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Abstract: Quantitative structure–thermostability relationship was carried out for four series of
bis(imino)pyridine iron (cobalt) complexes and α-diimine nickel complexes systems in ethylene
oligo/polymerization. Three structural parameters were correlated with thermal stability, including
bond order of metal-nitrogen (B), minimum distance (D) between central metal and ortho-carbon
atoms on the aryl moiety and dihedral angle (α) of a central five-membered ring. The variation degree
of catalytic activities between optimum and room temperatures (AT) was calculated to describe
the thermal stability of the complex. By multiple linear regression analysis (MLRA), the thermal
stability presents good correlation with three structural parameters with the correlation coefficients
(R2) over 0.95. Furthermore, the contributions of each parameter were evaluated. Through this
work, it is expected to help the design of a late transition metal complex with thermal stability at the
molecular level.

Keywords: structure–thermostability relationship; late transition metal complex; homogeneous
catalysis; ethylene polymerization; molecular modeling

1. Introduction

Since the discovery of nickel and palladium catalysts bearing α-diimine ligands, the growth
of late transition metal complex catalysts for ethylene reactivity has been promoted due to their
particular features, such as stable structure, low cost and high catalytic activities in the polymerization
of ethylene [1–6]. In order to get desirable catalytic performance, extensive achievement and progress
have been obtained through modifying substituents of used ligands and designing alternative
ligands as well as optimizing reaction conditions [7–18]. However, in large-scale polymerizations,
the exothermic property of the polymerization reaction deactivates the catalysts by the quick
decomposition and β-H elimination at elevated bulk reaction temperature [19–22], greatly hindering
the potential development in the field of industrial applications [23].

To improve the thermal stability of a catalyst, tremendous experimental works were conducted
and significant progress achieved. Guan et al. early reported a series of novel nickel catalysts bearing
the cyclophane ligands (Scheme 1, A) and phosphine imine hybrid ligands (Scheme 1, B), which
revealed high activities at high temperatures for ethylene polymerization. The complex A presents
a turnover frequency (TOF) of 1.0 × 106 h−1 at 90 ◦C and complex B shows a TOF of 1.7 × 104 h−1 at
70 ◦C [24–26]. Subsequently, the camphyl-based nickel catalysts (Scheme 1, C) exhibited good thermal
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stability; meanwhile, the obtained polymer had a significant narrow molecular weight distribution
(polydispersity index: PDI < 1.2) [27,28]. The Long group also reported a robust nickel α-diimine
catalyst (Scheme 1, D) for ethylene polymerization at a high temperature. The TOF maintains about
1.0 × 105 h−1 at 100 ◦C. Moreover, the observed molecular weight distribution of the polyethylene
is still very narrow (about 1.25) at such a high temperature [29]. In addition, our group reported
the nickel complex catalysts containing acenaphthylene ligands (Scheme 1, E), which showed high
catalytic activities (106 g·mol−1(Ni)·h−1) and high molecular weight of the produced polyethylene
(106 g·mol−1) at temperature of 80 ◦C [30]. In addition, the iron-based complex catalysts bearing
bis(imino)pyridine ligands with bulky substituents (Scheme 1, F) exhibited good thermal stability with
catalytic activities of 106 g·mol−1(Fe)·h−1 at 60–80 ◦C [31–37].
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In the complexity of the whole polymerization process, the underlying reasons for the observed
changes of catalytic activities are often unclear, but there is no doubt that catalyst structures play
a key role in determination of catalytic activities. As a result, the quantitative structure–property
relationship (QSPR) approach has proven to be useful. In our previous studies, the relationship
between the structure of a catalyst and its catalytic activity was investigated by molecular modeling,
which successfully predicted the catalytic activities of late transition metal complex precatalysts toward
ethylene oligo/polymerization, through electronic effects [38–41] or both from electronic and steric
effects [42,43]. Regarding the influence of the catalyst structure on its thermal stability, several possible
factors were proposed by previous experimental research [19,24–26,29–36]. However, to our best
knowledge, there are less detailed works at a molecular level to study the catalyst with thermal
stability quantitatively.

