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Abstract: 2,5-Bis-(hydroxymethyl)furan (BHMF) is an important biomass-based platform chemical
that can be derived from the hydrogenation of biomass-based 5-hydroxymethylfurfural (HMF). In this
paper, the formation of BHMF from HMF via the catalytic transfer hydrogenation (CTH) process,
using isopropanol as the hydrogen source and Ru/Co3O4 as the catalyst, was studied. The results
revealed that the Ru/Co3O4 catalyst displayed a high catalytic efficiency, and that a BHMF yield
of up to 82% was obtained at 190 ◦C in 6 h. Moreover, it was found that the recovered Ru/Co3O4

exhibited a similar catalytic activity to the pristine Ru/Co3O4 catalyst. These results supported the
conclusion that the present CTH process is an attractive green route for the synthesis of BHMF from
biomass-based HMF.

Keywords: biomass; 5-hydroxymethylfurfural; 2,5-bis-(hydroxymethyl)furan; catalytic transfer
hydrogenation; ruthenium based catalyst

1. Introduction

The development of efficient production technologies for biomass-based fuels and chemicals has
received much attention [1,2]. In this context, 5-hydroxymethylfurfural (HMF), which was identified
as a key precursor and called a “sleeping giant” for the synthesis of biofuels and high value-added
chemicals, has been widely studied. As shown in Figure 1, HMF possesses two functional groups: an
aldehyde and an alcohol, so it can be easily converted into value-added compounds to be used in a
wide variety of chemical manufacturing applications and industrial products [3]. Importantly, HMF
can be hydrogenated to 2,5-bis-(hydroxymethyl)furan (BHMF), which is a monomer for the synthesis
of heat insulating material [4], resins, and crown ethers [5]. Moreover, BHMF is a promising diol that
can be used either directly for the synthesis of shape memory and self-healing polymers or for the
synthesis of 1,6-hexanediol, which is also an important polymer precursor [6].

Several studies reported the conversion of HMF to BHMF. For example, Kang et al. [7] reported
that HMF is converted to BHMF via a Cannizzaro reaction using ionic liquids as a recyclable solvent
under water-free conditions, and an excellent yield was obtained when [EMIm]TFSI was used as the
solvent. Subbiah et al. [8] reported that a 40% BHMF yield can be obtained through the Cannizzaro
reaction of HMF using NaH in dry THF. Usually, 5-hydroxymethylfuranoic acid (HMFA) is also
formed (in an equimolar amount) during the same course of Cannizzaro reactions, which results in
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challenges in the subsequent separation processes. In addition to the Cannizzaro reaction, the catalytic
hydrogenation of HMF can lead to the formation of BHMF. Zhu et al. [9] reported a 99.1% selectivity
for the conversion of HMF to BHMF at 100 ◦C over 3 h of reaction in ethanol with Cu–ZnO as the
catalyst. Chatterjee et al. [10] reported that Pt/MCM-41 could be used as an efficient catalyst for the
hydrogenation of HMF to BHMF, and 98.9% selectivity of BHMF was obtained at 35 ◦C and 0.8 MPa
H2. In these studies, molecular hydrogen was used.
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CTH of HMF to BHMF, while isopropanol was used as the hydrogen donor. The study would be 
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Figure 1. 2,5-Bis-(hydroxymethyl)furan (BHMF) is a biomass-based platform chemical, which can be
made from 5-hydroxymethylfurfural (HMF).

The catalytic transfer hydrogenation (CTH) process has been reported as an efficient and simple
method for the reduction of biomass-derived chemicals in the absence of molecular hydrogen [11].
The CTH process can also be used for the hydrogenation of HMF to other high value-added chemicals,
such as 2,5-dimethylfuran (DMF) [12]. Therefore, the CTH process may be an alternative for the
conversion of HMF to BHMF if a suitable catalyst can be identified.

Ruthenium is a cost-effective noble metal for the catalytic hydrogenation reaction [13,14]. In the
present work, Ru/Co3O4 was prepared by a co-precipitation method and used as a catalyst for the
CTH of HMF to BHMF, while isopropanol was used as the hydrogen donor. The study would be
helpful in assessing the feasibility of CTH of HMF to BHMF in the presence of a Ru/Co3O4 catalyst,
which will provide a potential route for the green synthesis of BHMF from biomass-based materials.

