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Abstract: It is highly desirable to develop affordable, energy-saving, and highly-effective technologies
to alleviate the current water crisis. In this work, we reported a low-cost electrochemical filtration
device composing of a conductive cotton filter anode and a Ti foil cathode. The device was
operated by gravity feed. The conductive cotton filter anodes were fabricated by a facile dying
method to incorporate carbon nanotubes (CNTs) as fillers. The CNTs could serve as adsorbents
for pollutants adsorption, as electrocatalysts for pollutants electrooxidation, and as conductive
additives to render the cotton filters highly conductive. Cellulose-based cotton could serve as
low-cost support to ‘host’ these CNTs. Upon application of external potential, the developed
filtration device could not only achieve physically adsorption of organic compounds, but also
chemically oxide these compounds on site. Three model organic compounds were employed to
evaluate the oxidative capability of the device, i.e., ferrocyanide (a model single-electron-transfer
electron donor), methyl orange (MO, a common recalcitrant azo-dye found in aqueous environments),
and antibiotic tetracycline (TC, a common antibiotic released from the wastewater treatment
plants). The devices exhibited a maximum electrooxidation flux of 0.37 mol/h/m2 for 5.0 mmol/L
ferrocyanide, of 0.26 mol/h/m2 for 0.06 mmol/L MO, and of 0.9 mol/h/m2 for 0.2 mmol/L TC
under given experimental conditions. The effects of several key operational parameters (e.g., total cell
potential, CNT amount, and compound concentration) on the device performance were also studied.
This study could shed some light on the good design of effective and affordable water purification
devices for point-of-use applications.
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1. Introduction

One of the grand challenges of 21st century is to provide affordable and clean water to meet
human needs. However, rapid industrial development, fast population growth, and global climate
change have caused serious water pollution we are currently facing [1]. During the past few decades,
numerous efforts have been devoted to developing feasible and sustainable technologies to alleviate
the water crisis. To be mentioned are technologies such as membrane separations (e.g., reverse
osmosis, RO) [2,3] and advanced oxidation processes (AOPs, e.g., UV-ozone and photocatalysis) [4–8].
Many of them only have limited success. For example, the efficacy of both RO and AOPs could
be negatively affected by natural organic matters (NOM) due to membrane fouling and oxidant
scavenging [9,10]. High energy consumption and high cost also restrict the wide application of other
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promising technologies such as electrodialysis. Therefore, it is highly desirable to develop efficient,
affordable, scalable, and energy-saving water treatment devices and technologies.

Electrochemical oxidation has proven to be effective for the decomposition of organic pollutants
and the key to this technology is a high-performance electrocatalyst [11–13]. In recent years,
carbon-based materials have been widely applied as electrode materials for electrochemical processes.
Among these newly developed electrode materials, carbon nanotubes (CNTs) are especially attractive
due to their large specific surface area (50–500 m2/g), excellent electrical conductivity (104–106 S/m),
and desirable chemical resistivity and stability [14–17]. A highly porous CNT membrane or filter can
be easily fabricated via vacuum filtration. These filters can be used for the removal of pollutants by
physical adsorption [18]. A electrochemical CNT filter could bring this concept one step further
by not only physically adsorb the pollutants but also electrochemically oxide the pollutants in
situ [19]. However, most of the reported CNT filters are generally <10 cm in diameter and further
upscaling of these CNT filters is challenging [20]. Another approach to utilize CNTs is to construct
3D macrostructures. For example, a CNT sponge synthesized by CVD method exhibits excellent
rejection performance for several organic solvents and oils with different densities (e.g., ethanol,
hexane, ethylene glycol, gasoline, and pump oil) [21]. The harsh synthesis conditions have, however,
limited significantly the wide application of this promising design [22]. Also, the CNTs can be
used as conductive fillers to boost the electrical conductivity of a designed composite. For example,
Schoen et al. previously developed a composite filter material based on three one-dimensional (1D)
materials, i.e., silver nanowires, CNTs, and cellulose cotton fibers. The fabricated composite filter
could inactivate >98% of bacteria within only several seconds via electroporation [23]. To obtain
a high-performance CNTs-based composite, an ideal support material is also of significance [24].
Among various support materials reported so far, the cotton-based support has attracted extensive
interest from the community due to their desirable characteristics like mechanically and chemically
robust, highly porous, readily available, and cheap [25]. Some reported cotton/CNTs composite
materials have been used as electrode materials for supercapacitor [26] and sensor applications [27].
To the best of our knowledge, there are very limited reports on the simultaneous adsorption and
electro-oxidation of organic pollutants using 3D conductive cotton filters in a continuous flow
filtration design.