Herein, detailed works on this topic at a molecular level were performed to explain the essential
mechanism of the catalyst with thermal stability quantitatively. Three structural parameters were
defined and calculated to correlate with the thermal stability for four series of typical late transition
metal complexes from our previous reports [30–36,44–47]. The results showed that a catalyst’s
thermal stability has very good relationships with three structural parameters by using multiple
linear regression analysis (MLRA). The obtained correlation coefficient values of R2 are over 0.949.
By analyzing the contribution of each parameter, the main effect on thermal stability regarding different
frameworks of precatalysts was proposed.
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2. Results and Discussion

2.1. Definition of the Parameters Related to Thermal Stability

In the present work, three parameters were chosen to characterize the thermal stability of
late transition metal complex, including the bond order (B), minimum distance (D) and dihedral
angle (α). Regarding bond order (B), it represents the strength of the bond between metal atoms
and coordinated heteroatoms within ligands, which are nitrogen atoms for the modeled complexes.
The bond strength of metal and nitrogen atoms (M–N) should be strong enough to prevent them from
breaking (or decomposition) at high temperatures [26]. Since there are usually two or three M–N bonds,
the minimum value of bond order (B) was chosen. According to previous research, the formation of
the five- or six-membered metallacycle via intramolecular C–H activation demonstrated in Scheme 2
may deactivate the catalyst, reducing the thermal stability of a catalyst [19]. Therefore, the minimum
distance (D) between central metal and carbon atoms highlighted in blue (M–C) was calculated.
The parameter α is the dihedral angle of the central five-membered ring shown in the Scheme 2 with
the atoms in red. This factor indicates the stability of the complex due to the stress and strain of the
central five-membered ring within a catalyst [48]. For an NˆNˆN three chelated complex, the value of α

is the average data for two central five-membered rings.
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To measure the thermal stability of different complexes, the variation values of catalytic activities
at different reaction temperatures (AT) were calculated by Equation (1):

AT =
Aopt − Ar

Ar
(1)

where Aopt and Ar are the activities at optimum and room temperatures for each complex, respectively.
Most of the model complexes in this work were taken from our previous experimental results, and the
detailed values of activities at both optimum and room temperatures were provided in Table S1 of
Supplementary Materials.

The calculated parameters (B, D, α) were related to the AT by the MLRA Equation (2), which was
resolved by the regression analysis based on the least squares method in Microsoft Excel [49].
After fitting, the values of x0, x1, x2 and x3 were automatically obtained:

AT = x0 + x1B + x2D + x3 (2)

In order to analyze the contribution of each parameter to the thermal stability for each complex
system, the values of B, D and α were standardized using the Z-Score method. Then, the contribution
was calculated by the Equation (3) based on our previous works:

Contribution(%) =

∑
j=n
j=1

∣∣ximij
∣∣

∑i=3
1

∣∣ximij
∣∣

n
× 100% (3)
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where i is the serial number of parameter, j is the order of the complex, mij is the value of each
parameter for each complex, xi is the regression coefficient of each parameter, and n is the total number
of complexes.

2.2. Thermal Stability of Bis(imino)pyridyliron(cobalt) Complexes

The main framework of the catalyst with thermal stability can be classified into two categories
including the bis(imino)pyridyliron(cobalt) and the α-diiminenickel complexes. In this section,
the bis(imino)pyridyliron(cobalt) complexes 1–10 as showed in the Schemes 3 and 4 from previous
reports [31–36] were selected to study the thermal stability. For the complexes 1–5, the small variations
of structures lie in the different substituents within the aryl moiety, while, for the complexes 6–10,
the differences are not only the substituents within the aryl moiety, but also the Ar group. Furthermore,
the experimental conditions were totally the same for complexes 1–5, while, for complexes 6–10,
there was little difference. Therefore, the complexes were divided into two systems: complexes 1–5
and complexes 6–10.
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In this study, the calculated three parameters (B, D, α) are heavily dependent on the geometry
structure, so the optimization of the complex structure was performed by the molecular mechanics
(MM) method. The comparisons between calculated structure and experimental crystal data for the
selected bond lengths and bond angles for complexes 1, 5 and 7 were listed in Table 1. It is clearly seen
that the values of standard deviation δ for all three of these complexes are very small, indicating the
reasonableness of the optimized structures. This guarantees a reliable relationship between structure
parameters (B, D, α) and the thermal stability.
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Table 1. The calculated bond lengths and bond angles compared with experimental crystal structures
for complexes 1, 5, and 7 along with the values of standard deviation δ. MM, molecular mechanics.