2. Results and Discussion

2.1. CTH of HMF to BHMF

The detailed results regarding the effect of the reaction temperature and time are shown in Table 1.
It was found that the effect of the reaction temperature on the CTH of HMF to BHMF is significant
(Table 1, Entries 1–5). At 130 ◦C, only 37.1% of HMF was consumed, and the BHMF yield was 24.4%.
In contrast, the conversion reached 94.4% when the temperature was elevated to 170 ◦C, and the
BHMF yield was 80.3%. When the temperature was further increased to 190 ◦C and 210 ◦C, no residual
HMF was found; however, the BHMF yields were decreased to 79.3% and 67.7% due to the further
hydrogenation of BHMF to 5-methyl furfuryl alcohol (MFA) (the MFA yield was 9.0% at 190 ◦C, and
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17.2% at 210 ◦C). In addition to the reaction temperature, the effect of the reaction time is also shown
in Table 1 (Entries 4 and 6–7). As shown, the maximum BHMF yield of 82.8% was obtained with an
HMF conversion of 100% at 6 h, and no MFA was found. Upon further increasing the hydrogenation
time, a small decrease in the BHMF yield was observed due to the further hydrogenation of BHMF to
MFA, and a 7.7% and 9.0% MFA yield were found at 8 h and 10 h, respectively.

Furthermore, the catalyst recovery experiment was also performed. In a typical recycling test,
the catalyst was separated from the reaction mixture by filtration after reaction and dried at 105 ◦C
for 12 h, followed by NaBH4 reduction. The result showed that the regenerated catalyst exhibited
similar catalytic activity to that of the pristine catalyst, the BHMF yield reached 75.2% with an HMF
conversion of 95.3% at 170 ◦C in 10 h, and a recovery efficiency of 94% (Table 1, Entry 8).

Table 1. Catalytic transfer hydrogenation (CTH) of HMF to BHMF in isopropanol using Ru/Co3O4 as
the catalyst (0.5 wt % HMF, 0.25 wt % Ru/Co3O4 and 20 mL of isopropanol).

Entry T (◦C) t (h) Conv. (%)
Yield %

BHMF MFA

1 130 10 37.1 24.4 -
2 150 10 66.7 51.7 -
3 170 10 94.4 80.3 -
4 190 10 100 79.3 9.0
5 210 10 100 67.7 17.2
6 190 6 100 82.8 -
7 190 8 100 79.9 7.7

8 * 170 10 95.3 75.2 -

* Recycled Ru/Co3O4.

2.2. H2-TPR Profiles

The H2-TPR profiles of the three Ru/Co3O4 catalysts (calcined, reduced and recycled Ru/Co3O4

samples) are shown in Figure 2. As can be observed, the three catalysts are all displaying a two-stage
reduction mechanism, and the first peak of each H2-TPR profile is due to the reduction of Co3O4 to
CoO [15,16]. It was reported by Zu et al. that the typical H2-TPR profile of Co3O4 has two reduction
peaks: the main reduction peak at 330–450 ◦C with a shoulder peak at 323 ◦C [15]. The two reduction
peaks of calcined Ru/Co3O4 are all shifted to a low temperature range, and the maximum reduction
peak of calcined Ru/Co3O4 is at 250–400 ◦C with a shoulder peak at 245 ◦C (Figure 2). This may
be due to the existence of Ru, which will promote the reduction of Co3O4 and CoO. Besides, a low
temperature peak at around 140 ◦C can be ascribed to RuOx because the catalyst did not undergo a
reduction treatment.
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For the reduced Ru/Co3O4 catalyst, the reduction peaks of Co3O4 to CoO and CoO to Co have
shifted to a low temperature range (165 ◦C and 200–435 ◦C, respectively), which is due to the presence
of Ru [15]. The reduction peak at around 165 ◦C should be the overlapping peaks for the reduction of
RuOx to Ru and Co3O4 to CoO, indicating that the reduced Ru/Co3O4 catalyst has the highest catalytic
activity at about 165 ◦C. These results are consistent with those in Table 1 (Entries 1–5) with respect to
the effect of temperature, which showed that the highest BHMF yield was obtained at 170 ◦C. For the
recycled Ru/Co3O4 catalyst, the first reduction peak shifts to a high temperature (197 ◦C) due to the
loss of Ru. As a result, the catalytic activity of the recycled Ru/Co3O4 catalyst was slightly decreased
at 170 ◦C (Table 1, Entry 8).

In addition, the reduction peak of RuOx was absent in the reduced and the recycled Ru/Co3O4

catalysts, which may be due to a lower RuOx amount in the reduced and recycled Ru/Co3O4 catalyst.

