
 

Catalysts 2017, 7, x; doi:  www.mdpi.com/journal/catalysts 

Suplementary Materials: Cross-Linked CoMoO4/rGO 
Nanosheets as Oxygen Reduction Catalyst  
Jiaqi Fu 1, Jiang-Li Meng 1, Mei-Jie Wei 1, Hong-Ying Zang 1,*, Hua-Qiao Tan 1, Yong-Hui Wang 1,*, 
Haralampos N. Miras 2,* and Yang-Guang Li 1,* 

1 Key Laboratory of Polyoxometalate Science of Ministry of Education, Key Laboratory of Nanobiosensing 
and Nanobioanalysis at Universities of Jilin Province, Faculty of Chemistry, Northeast Normal University, 
Changchun 130024, China; fujq140@nenu.edu.cn (J.F.); mengjl480@nenu.edu.cn (J.-L.M.); 
weimj212@nenu.edu.cn (M.-J.W.); tanhq870@nenu.edu.cn (H.-Q.T.) 

2 School of Chemistry, The University of Glasgow, Galsgow G12 8QQ, UK  
* Correspondence: zanghy100@nenu.edu.cn (H.-Y.Z.); wangyh319@nenu.edu.cn (Y.-H.W.); 

harism@chem.gla.ac.uk (H.N.M.); liyg658@nenu.edu.cn (Y.-G.L.);  
Tel.: +86-431-8568-4009 (H.-Y.Z. & Y.-H.W. & Y.-G.L.) 

 

 

 

 

 

 

 

 

Figure S1. Raman spectra of graphene oxide. 

1. Physical characterization 

A JEOL JSM 4800F SEM (JEOL company, Shanghai, China) and an FEI Tecnai G2 TEM 
(transmission electron microscopy) (FEI company, Hillsborough County, Oregon State , United 
States of America) were used to visualize the morphologies and microstructures of CoMoO4/rGO, 
rGO and CoMoO4 samples. X-ray photoelectron spectroscopy (XPS) was tested by using an 
ESCALABMKII spectrometer with an Al-Ka (1486.6 eV) achromatic X-ray source (Thermo Fisher 
Scinentific, Waltham, MA, USA). Powder X-ray diffraction measurements were recorded on a 
Siemens D5005 diffractometer with Cu-Kα radiation (λ = 1.5418 Å) (Bruker , Aubrey, Texas , USA). 
Raman spectra were recorded with a LabRAM HR high-resolution Raman spectrometer 
(Horiba-Jobin Yvon) (Horiba-Jobin Yvon , Paris , France). 

2. Electrochemical measurements 

All the electrochemical tentatives were carried out on an electrochemical analysis station 
(CHI760E, Princeton) using a three-electrode cell. Rotating disk electrode (RDE, 5 mm diameter) or 
rotating ring disk electrode (RRDE, 5.61 mm diameter) was the working electrode, Ag/AgCl 
electrode and Pt mesh regarded as the reference electrode and counter electrode, respectively. To 
prepare the working electrode, 4.0 mg of the CoMoO4/rGO catalyst was ultrasonically dissolved 
into 1.0 mL of aqueous solution including 0.05 wt % Nafion (VH２O: V Nafion= 9:1) for 30 min.. The 
volume of catalyst ink was 10 μL for the RDE/RRDE examines the CV and LSV. The catalyst loading 
on rotating disk electrode was 0.254 mg/cm2. As a comparison, the Pt/C working electrode was 
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made with the same method with the commercial Pt/C (20 wt %) powder instead of the 
CoMoO4/rGO powder. 

Before the test, high-purity N2 or O2 gas was injected into the alkaline solution for at least 30 
min. In 0.1 M KOH, the Ag/AgCl electrode was calibrated with reversible hydrogen electrode 
(RHE), ERHE = EAg/AgCl + 0.059pH + 0.205. Cyclic voltammetry (CV) and linear sweep voltammetry 
(LSV) tests were conducted with a scan rate of 10 mV s-1 and 5 mV s-1, respectively. All LSV curves 
were presented without iR compensation. 

For the RDE measurements, the LSV curves were inspected at different rotating speeds 
(100-2500 rpm). The electron transfer number (n) was computed using the Koutecky−Levich (K-L) 
equation [16, S1]: 

j-1 = jk-1 +(0.62nFCo(Do)2/3v-1/6ω1/2)-1  

Where j is the measured current density, jk is the kinetic current density. F is the Faraday 
constant (96485 C mol−1). Co is the bulk concentration of O2 in 0.1 M KOH (1.2 × 10−3 mol L−1). Do is 
the diffusion coefficient of O2 in 0.1 M KOH (1.9 × 10−5 cm2 s-1). v is the kinetic viscosity of the 
electrolyte (0.01 cm2 s−1), and ω is the electrode rotating rate.  

For the RRDE measurements, the polarization curves were carried out at a rotating velocity of 
1600 rpm, and the potential of the ring was fixed to 0.5 V (vs. Ag/AgCl). The electron transfer 
number (n) and the H2O2 yield were estimated as followed [S2]: 
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where Ir is the ring current and Id is the disk current. N is the collection efficiency (0.37). 
The stability of the samples was evaluated by the chronoamperometric response (i.e., the I–t 

curve) at -0.2 V (vs. EAg/AgCl). The methanol tolerance examination was tested in O2- purged 0.1 M 
KOH in the presence of 1.0 M methanol. 

Table S1. Comparison of ORR activity parameters with other recently reported. 

Catalyst Electrolyte 
Reference
electrode 
employed 

Onset
Potential 

(V vs RHE) 
References 

CoMoO4/rGO 0.1 M KOH Ag/AgCl 0.89 This work 
Co3O4/N-csCNT–GNR 0.1 M KOH Ag/AgCl 0.89 [S3] 

Co/N-C-800 0.1 M KOH Ag/AgCl 0.834 [S4] 
CoO@N/S-CNF 0.1 M KOH Hg/HgO 0.84 [S5] 

Co/CoNx/N-CNT/C 0.1 M KOH Hg/HgO 0.90 [S6] 
NPACCo 0.1 M KOH Hg/HgO 0.87 [S7] 

NiCo2O4–G 0.1 M KOH Hg/HgO 0.871 [S8] 
Fe/Co-NpGr 0.1 M KOH Hg/HgO 0.93 [S9] 

NiCoMnO4/N-rGO 0.1 M KOH Hg/HgO 0.92 [S10] 
Co0.25-N0.32/C-800 0.1 M KOH Hg/HgO 0.93 [S11] 

Co1–xS/N–S–G 0.1 M KOH Ag/AgCl 0.978 [S12] 
NiCo2O4/C 0.1 M KOH Ag/AgCl 0.81 [S13] 

Co3O4/N-rmGO 0.1 M KOH Hg/HgO 0.88 [16] 
Co@NSCNTs 0.1 M KOH Ag/AgCl 0.90 [S14] 

CoS2(400)/N,S-GO 0.1 M KOH Hg/HgO 0.97 [S15] 
N-graphene/CNT 0.1 M KOH Ag/AgCl 0.885 [S16] 

CNT/BN 0.1 M KOH Ag/AgCl 0.86 [S17] 
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