In this study, an efficient electrochemical water purification technology based on conductive
cotton filters was developed. The composite filter can be fabricated via a facile and scalable dying
method. In particular, the CNTs served as adsorbents and electrocatalysts for pollutant adsorption
and electrooxidation. The device was operated by gravity feed (Figure 1a), so that the operation cost
could be further decreased. The performance of the device was evaluated using three selected model
compounds, e.g., ferrocyanide (a model single-electron-transfer electron donor), methyl orange (MO,
a common recalcitrant azo-dye found in aqueous environments), and antibiotic tetracycline (TC,
a common antibiotic released from the wastewater treatment plants). The effects of key operational
parameters on the device performance were systematically studied. The details of this investigation
presented below.
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Figure 1. (a) Schematic illustration of the electrochemical cotton filtration device; FESEM images of (b)
a pristine cotton and (c) a CNT-coated cotton filter; (d) change of filter resistance and weight of cotton
filter as a function of ‘dip–dry’ cycles. The inset in (d) is digital pictures of a pristine cotton filter (white,
right) and a CNT-coated cotton filter (black, left).

2. Results and Discussion

2.1. Fabrication of Conductive Cotton Filters

The conductive cotton filters were fabricated by a facile dying method. The CNT, SDBS,
and cotton are key components for this design. The CNT could serve as high-performance sorbent
and electrocatalyst for pollutants adsorption and electrooxidation. It could also facilitate the cotton
as a conductive electrode material. Firstly, three different surfactants—polyvinyl pyrrolidone (PVP),
sodium dodecyl sulphate (SDS), and SDBS—were employed to disperse CNTs in DI-H2O. While only
10 mg mL−1 of SDBS could successfully disperse CNTs and a homogeneous solution can be obtained
after 15 min probe sonication treatment. Visible agglomerates can be witnessed when using PVP and
SDS of the same concentration. This finding suggests that SDBS is an ideal surfactant to facilitate
the dispersion of CNT in aqueous solution via π–π interaction between the SDBS benzene rings and
the aromatic structure of CNTs [28]. Thus, SDBS could provide good protection for CNTs to avoid
agglomeration. Moreover, the SDBS could serve as a ‘bridge’ to connect CNTs with cotton, by bonding
CNT with benzene ring moieties and bonding with the hydroxyl-groups of cotton cellulose fibers via
van der Waals forces and/or hydrogen. The cotton could serve as macro-porous and low-cost support
materials to ‘host’ these CNTs [29,30]. The CNTs might interwine each other to further enhance the
stability of the as-fabricated 3D cotton filters. In a typical fabrication process, 100 mg cotton sample was
immersed into a freshly-prepared CNT ink solution (composed of 1.5 mg/mL CNTs and 10 mg/mL
SDBS), followed by a drying process at 120 ◦C for 30 min to remove water residue. The inset in
Figure 1d compares the digital pictures of a pristine cotton (white, right) and a CNT-coated cotton
(black, left). The black color provides supportive evidence for the successful CNT loading. Furthermore,
field-emission scanning electron microscopy (FESEM) technique was employed to provide detailed
morphological information. As displayed in Figure 1b,c, the pristine cotton sample showed a twisted
and smooth fiber-like structure with an average fiber width of ~50 µm and an average pore size of
~110 µm. However, the surface became much rougher after CNT loading. A magnified image showed
that the CNTs were distributed uniformly onto the cellulose fiber surface (Figure S1, Supplementary
Materials). This data provides supportive evidence for the successful loading of CNT onto the cotton.
Also, by varying the ‘dip–dry’ cycles and CNT content in the ink, the loading amounts of CNTs onto
the cotton as well as the electrical conductivity of the as-fabricated filters can be controlled (Figure S2,
Supplementary Materials). For example, as shown in Figure 1d, the accumulated ink mass adsorbed
per volume of the cotton increased from 0.85 mg/cm3 (one ‘dip–dry’ cycle, by dividing the filter
weight gain with the filter volume) to 5.74 mg/cm3 (five ‘dip–dry’ cycles) when using a 1.5 mg/mL
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CNT ink. This indicates a quantitative sorption of conductive nanotubes onto the cotton surface.
Meanwhile, as expected, the sheet resistance of the cotton filter samples decreased significantly from
20,000± 850 Ω to 170± 30 Ω, mainly due to the continuous increase of highly conductive CNTs within
the cotton filters. As a simple demonstration of the electrical conductivity, an LED lamp connected
to a direct current (DC) power supply (4.0 V applied voltage) can be easily powered through the
as-fabricated conductive cotton filters (Figure S3, Supplementary Materials). Given that the CNT
loading amount became rather limited over five ‘dip–dry’ cycles, hence, this number was chosen for
all subsequent experiments.