2.3. XRD Patterns

Figure 3 shows the XRD patterns of the calcined, reduced, and recycled Ru/Co3O4 catalysts.
From Figure 3a, it can be observed that the reflections belong to the diffraction of Co3O4 [17]. After the
reduction with NaBH4, the intensity of the Co3O4 diffraction peaks is slightly lower than the calcined
sample, due to the reduction of part of Co3O4 to CoO and Co, and their reflections were confirmed in
the reduced Ru/Co3O4 sample (Figure 3b).

The XRD patterns (Figure 3c) of the recycled Ru/Co3O4 samples are different from those of the
calcined and reduced catalysts. The characteristic peaks of Co3O4 at 2θ = 18.9◦, 31.3◦, 38.4◦, 44.7◦,
55.6◦, 59.2◦, and 65.2◦, the peak of Co at 2θ = 44.7◦ are absent, only that at 36.5◦ is identified (although
a decrease in its intensity), indicating that Co3O4 have been largely reduced to CoO or Co. As a result,
characteristic peaks of CoO at 2θ = 42.3◦ and 61.5◦ were evident. For all of the three catalysts, the
characteristic peak of RuOx could not be found in the XRD patterns, which is possibly due to the high
dispersion of RuOx in minute quantities.
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2.4. TEM Images 

The TEM images of the reduced and recycled Ru/Co3O4 are shown in Figure 4. The nano-platelets 
were formed in the reduced Ru/Co3O4 catalyst, and the diameters of the particles are all in the range 
of 20–40 nm (Figure 4a). For the recycled Ru/Co3O4 catalyst, the diameters of the particles are larger 
than the reduced ones, which are all in the range of 30–50 nm (Figure 4c). This may be due to the size 
aggregation in the recycling process, resulting in decreased catalytic activity (in agreement with a 
slightly lower BHMF yield in the presence of the recycled Ru/Co3O4 catalyst, Table 1, Entry 8), which is 
in accordance with the H2-TPR observation. 
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2.4. TEM Images

The TEM images of the reduced and recycled Ru/Co3O4 are shown in Figure 4. The nano-platelets
were formed in the reduced Ru/Co3O4 catalyst, and the diameters of the particles are all in the range
of 20–40 nm (Figure 4a). For the recycled Ru/Co3O4 catalyst, the diameters of the particles are larger
than the reduced ones, which are all in the range of 30–50 nm (Figure 4c). This may be due to the
size aggregation in the recycling process, resulting in decreased catalytic activity (in agreement with a
slightly lower BHMF yield in the presence of the recycled Ru/Co3O4 catalyst, Table 1, Entry 8), which
is in accordance with the H2-TPR observation.
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In addition, although the RuOx particles were not found in the TEM images, the EDX analyses
display that the reduced (Figure 4b) and recycled (Figure 4d) Ru/Co3O4 catalysts do contain Ru (in
addition to Co and O), indicating that there is a lower RuOx amount in the reduced and recycled
Ru/Co3O4 catalysts, which is in accordance with the H2-TPR observation. In addition, the lower
amount of RuOx particles may be highly dispersed in the matrix, so we cannot find the RuOx particles
in the TEM images [15].
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3. Reaction Processes for the CTH of HMF to BHMF

The reaction pathways for the CTH of HMF under the conditions studied are proposed in
Scheme 1 based on the published work [18]. The main steps are as follows: (1) the activation of
a hydrogen donor (isopropanol) with ruthenium forms a ruthenium hydride (Reaction 1); (2) the
generated ruthenium hydride will break to Ru–H and acetone (Reaction 2); (3) Ru–H will react with a
carbonyl compound (O=CR2) on HMF to yield Transition Complex I; (4) Generated Transition I will
react with isopropanol through a five-membered transition state to attack the carbonyl carbon of HMF
and lead to the formation of Transition Complex II; (5) the objective product, BHMF, will be generated
with the elimination of ruthenium hydride, which will participate in a new catalytic cycle; (6) a small
amount of BHMF can be further hydrogenated to MFA through a CTH route under very strong reaction
conditions (Table 1, Entries 4–5 and 7), while no 2,5-dimethylfuran (DMF) was identified in the reaction
system, indicating that the present catalytic system cannot lead to the reduction of both hydroxyl
groups on BHMF under the conditions studied. This is the primary reason for the high yield of BHMF.

