Supplementary Information

Entry	Catalyst	S_{BET} (m ² ·g ⁻¹)	2a Yield (%)
1	Ru/γ - Al_2O_3	156	94
2	Ru/θ - Al_2O_3	84	92
3	Ru/α - Al_2O_3	15	66
4	Ru/CaO	8	5
5	Ru/MgO	18	53
6	Ru/ZrO_2	74	90
7	Ru/CeO ₂	69	70
8	Ru/Nb ₂ O ₅	40	18
9	Ru/SnO_2	25	0
10	Ru/ZSM-5	295	9
11	Ru/MCM-41	647	9
a		nsity (a.u.)	
Linn	mun] ≝ /	

Table S1. List of metal oxide-supported Ru (5 wt. %) catalysts.

Figure S1. XRD patterns of (a) Ru/γ -Al₂O₃, Ru/θ -Al₂O₃, Ru/α -Al₂O₃, (b) Ru/MgO, Ru/CaO, (c) Ru/ZrO_2 , Ru/CeO₂, (d) Ru/Nb_2O_5 , Ru/SnO_2 , (e) Ru/ZSM-5 and (f) Ru/MCM-41.

Figure S2. Typical SEM images of Ru/γ -Al₂O₃ and its images and the corresponding elemental mapping images of Al, O and Ru.

Figure S3. Typical TEM images and particle size distribution of (a) Ru/γ -Al₂O₃, (b) Ru/MgO and (c) Ru/Nb_2O_5 .

Figure S4. Recycling runs in reductive amination of heptaldehyde in the presence of NH₃ and H₂ with Ru/γ -Al₂O₃ as catalyst at 80 °C for 2 h.

 \bigcirc 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).