2.2. Electron Transfer

The electrochemical performance of a conductive cotton filter was firstly evaluated using
ferrocyanide (Fe(CN)4−

6 ) as model electron donor. The unique characteristics of single-electron
transfer and negligible adsorption of ferrocyanide make it suitable candidate for electron transfer
experiment [31,32]. The oxidation of ferrocyanide can be described by Equation (1).

Fe(CN)3−
6 + e− → Fe(CN)4−

6 , E0 = 0.139 V vs. Ag/AgCl (1)

Figure 2 shows the change of electrooxidation flux of ferrocyanide as a function of applied anode
potential and ferrocyanide concentrations. At an anode potential range of 0.15–0.4 V (vs. Ag/AgCl),
a linear relationship between electrooxidation flux of ferrocyanide and applied anode potential can
be observed for all influent concentrations. Voltage-independent plateaus were achieved for all cases
when anode potential above 0.4 V (vs. Ag/AgCl). This finding indicates the mass transport limitations.
At an anode potential of 0.4 V, the electrooxidation rate of ferrocyanide was 0.037, 0.106, 0.145,
and 0.373 mol/h/m2 for 0.2, 0.5, 1.0, and 5.0 mmol/L ferrocyanide, respectively. The electrooxidation
flux increased up to 10-fold by increasing the influent concentration and interval electrode convection.
This value was lower than a reported graphene-CNT composite filter (e.g., 15-fold) [32]. The reason
may be due to a much thinner thickness of the graphene-CNT filter (10 µm vs. 2.5 cm) and, hence,
an increased transport resistance of ferrocyanide ions in the current design. As only one electron
transfer was involved to oxide ferrocyanide to ferricyanide, the maximum electron transfers at an
applied anode potential of 0.4 V (vs. Ag/AgCl) were calculated to be 1 × 1014, 3 × 1014, 1 × 1015 e/s
for 0.2, 0.5, 1.0, and 5.0 mmol/L ferrocyanide, respectively.

Catalysts 2017, 7, 291    4 of 11 

 

Feሺܰܥሻ଺
ଷି ൅ ݁ି → ሻ଺ܰܥሺ݁ܨ

ସି, ଴ܧ ൌ 0.139 ܸ .ݏݒ  ݈ܥ݃ܣ/݃ܣ   (1)

Figure 2 shows the change of electrooxidation flux of ferrocyanide as a function of applied anode 

potential and ferrocyanide concentrations. At an anode potential range of 0.15–0.4 V (vs. Ag/AgCl), 

a linear relationship between electrooxidation flux of ferrocyanide and applied anode potential can 

be observed for all influent concentrations. Voltage‐independent plateaus were achieved for all cases 

when  anode  potential  above  0.4  V  (vs.  Ag/AgCl).  This  finding  indicates  the  mass  transport 

limitations. At an anode potential of 0.4 V, the electrooxidation rate of ferrocyanide was 0.037, 0.106, 

0.145,  and  0.373  mol/h/m2  for  0.2,  0.5,  1.0,  and  5.0  mmol/L  ferrocyanide,  respectively.  The 

electrooxidation  flux  increased up  to 10‐fold by  increasing  the  influent concentration and  interval 

electrode convection. This value was lower than a reported graphene‐CNT composite filter (e.g., 15‐

fold) [32]. The reason may be due to a much thinner thickness of the graphene‐CNT filter (10 μm vs. 

