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Abstract: Nitrogen and metal doped nanocarbons derived from polyaniline (PANI) have 
been widely explored as electrocatalysts for the oxygen reduction reaction (ORR) in fuel 
cells. In this work, we report surfactant-template synthesis of PANI nanostructures and  
the ORR electrocatalysts derived from them. By using cationic surfactant such as the cetyl 
trimethyl ammonium bromide (CTAB) as the template and the negatively charged persulfate 
ions as the oxidative agent to stimulate the aniline polymerization in the micelles of CTAB, 
PANI with a unique 1-D semi-tubular structure can be obtained. The semi-tubular structure 
can be maintained even after high-temperature treatment at 900 °C, which yields materials 
exhibiting promising ORR activity. 
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1. Introduction 

Seeking the highly-active electrocatalysts for oxygen reduction reaction (ORR) has become the one 
of the urgent demands for fuel cells, which would take a key role in the “hydrogen energy  
economy” [1]. In recent years, non-precious metal and/or metal- free materials based on nitrogen  
(N)-doped nanocarbons have shown great promise in substituting Pt and its alloys for catalyzing  
the ORR [2,3]. 
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Polyaniline (PANI), a low-cost and easy-making conjugate conducting polymer containing rich 
content of nitrogen, has received extensive research interest [4–6]. Very recently, a variety of N-doped 
carbon catalysts based on PANI have been constructed which showed superior electrocatalytic activities 
for the ORR [7–12]. The multi-technique characterization have suggested that the enviable performance 
should be ascribed to the formation of metal-N complexion structures as well as the carbon 
nanostructures such as thin graphene sheets and nanofibers [10–12]. It has been generally accepted that 
the formation of uniform and ordered carbon nanostructures is very important in enhancing the catalytic 
activity [10–19]. 

Up to now, doped carbon electrocatalysts of different morphologies, such as nanoparticles [20], 
nanowires [21], nanotubes [22], nanorods [23], hollow nanospheres [24] and amorphous carbons [25], 
have been constructed by using various methods. The soft-template synthesis through self-assembly 
processes is among the most straightforward methods for nanostructure formation. In this work, we use 
assembly architectures of a variety of surfactants as the soft-templates to synthesize PANI 
nanostructures. In particular, PANI semi- tubes with uniform diameters of ~80 nm are obtained by using 
cationic surfactant. The electrocatalysts derived from these PANI semi-tubes show good ORR catalytic 
activity in alkaline. 

2. Results and Discussion 

Figure 1 shows the morphologies of PANI materials obtained by using CTAB (80 mM) as  
the template and APS as the oxidative agent. It can be seen that uniform 1-D nanostructures with 
diameters of ~80 nm and lengths of a few micrometers were obtained under this condition. Careful 
inspection revealed that these 1-D nanostructures possessed semi-cannular structures. As seen from  
the TEM images (Figure 1b and its insert), the walls of the individual tubes were highly rugged and full 
of cone-shaped protuberances of ~10 nm lengths, exhibiting centipede- like morphologies. We denoted 
this sample as PANIs-tubes. 

 

Figure 1. (a) SEM and (b) TEM images for polyaniline (PANI) obtained by using cetyl 
trimethyl ammonium bromide (CTAB) as template and ammonium persulfate (APS) as 
oxidative agent. 

In the case when the preparation was conducted using the same procedure as that giving PANIs-tubes 
but the CTAB was absent, highly agglomerated PANI particles were obtained (Figure 2a). When  
the FeCl3 was used to replace APS as the oxidative agent to stimulate the polymerization of aniline in 
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CTAB solution, irregular PANI nanosheets were obtained (Figure 2b). These results indicated that  
the semi-cannular structured PANIs can be uniquely formed through the oxidative polymerization of 
anilines by APS in the assemblies of CTAB. 

 

Figure 2. Morphologies of PANI materials obtained when (a) the CTAB was absent, or (b) 
FeCl3 instead of APS was used as the oxidative reagent. The other conditions are the same as 
that for Figure 1. 

We have also explored the effects of the surfactant types on the morphologies of the formed PANI 
materials. For anionic surfactants, e.g., SDBS, and non- ionic surfactants, e.g., X-100 and Span 40, 
mixtures of PANI nanoparticles and nanorods were obtained (Figure 3), which indicated the uniqueness 
of CTAB in producing the tubular structures of PANI. 

 

Figure 3. Morphologies of PANI materials obtained when the CTAB was replaced by  
(a) sodium dodecyl benzene sulfonate (SDBS), (b) Triton X-100 or, (c) Span 40. The other 
conditions are the same as that for Figure 1. 