Bond

Bond Lengths (Å)

Complex 1 Complex 5 Complex 7

X-ray MM X-ray MM X-ray MM

Fe–N1 2.228 2.201 2.201 2.195 2.278 2.239
Fe–N2 2.061 2.072 2.057 2.061 2.111 2.118
Fe–N3 2.178 2.195 2.157 2.196 2.268 2.236
Fe–Cl1 2.319 2.319 2.298 2.298 2.290 2.290
Fe–Cl2 2.264 2.264 2.252 2.252 2.290 2.289

δ - 0.768 - 0.834 - 0.925

Angle

Bond Angles (◦)

Complex 1 Complex 5 Complex 7

X-ray MM X-ray MM X-ray MM

N1–Fe–N2 72.80 73.33 73.21 73.29 72.52 73.64
N2–Fe–N3 74.02 73.54 74.51 73.51 73.92 73.56
N1–Fe–N3 141.12 143.32 142.21 142.56 146.42 146.21
N1–Fe–Cl1 101.72 98.40 101.35 99.09 96.81 97.77
N2–Fe–Cl1 91.72 92.67 92.33 92.33 121.41 121.32
N3–Fe–Cl1 99.02 98.43 99.10 99.07 101.11 98.79
N1–Fe–Cl2 98.72 100.47 96.68 100.18 98.51 100.62
N2–Fe–Cl2 151.10 150.26 151.60 150.52 122.61 121.12
N3–Fe–Cl2 100.62 100.45 102.45 100.17 98.81 97.02
Cl1–Fe–Cl2 117.19 117.07 115.89 117.16 155.95 154.65

δ - 1.45 - 1.71 - 1.43

Accordingly, the three structural parameters calculated were obtained and listed in Table 2 for
complexes 1–5. Clearly, the variations of the three parameters as a function of substituents were very
small. Regarding the bond order (B), the values are from 0.1028 to 0.1048, meaning that there is little
change in bond strength between iron and nitrogen with various substituents. For the minimum
distance parameter (D), all of the calculated results were above 2.0 Å, indicating no formation of an
inter M–C bond, which improves the thermal stability of complex. As for a dihedral angle (α), it
is shown in Table 2 that the obtained values of α were from 7.839◦ to 8.627◦. From previous study,
it is indicated that the half-chair configuration (non plane form) of the central five-membered ring is
helpful for the stability of the complex [46]. Therefore, the bigger the value of α, the more stable the
complex is.

Table 2. The original and standardized values of bond order (B), minimum distance (D) and dihedral
angle (α) for complexes 1–5.

Original Values

Complex B D (Å) α (◦) AT

1 0.1048 2.427 7.839 5.313
2 0.1048 2.073 8.245 5.689
3 0.1028 2.293 8.206 7.710
4 0.1042 2.221 8.259 6.333
5 0.1048 2.147 8.627 4.082

Standardized Values

Complex B D (Å) α (◦) A T

1 0.5996 1.4286 −1.4173 −0.3838
2 0.5996 −1.1675 0.0347 −0.1022
3 −1.7067 0.4459 −0.1049 1.4116
4 −0.0923 −0.0821 0.0831 0.3802
5 0.2996 −0.6248 1.4044 −1.3058
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To quantitatively analyze the influence of catalyst structure on thermal stability, the relationship
between B, D, α and AT was fitted using the multiple linear regression Equation (2). The regression
and correlation coefficient values were obtained and listed in Table 3. Then, the thermal stabilities
were calculated by the fitting equation and compared with experimental results for the complexes 1–5.
The result shows that almost all points were in a diagonal line in Figure 1a, suggesting that the
calculated and experimental AT values are very close. The obtained correlation coefficient value (R2)
is 0.970.

Table 3. The original and standardized regression coefficients (x) values of multiple linear regression
equation as well as correlation coefficients (R2) for the complexes. Or., original; St., standardized .

Complexes Type x0 x1 x2 x3 R2

Complexes 1–5 Or. 199.46 −1493.89 −4.909 −3.266 0.970
St. −1.0 × 10−14 −0.970 −0.501 −0.683 -

Complexes 6–10 Or. −33.32 197.02 5.149 0.536 0.949
St. −2.3 × 10−16 1.081 0.616 0.438 -

Complexes 11–15 Or. 458.54 −7450.7 33.59 25.84 0.998
St. −6.1 × 10−16 −0.244 0.110 1.002 -

Complexes 16–20 Or. 2.344 −32.898 0.609 0.039 0.998
St. −1.9 × 10−16 −0.935 0.351 0.166 -
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Figure 1. The plots of calculated value of thermal stability (Cal. AT) versus experimental results
(Exp. AT) for complexes 1–5 (a) and complexes 6–10 (b).