2.5 cm) and, hence, an increased transport resistance of ferrocyanide ions in the current design. As 

only one electron transfer was involved to oxide ferrocyanide to ferricyanide, the maximum electron 

transfers at an applied anode potential of 0.4 V (vs. Ag/AgCl) were calculated to be 1 × 1014, 3 × 1014, 

1 × 1015 e/s for 0.2, 0.5, 1.0, and 5.0 mmol/L ferrocyanide, respectively. 

 

Figure 2. Concentration‐dependent oxidation of ferrocyanide using an electrochemical cotton filter. 

Experimental conditions: [CNT]ink = 1.5 mg/mL, [Na2SO4] = 10 mmol/L, and flow rate = 1.5 mL/min.   

2.3. Performance of the Cotton Filter towards MO Removal 

To  further  evaluate  the  feasibility  of  the  as‐fabricated  conductive  cotton  filters  for  organic 

pollutants degradation, methyl orange (MO) was selected as a typical recalcitrant organic compound 

in aqueous environment. Firstly, the MO sorption process on a conductive cotton filter was examined 

by  breakthrough  curve  analysis  in  the  absence  of  electrochemistry.  As  displayed  in  Figure  S4 

(Supplementary Materials),  the  sorption  behavior  of  cotton  filters  fabricated with different CNT 

concentrations varies significantly. The effluent MO concentration  flow  through  the cotton  filters 

fabricated by a 0.5 mg/mL and a 1.0 mg/mL CNT ink solution increased sharply at the initial 5–10 

min and then maintained a stable concentration. For the cotton filter fabricated by a 1.5 mg/mL CNT 

ink, the effluent increased at a gentle slope in the first 18 min and then showed a steeper increase 

before breakthrough occurs. The cotton filter MO sorption capacity was 53.5 mg/g, 1.8 times higher 

than a pure CNT filter reported previously [33]. This  increased sorption capacity observed  in this 

study are likely due to the contribution of MO sorption by the cotton support. However, the limited 

area of the cotton filter results in an absolute sorption capacity that is relatively low and in turn MO 

0.1 0.2 0.3 0.4 0.5

0.0

0.1

0.2

0.3

0.4

E
le

ct
ro

ox
id

at
io

n
 F

lu
x 

(m
ol

/h
/m

2 )

Anode Potential (V vs. Ag/AgCl)

 0.2 mM
 0.5 mM
 1 mM
 5 mM

Figure 2. Concentration-dependent oxidation of ferrocyanide using an electrochemical cotton filter.
Experimental conditions: [CNT]ink = 1.5 mg/mL, [Na2SO4] = 10 mmol/L, and flow rate = 1.5 mL/min.
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2.3. Performance of the Cotton Filter towards MO Removal

To further evaluate the feasibility of the as-fabricated conductive cotton filters for organic
pollutants degradation, methyl orange (MO) was selected as a typical recalcitrant organic compound
in aqueous environment. Firstly, the MO sorption process on a conductive cotton filter was examined
by breakthrough curve analysis in the absence of electrochemistry. As displayed in Figure S4
(Supplementary Materials), the sorption behavior of cotton filters fabricated with different CNT
concentrations varies significantly. The effluent MO concentration flow through the cotton filters
fabricated by a 0.5 mg/mL and a 1.0 mg/mL CNT ink solution increased sharply at the initial 5–10 min
and then maintained a stable concentration. For the cotton filter fabricated by a 1.5 mg/mL CNT
ink, the effluent increased at a gentle slope in the first 18 min and then showed a steeper increase
before breakthrough occurs. The cotton filter MO sorption capacity was 53.5 mg/g, 1.8 times higher
than a pure CNT filter reported previously [33]. This increased sorption capacity observed in this
study are likely due to the contribution of MO sorption by the cotton support. However, the limited
area of the cotton filter results in an absolute sorption capacity that is relatively low and in turn MO
breakthrough occurs within 1 h. Thus, further experiments were conducted to electrochemically
degrade the adsorbed MO molecules and to regenerate adsorption sites.