We believed that the formation of the PANI semi-tubes was related to the rod- like CTAB micelles 
and the opposite charges between the oxidative persulfate ions and the protonated aniline. Scheme 1 
depicts the possible growth mechanism. The aniline molecules should be dissolved into the rod- like 
CTAB micelles. In the presence of HCl, the aniline molecules should be protonated. Therefore, they 
would be mainly located in the outer region of the micelles. The electrostatic attraction made  
the negatively charged persulfate ions approach the outer surface of micelles and oxidize the aniline 
molecules, which stimulate the polymerization in the outer region of cylindrical micelles. The formation 
of half instead of full PANI tubes was probably due to that there were only limited amounts of aniline 
molecules dissolved in the micelles. When the CTAB micelles were present or positively charged Fe(III) 
ions were used as oxidative agent, the mechanism shown in Scheme 1 could be altered. A deeper 
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understanding of the effects of the oxidants and surfactants on the resultant PANI morphologies requires 
much more detailed investigation. 

 

Scheme 1. The possible growth process of 1-D PANIs-tubes by CTAB micelle as the soft-template. 

The obtained PANI samples were converted into N-doped carbon materials by heat-treating at  
900 °C under Ar atmosphere. As shown in Figure 4, semi-tubular morphologies were maintained after  
the heat-treatment. 

 

Figure 4. Comparison between the morphologies of PANIs-tubes (a) before and (b) after  
heat-treatment at 900 °C. 

We investigated the physical properties and chemical composition of the PANIs-tubes materials before 
and after the heat-treatment. It was found that the heat-treatment resulted in materials exhibiting BET 
surface area (ca. 351.8 m2/g) and pore volume (0.45 m3/g) which were much higher than that before 
heat-treatment (ca. 54.8 m2/g and 0.29 m3/g respectively). This was probably due to the volatilizing 
release of some components during the heat-treatment, making the resulted materials more porous. XPS 
characterization results indicated that the contents of N and O decreased significantly after  
heat-treatment (Table 1), which confirmed the volatilization of some components. 
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Table 1. The content values of C, N and O estimated from XPS results for PANIs-tubes before 
and after heat-treatment. 

PANIs-tubes C (at. %) N (at. %) O (at. %) 
After Heat-Treatment 88.96 5.79 5.25 

Before Heat-Treatment 78.85 10.88 10.27 

Figure 5 compares the ORR polarization curves of the materials obtained through heat-treating  
the PANI prepared without using surfactant (see Figure 2a), the PANIs-tubes prepared by using CTAB 
micelles as templates, and the PANIs-tubes/GS composite. For comparison, the ORR polarization curve 
for the pure GS is also given. It can be seen that the heat-treated PANIs-tubes exhibited significantly 
enhanced ORR activity as compared with the material derived from the PANI that was prepared without 
using surfactant template. This should be due to the open semi-tubular structure, which gave higher 
specific surface areas. As compared with the heat-treated PANIs-tubes, the GS exhibited slightly more 
positive ORR onset potential, but slower current rising rate and lower limiting current. The heat-treated 
PANIs-tubes/GS composite showed much higher ORR activity than that exhibited by the heat-treated 
PANIs-tubes and the GS alone. 

 

Figure 5. ORR polarization curves for different catalyst samples in O2-saturated 0.1 M KOH 
at an electrode rotation speed of 1600 rpm. The PANI refers to the sample obtained by  
heat-treatment of PANI prepared without using surfactant; the PANIs-tubes/GS refers to  
the sample obtained by heat-treatment of PANIs-tubes and graphene sheets together.  
The catalyst loadings were 0.3 mg cm−2 for the non-precious metal catalysts and 0.1 mg cm−2 
for Pt/C (20 μg cm−2 for Pt). 

Since the ORR polarization curves in Figure 5 were obtained with same total mass loading of  
0.3 mg cm−2 for the heat-treated PANIs-tubes, GS and PANIs-tubes/GS, one may expect that the ORR 
activity of the heat-treated PANIs-tubes/GS composite is between that of the heat-treated PANIs-tubes and 
GS. The actually higher ORR activity of the composite thus indicated that there were synergetic 
interaction between PANIs-tubes and GS. The introduction of GS may increase the electrical conductivity 
of the composite. On the other hand, the formation of composite between the 2-D GS and the 1-D 
PANIs-tubes would prevent the GS and PANIs-tubes from agglomerating and stacking during  
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the heat treatment and electrode preparation. There have been numerous studies showing that  
the electrochemical performance of nanomaterials can be enhanced by forming composites with GS,  
due to the good electric conductivity of GS and the capability of GS to improve the dispersion of  
the electroactive materials [26,27]. 

