulfite complex method. Thermal treatments at 200 °C and 400 °C in H2 for 1 h were carried out, in 

order to increase the crystal size. This sulfite complex method led to catalysts with low crystal sizes 

(from 1.6 to 2.0 nm). Thermal treatment proved to be effective increasing the catalysts crystal size and 

the extent of metallic phase reduction. 

It was observed, by means of XRF and XPS, that Pt segregated towards the surface of the metallic 

crystallites deposited on the carbon xerogel. 

A certain extent of pore blockage was observed upon the loading of the active phase, but catalysts 

still maintained the initial mesopore-enriched structure of the carbon xerogel. 

Methanol electro-oxidation was found to be dependent mainly on the crystal size and the extent of 

reduced metals (Pt0 and Ru0) on the composition of the catalyst. The most active catalysts were those 

treated at 400 °C, PtRu/CXG-COL-TT400, with the highest crystal size and the highest amount of 

reduced metals. The high segregation extent of Pt towards the surface of the particles/crystallites 

deposited, on the surface of the carbon xerogel, may have resulted in an optimal combination of Pt and 

Ru atoms enhancing the progress of the different controlling steps of methanol electro-oxidation 

mechanism at room temperature; starting from methanol dehydrogenation and completing the 

oxidation of the intermediate COads species by means of nearby OHads on Ru sites. 
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