The electrooxidative filtration of MO was evaluated as a function of total cell potential and
CNT loading onto the cotton filters as displayed in Figure 3a. The MO oxidation flux increased with
increasing total cell potential to a maximum of 0.26 ± 0.02 mol/h/m2 at 3.5 V for the cotton filter
fabricated using a 1.5 mg/mL CNT ink. Further increase of the total cell potential to 4.0 V did not
improve the device performance due to other side reactions (e.g., water oxidation) occurred at this
condition, resulting in the loss of electrochemical activity. Moreover, increased electrolytic gas bubble
formation at a higher potential may block some active sites on the filter surface, or even degrade
the filter integrity to some extent. It is of note that the optimal total cell potential of 3.5 V for MO
electrooxidation was higher than that of a CNT electrochemical filter (e.g., 2.5 V). This difference may
be due to an increased filter resistance (~175 Ω vs. ~50 Ω) and a reduced CNT content (~7 mg vs. 30 mg)
of the cotton filters reported in this work. The increased resistance of the as-fabricated cotton filters may
increase the resistance for the transport of electrons, so that an increased overpotential may be needed
to overcome this barrier. Moreover, the CNT content in the ink is another important factor for the
electro-oxidative process. As expected, the MO electrooxidation flux was increased with CNT amount
for all cases. For example, at a given total cell potential of 3.5 V, the MO electrooxidation flux was
0.15, 0.23, and 0.26 mol/h/m2 for CNT ink concentration of 0.5 mg/mL, 1.0 mg/mL, and 1.5 mg/mL,
respectively. Since more CNT loading will lead to more active sites for the sorption and electrooxidation
of MO molecules and increase the electrical conductivity of the as-fabricated filters (or decreased
electron transport resistance). The 0.26 mol/h/m2 electrooxidation flux of MO in a single pass through
the cotton filter is of note since the device was running by gravity feed. These data suggest the potential
of a cost-effective, energy-saving, and facile method for the efficient removal of organic compounds
from water.

Open circuit potential measurements over a range of cell potentials for the device was conducted
with a cotton filter anode, a Ti cathode, [MO]in = 0.06 mmol/L and [Na2SO4] = 10 mmol/L. As shown in
Figure 3b, a total cell potential of 3.0 V was required to achieve a high enough anode potential (>+0.8 V
vs. Ag/AgCl) for MO oxidation as determined by the cyclic voltammogram measurement [33]. At a
total cell potential of 4 V, the anode potential was as high as 1.5 V vs. Ag/AgCl which has exceeded
the water oxidation potential of 1.23 V (vs. standard hydrogen electrode, SHE). This finding supports
the change of MO electrooxidation flux with total cell potential as shown in Figure 3a.

The re-usability of the cotton filters is of great significance towards practical applications. Hence,
additional experiments to evaluate the regeneration performance of the cotton filters were conducted.
As shown in Figure 3c, the cotton filter exhibits an initial MO oxidation flux of 0.27 mol/h/m2 and
a MO removal efficiency of >98% in the first 30 min, which then slightly decreased in the following
few hours. The decrement in MO oxidation can be due to the MO oxidation byproducts and/or
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precipitates accumulated onto the filter surface. This hypothesis was further confirmed by the SEM
characterization results of the cotton filter after running. As shown in the inset, certain polydispersed
nanoparticles and/or precipitates were observed on the cotton surface that might eventually foul
the cotton filter. These materials could be organic polymers and/or inorganic sodium persulfate [34].
The build-up of polymer/precipitates may cause some adverse effects on the oxidative performance of
the filter by blocking the active centers of the filter, significantly increasing resistance to water and
electron transfer, thus reducing the reaction kinetics and electrochemistry. To eliminate the contribution
of MO degradation by the possibly produced persulfate precipitates, another control experiment was
conducted by mixing 0.1–5 mmol/L persulfate with 0.06 mmol/L MO. The results show that the
MO concentration changed negligible (<0.4%) for all cases. This finding supports the conclusion that
the MO removal was mainly due to the electrooxidation by the filter. A 100 mL of 1 mol/L HCl:
ethanol mixture (50:50 vol %) washing of the cotton filter was found to be effective to restore the initial
electrooxidation flux. An average electrooxidation flux of 0.2 mol/h/m2 was achieved for the next two
running cycles. Also, the lack of breakthrough during the 8 h continuous running at 3.5 V total cell
potential suggests that the primary removal mechanism during electrochemical filtration is oxidative
degradation rather than physical adsorption. These data suggest the potential of a cost-effective,
energy-saving, and facile method for the efficient removal of organic compounds from water.
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and flow rate = 1.5 mL/min; The regeneration performance of a cotton filter. The filter was washed
with a 100 mL of 1 mol/L HCl: ethanol mixture (50:50 vol %) without electrochemistry before a next
running cycle. The inset in (c) is SEM image of a cotton filter after 4 h of continuous operation.
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2.4. Performance of the Cotton Filter towards TC Removal