It can be seen that the limiting current of the composite was very similar to that of the Pt/C 
electrocatalyst. The value of the limited current is directly related to the electron transfer number of  
the reaction. It is known that the Pt-based electrocatalysts catalyze the ORR through a 4-electron 
pathway. Therefore, we have reason to believe that ORR proceeded on the heat-treated composite 
mainly through a 4-electron process. It is noted that the present PANIs-tubes materials were still less 
efficient for the ORR than the Pt/C catalyst. Further optimization on the material preparation is 
necessary to promote the electrocatalytic activity. 

3. Experimental Section 

3.1. Chemicals and Materials 

Various surfactants, such as cetyl trimethyl ammonium bromide (CTAB), sodium dodecyl benzene 
sulfonate (SDBS), and octoxinol (Triton X-10), and sorbitan monopalmitate (Span 40), and  
other chemicals were purchased from Sinopharm Chemical Reagent Co., Ltd. (Shanghai, China).  
The 20 wt. % Pt/C from Johnson Matthey (JM, London, UK) was used as reference catalyst. 

3.2. Materials Synthesis 

In a typical synthesis, a desired amount of CTAB was mixed with 15 mL of ultrapure water under 
ultrasonication for more than 30 min. After fully dissolution of CTAB, 200 μL of aniline (AN) and  
20 mL of 1 M HCl were successively added under ultrasonication for another 30 min and then  
the solution was allow to stay for 24 h. 5 mL of 0.4 M ammonium persulfate (APS) solution was then 
added into the solution to stimulate the polymerization of aniline in the CTAB assemblies. Different 
CTAB concentrations (10–80 mM) were explored and no substantial difference in the morphology was 
seen for the obtained PANI. During the reaction progress, the color gradually changed to blue and 
cloudy precipitates were formed, which were collected through ultrafiltration and then alternately 
washed by ethanol and water followed by freeze-drying. Finally, dark blue product was obtained. For 
comparison, the preparation was also conducted by replacing CTAB with other surfactants. 

We also prepared the composite of PANIs with graphene nanosheets (GS) that were prepared by high 
temperature thermal reduction of graphene oxide [17,18]. In this case, 30 mg of GS were added into  
the CTAB solution to prepare the PANI, which corresponded to a PANI/GS ratio of 1/8. Different 
PANI/GS ratios were explored and the 1/8 was found to be the most optimized value. To obtain 
electrocatalysts from the obtained nanostructured PANI, they were pyrolyzed under a flow of Ar at  
900 °C for 1 h. 

3.3. Characterization 

Scanning electron microscopy (SEM) images were obtained by Hitachi S-4800 Scanning Electron 
Microsope (Tokyo, Japan). Transmission electron microscope (TEM) images were obtained at  
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JEM-2100F (JEOL Ltd., Tokyo, Japan). The values of Brunner-Emmet-Teller (BET) surface area and 
total pore volume (TPV) were from N2 adsorption isotherms using an ASAP2020 Surface Area and 
Porosity Analyzer (Micromeritics, Atlanta, GA, USA). X-ray photoelectron spectroscopy (XPS) 
measurements were carried out using a Kratos Ltd. XSAM-800 spectrometer (Kratos Analytical Ltd., 
Manchester, UK) with Mg Kα radiator. The data were fitted by using Gaussian/Lorentzian fitting in  
the software XPSPEAK41 (Kratos Analytical Ltd., Manchester, UK) with Shirley function as baseline. 

3.4. Electrochemical Measurement 

The three-electrode configuration were used for electrochemical measurements using Pt foil counter 
electrode and saturated calomel reference electrode. To prepare the working electrodes, catalyst samples 
as a thin film were coated onto a glass carbon (GC) RDE substrate (diameter: 5 mm) with Nafion as  
the binding agent. For the PANI nanostructures, 5 mg catalysts were dispersed in 1 mL Nafion solution 
(0.5 wt. % Nafion in isopropyl alcohol) to form the catalyst inks and 12 μL ink suspension was  
pipetted onto the GC RDE. For the Pt/C catalyst, 5 mg catalyst was dispersed ultrasonically in 1 mL  
Nafion- isopropyl alcohol solution and 4 μL of the resulted suspension was then pipetted onto  
the GC RDE. The catalyst loadings were respectively 0.3 mg cm−2 for the non-precious metal catalysts 
and 0.1 mg cm−2 for the Pt/C (20 μg cm−2 for Pt). 

4. Conclusions 

In this work, a unique 1-D semi-tubular structure of PANI has been obtained by using self-assemblies 
of CTAB molecules as soft-templates and APS as oxidative agent in aqueous solution. The obtained 
PANI nanostructure can be maintained in the course of high-temperature treatment. The materials 
derived from heat-treating the composite of PANI semi- tubes and GS show significantly enhanced  
ORR performance. 
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