In the same manner, for complexes 6–10, three parameters were obtained and listed in Table 4.
For bond order (B), the calculated values were in the range of 0.0788 to 0.1031, which were smaller
compared with the results of complexes 1–5 (Table 2), especially for complex 10, signifying the potential
reduction of their thermal stabilities. For the minimum distance (D), all of the data were over 2.00 Å,
indicating that no metallacycle ring formed either. Regarding the dihedral angle (α), the results
ranged from 7.335◦ to 11.413◦. From the variation of the structure parameters, the thermal stabilities
of complexes 6–10 should be lower than that of complexes 1–5. For clarity, the averaged values of
the catalytic activities for complexes 1–5 and 6–10 were plotted in Figure 2 at room and optimum
temperatures. Obviously, the thermal stability of the former is better than the latter, although the
catalytic activities at room temperature are almost the same.
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Table 4. The original and standardized values of bond order (B), minimum distance (D) and dihedral
angle (α) for complexes 6–10.

Original Values

Complex B D (Å) α (◦) AT

6 0.1019 2.383 8.187 2.719
7 0.1026 2.280 11.413 4.784
8 0.1031 2.607 8.885 5.474
9 0.0987 2.256 7.335 2.054

10 0.0788 2.778 8.409 0.974

Standardized Values

Complex B D (Å) α (◦) AT

6 0.4725 −0.3456 −0.4275 −0.2560
7 0.5402 −0.8032 1.6695 0.8408
8 0.5887 0.6495 0.0254 1.2072
9 0.1626 −0.9098 −0.9803 −0.6092

10 −1.7641 1.4092 −0.2835 −1.1828
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Accordingly, from the values of AT in Tables 2 and 4, the thermal stabilities of complexes 6–10 are
lower than that of complexes 1–5 correspondingly. This result is in agreement with the decrease of
bond order (B), suggesting that this parameter has an outstanding influence on the thermal stability of
this series of complex system. By the MLRA method, the regression coefficients were obtained and
showed in Table 3. Then, the calculated values of thermal stabilities were obtained and compared with
experimental results, which present good correlation with the R2 value of 0.949 as showed in Figure 1b.

In order to quantitatively investigate the influence of each parameter on the thermal stability,
the values of three parameters and thermal stabilities were further standardized by the Z-Score
method. The obtained values of the B, D, α, AT were collected in Tables 2 and 4 for complexes
1–5 and complexes 6–10, respectively, and the corresponding standard regression coefficients were
obtained and listed in Table 3. Then, using Equation (3), the contributions of each parameter were
calculated. The obtained contribution values of the B, D and α for the complexes 1–5 are 48%, 26% and
26%, respectively. Therefore, it indicates that the bond order dominates the thermal stabilities of
complexes 1–5. Similarly, the contributions of the B, D and α for the complexes 6–10 are calculated and
the results are 46%, 33% and 21%, respectively. It suggests that the bond order plays a predominant
role in determining the thermal stabilities for complexes 6–10 as well.
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2.3. Thermal Stability of Phenanthrolinyliron Complexes

For the derivatives of bis(imino)pyridyline, the phenanthrolinyliron complexes also showed good
thermal stability. Here, we selected a series of complexes 11–15 from our previous reports [47] with
the structures showed in the Scheme 5. In the same manner, the values of bond order (B), minimum
distance (D) and dihedral angle (α) as well as the results of the thermal stabilities (AT), accordingly,
were obtained and listed in Table 5.
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Table 5. The original and standardized values of bond order (B), minimum distance (D) and dihedral
angle (α) along with thermal stability (AT) for complexes 11–15, respectively.

Original Values

Complex B D (Å) α (◦) AT

11 0.0770 3.677 1.815 55.276
12 0.0786 3.624 1.309 28.386
13 0.0769 3.522 0.189 8.548
14 0.0774 3.689 0.093 6.992
15 0.0774 3.660 0.132 9.585

Standardized Values

Complex B D (Å) α (◦) AT

11 −0.6797 0.6317 1.3825 1.622
12 1.6845 −0.1542 0.7510 0.321
13 −0.8275 −1.6666 −0.6467 −0.639
14 −0.0887 0.8096 −0.7677 −0.714
15 −0.0887 0.3796 −0.7191 −0.589

Compared with complexes 1–10, the values of bond order (B) and dihedral angle (α) of
complexes 11–15 decreased obviously. To see the variation of the catalytic activities from experiments,
the average values at room temperature and optimum temperature were showed in Figure 2 for
complexes 11–15. It is clear that the average activities and thermal stabilities of complexes 11–15 are
obviously lower than that of complexes 1–5 and 6–10. These observations are in agreement with the
decrease values of the calculated bond order (B) and dihedral angle (α) values within complexes 11–15.
On another side, the values of thermal stability (AT) for complexes 11–15 are large, as showed in
Table 5, especially for complexes 11 and 12. This can be explained by the very low catalytic activities at
room temperature.