The 0.26 mol/h/m2 electrooxidation flux of MO in a single pass through the cotton filter is of
note since the device was running under gravity feed. This also reveals the potential of a low-cost and
energy-saving route for water purification. To further explore the potential for the treatment of other
emerging organic contaminants, the as-fabricated conductive cotton filter was further challenged with a
typical emerging contaminant, i.e., antibiotic tetracycline (TC, 0.2 mmol/L). TC is one of the commonly
detected antibiotics in water and the wastewater treatment plant was considered as one major point
sources for TC pollution. Control experiments in the absence of applied cell potential can only
adsorb physically the TC molecules until all sorption sites were occupied after 70 min, i.e., adsorption
saturation (Figure S5, Supplementary Materials). Figure 4a compares the TC electrooxidation flux as a
function of total cell potential. The TC electrooxidation flux increased with increasing total cell potential
from 1.0 V to 2.0 V with an electrooxidation flux of 0.9 ± 0.1 mol/h/m2 for the cotton filter fabricated
with a 1.5 mg/mL CNT ink. The TC electrooxidation flux changed negligibly with further increase
in the total cell potential until 3.0 V. This finding can be explained by the open-circuit measurements
as displayed in Figure 4b. At a total cell potential of 1.5 V, the anode potential was determined to
be 0.7 ± 0.06 V (vs. Ag/AgCl), which is high enough to oxide TC molecules (e.g., dimethylamine
group of TC at 0.5 V vs. Ag/AgCl) [35]. It is of note that the maximum TC electrooxidation kinetics
was 2.0 V, which was quite different with that of MO. For example, an optimal total cell potential for
MO electrooxidation was 3.5 V, while only 2.0 V was required for TC electrooxidation. This finding
could be explained by their different molecular structures and physicochemical properties. TC is an
amphoteric molecule with multiple functional groups/moieties (e.g., phenol, amino, alcohol, diketone).
Moreover, compared with MO, the TC molecules tend to adsorb onto the sp2-conjugated CNT sidewalls
due to its relatively strong van der Waals, π–π, and cation−π interactions [35]. A recent report has
demonstrated that TC has significant 3D molecular curvature and tend to adsorb onto the CNT surface
until monolayer formation [35]. The LC-MS characterization results suggest that the characteristic
TC peak observed in the influent solution was decreased by 63% and 96% at a total cell potential
of 1.0 V and 2.0 V, respectively, indicates that the parent TC molecules has been degraded. TC was
spiked into real surface water samples to further challenge the cotton filter. The results show that
the TC electrooxidation flux decreased by 35% compared with that of model electrolyte solution.
The lower conductivity (1408 µS/cm vs. 6289 µS/cm) and complex natural reservoir organic matrix
(background chemical oxygen demand, COD = 47.1 mg/L) may account for the significant decrease
in electrooxidation kinetics. The energy consumption of the developed electrochemical cotton filter
technology for TC treatment is calculated at an applied total cell potential of 2.0 V, by assuming
31 electrons transferred per TC molecule, to be 1.2 kWh/kg COD (The COD used here is the theoretical
COD). This value is comparative with state-of-the-art electrochemical oxidation processes with an
energy consumption in the range of 5–100 kWh/kg COD [36–39]. Alternatively, the energy per volume
treated is calculated to be only 0.05 kWh/m3. The gravity feed could further save the pumping energy
which was constantly required for conventional membrane separation processes, especially for some
high pressure-driven membrane separation process like RO. Of course, the energy consumed for MO
electrooxidation should be higher than that of TC, since a larger total cell potential will be required to
achieve efficient MO degradation (e.g., 3.5 V vs. 2.0 V). The energy per MO volume treated is calculated
to be 0.19 kWh/m3, 3.7 times higher than that of TC. The experimental results have demonstrated that
the cotton filter clogging caused by the accumulation of precipitates/polymers may greatly limit the
practical applications of the developed device towards the treatment of real water samples. Hence,
further studies will be necessary to enhance the electrooxidative capability and to address the filter
regeneration issues. Additionally, the ubiquitous presence of dissolved natural organic matters may
negatively affect the efficacy and efficiency of the device toward practical applications. Since there
are only limited active sites available on the cotton filter surface, the pollutant concentration effect
on the device performance also deserves future investigation. Especially for the treatment of trace