In addition, it was reported by Liu et al. that the etherification of the short chain
alkyl alcohols would occur in the presence of Lewis acids [19]. In the present system, it is
reasonable to assume that Ru/Co3O4 may act as a Lewis acid, and the etherification products
of 5-[(1-methylethoxy) methyl] furfural (MMF), 5-hydroxymethyl-2-[(1-methylethoxy)methyl]furan
(HMMF), and 2,5-[bis(1-methylethoxy)-methyl]furan (BMMF) may be formed (with isopropanol).
2-methyl-5-[(1-methyletyoxy)methyl]furan (MMMF) may be formed via the CTH of HMMF and
isopropanol or the etherification of MFA and isopropanol. The formation of 5-methyl furfural (MFL)
may also be possible via the CTH on the hydroxyl group of HMF, and the aldehyde group of MFL can
then be further hydrogenated to a hydroxyl group to form MFA. Similarly, MMF can be hydrogenated
to HMMF, and HMMF to MMMF, as suggested in the literature [13].
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Scheme 1. Proposed reaction pathways of the CTH of HMF to BHMF using the isopropanol and
Ru/Co3O4 reaction system.

4. Materials and Methods

4.1. Chemicals and Materials

HMF (80%) was purchased from Tengzhou Wutong Aromatizer Co., Ltd. (Shangdong, China),
and RuCl3·H2O was from Aldrich. Other chemicals and solvents, including isopropanol, NH3·H2O,
Co(NO3)2·6H2O, Na2CO3, and NaBH4 were bought from Mike Chemical Instruments Co., Ltd.
(Hangzhou, China). All chemicals and solvents were used without further purification. Deionized
water was used for all experiments.

4.2. Catalyst Preparation

The Ru/Co3O4 precursor was prepared by following a reported procedure in the literature [19].
The obtained mental oxide was reduced using NaBH4 by following a reported procedure [20]. Then,
the solution was filtrated and the filtrate was dried at 50 ◦C for 12 h to obtain a Ru/Co3O4 catalyst.

4.3. Catalytic Activity Tests

The CTH experiments were carried out in a 50 mL cylindrical stainless steel high-pressure reactor
with temperature and stirring controllers. For a typical reaction, the reactor was charged with 0.5 wt %
HMF, 0.25 wt % Ru/Co3O4 and 20 mL of isopropanol. The reactor was sealed, purged with nitrogen,
and then heated to the prescribed temperature for a desired reaction time with stirring. At the
completion of the reaction, the reactor was cooled to room temperature using cooling water. The solid
catalyst was removed by filtration and recovered by calcining at 500 ◦C for 4 h and reduced by NaBH4

then dried at 50 ◦C for 12 h to get the regenerated Ru/Co3O4 catalyst for the next use. Filtrate samples
were taken for analysis on a Thermofisher Trace 1300 & ISQ LT GC-MS instrument with a TR-5 MS
column (30.0 m × 250 µm × 0.25 µm).

4.4. Catalyst Characterization

The reduction properties of the calcined, reduced, and recycled Ru/Co3O4 were measured by
means of temperature-programmed reduction (H2-TPR) techniques, and the measurements were
carried out in a gas mixture of 5 vol % hydrogen in nitrogen at a flow rate of 30 cm3·min−1 and
a heating rate of 10 ◦C·min−1 from 100 ◦C to 800 ◦C. The X-ray diffraction (XRD) patterns of the
catalyst were recorded on a Panalytical X’pert Pro diffractometer using a Cu Kα radiation source
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with the following parameters: 40 kV, 30 mA, 2θ from 20◦ to 70◦ at a scanning speed of 7◦·min−1.
The morphology and elemental composition of the catalyst were investigated using a Tecnai G2
20 transmission electron microscope (TEM, Tecnai G2 20, FEI, Hillsboro, OR, USA) equipped with an
energy dispersive X-ray spectroscopy (EDX) unit. The TEM was operated at an accelerating voltage of
200 kV and with a low beam current to minimize beam damage. Counting time for X-ray spectra was
15 live seconds.

5. Conclusions

The Ru/Co3O4 catalyst was synthesized via a co-precipitation method and used for the CTH
of HMF to BHMF in the presence of isopropanol. It was found that such a system displayed a
high selectivity of BHMF, and the highest BHMF yield of 82.8% was obtained at 190 ◦C in 6 h. The
as-prepared catalyst exhibited good stability, and the recovery efficiency attained 94% at 170 ◦C in
10 h. Based on the observation of the catalysts and the analysis of the oxidation products, a plausible
reaction pathway of HMF to BHMF via the CTH routes was proposed. Based on the high activity,
recyclability, safety, and controllability, the CTH process of converting HMF to BHMF from the present
study has the potential to produce BHMF from a biomass-based precursor of HMF, which fits well
with the green conversion process.
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