Catalysts 2017, 7, 291 8 of 12

organic contaminants, e.g., antibiotic tetracycline, their environmental concentration should be taken
into consideration in future studies.Catalysts 2017, 7, 291    8 of 11 
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Figure 4. TC electrooxidation flux (a) and open-circuit potential (b) as a functional total cell potential.
Experimental conditions: [CNT]ink = 1.5 mg/mL, [TC]in = 0.2 mmol/L, [Na2SO4] = 10 mmol/L,
and flow rate = 1.5 mL/min.

3. Materials and Methods

3.1. Materials

Multiwalled carbon nanotube networks (CNTs, <d> = 15 nm and <l> = 100 µm) were
purchased from NanoTechLabs (Buckeye Composites, Yadkinville, NC, USA). Medical absorbent
cottons were purchased from supermarket. Sodium sulfate (Na2SO4, ≥99.0%), methyl orange (MO,
C14H14N3NaO3S, ACS reagent, dye content 85%), tetracycline (TC, C22H24N2O8·xH2O, ≥98.0%),
hydrochloric acid (HCl, ≥37%), ethanol (anhydrous, denatured), potassium hexacyanoferrate (II)
trihydrate (K4Fe(CN)6·3H2O), and sodium dodecyl benzene sulfonate (SDBS) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). Deionized water used in the experiments was produced by using
a Milli-Q ultrapure water system (Millipore, Billerica, MA, USA).

3.2. Fabrication of Conductive Cotton Filter

Firstly, the CNT ink was prepared by adding a certain amount of CNTs (0.5–1.5 mg/mL) and a
10 mg/mL SDBS to deionized water. The mixture was then bath sonicated (KQ3200E bath sonicator,
Kunshan, China) for 10 min and probe sonicated (Branson SFX150 sonifier, St. Louis, MO, USA)
for another 15 min to improve the CNT dispensability in water. A facile dying method was used
to load CNTs onto the cellulose fiber-based cotton samples. In a typical fabrication process, 100 mg
cotton sample was immersed into a freshly-prepared CNT ink for 5 min, following 30 min of drying
in an oven (at 120 ◦C). Before drying, the cotton sample was pressed with finger to remove extra
SDBS surfactant until no visible bubbles were observed and washed with DI water. Due to the strong
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absorption capability, the CNT ink was quickly coated onto the cotton. By varying the ‘dip–dry’ cycles
and CNT content in the ink, different amounts of CNTs can be loaded onto the cellulose fibers of
cotton. We assume the CNT ink coated uniformly onto the cotton surface. The mass of the loaded
CNTs can be obtained from the mass difference before and after the dipping and drying of the cotton
samples. The loading of CNTs onto the cotton could significantly boost the electrical conductivity
of the as-fabricated filter. Finally, the conductive cotton filters (with 2.0 cm in the funnel and 0.5 cm
connect to the power supply) were transferred into a plastic funnel (bottom diameter of 0.8 cm, funnel
volume of 85 mL) for electrochemical filtration applications.

3.3. Electrochemical Filtration Device

The electrochemical filtration experiments were conducted using a conductive cotton filter (with
a length of 2.5 cm) as anode, a Ti foil (2 × 5 cm) as cathode, and 10 mmol/L Na2SO4 as background
electrolyte. The solution passed through the conductive cotton filter by only gravity feed. In a typical
experiment of electrochemical filtration of methyl orange (MO), 0.06 mmol/L MO, and 10 mmol/L
Na2SO4 were first flowed through the filter in the absence of applied voltage to achieve adsorption
saturation of the filter, which could exclude the contribution of physical sorption to pollutants removal.
Unless noted, the volume treated was 200 mL. Due to the limited space in the funnel, the solution
was topped up every 15 min to maintain the ‘driving force’ (i.e., gravity). Then, an Agilent E3646A
DC power supply was used to provide the voltage to induce the electro-oxidation of the pollutants.
The effluent was collected at specific time intervals. Water flux was measured in a similar way by
replacing the organic solution with DI-H2O. When challenging with the organic solution, the flux will
decrease to some extent due to the accumulation of precipitates and/or polymers on the filter surface.
To evaluate the regeneration performance of the conductive cotton filters, a 100 mL of ethanol and
1 mol/L HCl mixture (50:50 vol %) was passed through the filter without electrochemistry after the
MO electrochemical filtration. This could help to remove the organic residues from the filter surface.
The oxidation flux was calculated by the Equation (2)

Elextrooxidation Flux =
(Cin − Cout)(mol/L)× flow rate(L/h)

effective filter area (m2)
(2)

where Cin is the initial influent compound concentration and Cout is the compound concentration
after passing through the cotton filter. The effluent samples were collected after applying the external
potential for 20 min. All these measurements were repeated at least three times for reproducibility.

3.4. Characterizations

The morphology of the as-fabricated conductive cotton filters was examined by a JEOL JSM-6700F
filed-emission scanning electron microscopy (FESEM) (Carl Zeiss Supra55VP, Oberkochen, Germany).
Micrographs were analyzed with ImageJ software (Bethesda, MD, USA) to get the average interfiber
pore size of the as-fabricated filters, which was obtained from the average of at least 100 measurements
from three FESEM images. The electrochemical characterizations of the samples were conducted on
a CHI660E electrochemical workstation (Shanghai Chenhua Instrument Co. Ltd., Shanghai, China)
using a three-electrode system. A conductive cotton filter, an AgCl/Ag electrode and a Ti foil served as
working electrode, reference electrode and counter electrode, respectively. For the open-circuit voltage
measurements, an Agilent E3646A DC power (Santa Clara, CA, USA) supply was used to provide an
applied voltage of 0 to 4 V. The concentration of ferricyanide and methyl orange (MO) was determined
by a Shimadzu UV-1800 UV–vis photometer (Kyoto, Japan) at their maximum absorbance values of
425 nm and 462 nm, respectively. The concentration of tetracycline (TC) was determined by using an
Agilent 1290 UHPLC system (Waldbronm, Germany) coupled with 6540 quadrupole-time of flight
(Q-TOF) mass detector equipped with a dual jet stream electrospray ionization source.
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4. Conclusions

In conclusion, an affordable and effective electrochemical cotton-based filtration device for water
treatment was developed. The CNT amount, total cell potential and surfactant were identified to be key
parameters affecting the device performance. Moreover, the efficient electrooxidation of ferrocyanide,
methyl orange, and antibiotic tetracycline suggest that the electrochemical cotton filters have good
potential for water purification applications. Overall, the experiment results presented in this study
quantitatively exemplified the advantages of a conductive cotton filter for water purification in a
low-cost and energy-saving manner.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/7/10/291/s1;
Figure S1: FESEM images of conductive cotton filters fabricated using [CNT]ink = 1.5 mg/mL; Figure S2: Variation
of filter resistance of as-fabricated cotton filters with CNT ink concentrations; Figure S3: Demonstration of a CNT
cotton filter acts as a conducting path in the emission of an LED indicative lamp under applied voltage of 4 V;
Figure S4: MO breakthrough curve under conditions of [MO]in = 0.06 mmol/L, [Na2SO4] = 10 mmol/L, and flow
rate = 1.5 mL/min; Figure S5. TC breakthrough curves under conditions of [TC]in = 0.2 mmol/L, [Na2SO4] =
10 mmol/L, and flow rate = 1.5 mL/min.
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