Then, the regression coefficients of fitting equation were calculated, and the values were listed
in Table 3. Comparison of calculated and experimental AT was conducted as showed in Figure 3.
Obviously, there is a good correlation with the coefficient (R2) value of 0.998, meaning that the thermal
stabilities of complexes 11–15 were reasonably investigated.
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complexes 11–15.

To further analyze the influence of each parameter on thermal stability, the B, D, α and AT values
were standardized and the results were collected in Table 5. Based on the standardized fitting equation,
the contributions of each parameter were calculated accordingly. The obtained contribution of the
dihedral angle (α) is 78%, whereas those of bond order (B) and minimum distance (D) are 14% and
8%, respectively. These results reveal that, different from complexes 1–5 and 6–10, the dihedral angle
became the major factor to determine the thermal stabilities of complexes 11–15.

2.4. Thermal Stability of Acenaphthylnickel Complexes

As discussed in the introduction, besides the framework of bis(imino)pyridyline complex,
the system with an acenaphthylene backbone also shows good thermal stability towards ethylene
polymerization. In this section, a series of nickel complexes 16–20 containing acenaphthylene
ligands [30,43–46] were investigated regarding the property of thermal stability. The structures of
model complexes were showed in the Scheme 6.
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By the same method, three parameters (B, D, α) were firstly obtained and listed in Table 6 along
with the values of thermal stabilities (AT) for each complex. By the regression analysis method,
the regression coefficients were obtained and showed in Table 3. Then, the thermal stabilities were
calculated and compared with experimental data. Results revealed in Figure 4 that calculation values
are in very agreement with experiments with the correlation coefficient (R2) value of 0.998.

Table 6. The original and standardized values of bond order (B), minimum distance (D) and dihedral
angle (α) along with thermal stability (AT) for complexes 16–20, respectively.

Original Values

Complex B D (Å) α (◦) AT

16 0.1114 2.671 0.207 0.337
17 0.0993 2.626 4.245 0.845
18 0.1017 2.251 1.412 0.414
19 0.0836 2.784 0.139 1.294
20 0.1129 2.873 0.286 0.370

Standardized Values

Complex B D (Å) α (◦) AT

16 0.8183 0.126 −0.601 −0.761
17 −0.2110 −0.063 1.707 0.466
18 −0.0068 −1.635 −0.088 −0.575
19 −1.5464 0.560 −0.639 1.552
20 0.9458 0.973 −0.555 −0.682
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Based on standardized values of B, D, α and AT as well as the corresponding standard regression
coefficients in Table 3, the contributions of each factor were calculated accordingly, which showed
the values of 49%, 22% and 29% for bond order (B), minimum distance (D) and dihedral angle (α),
respectively, signifying the dominant role of bond order in the thermal stabilities of complexes 16–20.

3. Computational Details

Calculation Method for the Parameters

In order to calculate the bond order (B), the structure of complex was firstly optimized by
a molecular mechanism (MM) method based on our previous study, which shows that the optimized
structures by MM are closer to experimental crystal results [43]. This was performed by the Forcite
program package (6.0, Accelrys Inc., San Diego, CA, USA, 2011) using the Dreiding force field due to
its capability of reasonable prediction of the structure [50]. However, there are no parameters for late
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transition metal elements, such as Fe, Co and Ni, as well as the atom types that connect with metal
elements. Therefore, the crystal data of complexes in previous reports [34,45,47], as listed in Table S2 of
Supplementary Materials, were added into the file of Dreiding force field. The values of convergence
tolerance for the energy and the force were 0.001 and 0.5 kcal·mol−1, respectively. To describe the
electrostatic and van der Waals interactions, the atom based Summation and Truncation methods were
used, and the cutoff distance of cubic spline was 1.25 nm.

Then, the Mayer bond order was obtained by single point energy calculation by a Gaussian
09 package (C.01, Gaussian, Inc., Wallingford, CT, USA, 2010) using the Natural Bond Orbital (NBO)
population [51,52]. Different functional and basis sets may give rise to different bond order results
for one structure; therefore, several combinations of parameters were tried as listed in Table 7.
From previous research [53], the bond order and bond length should be in accordance with the
following Equation (4):

B = exp
[−(R − R0)R0]

a
, (4)

where B is bond order, R is the experimental bond length, R0 is a constant which stands for the
equilibrium bond length, and a is also a constant related to the type of bond. Then, the calculated bond
orders of three Fe–N bonds for the complex 12 (Scheme 5) and experimental bond lengths were fitted
by this equation. The obtained fitting results (R2) were showed in Table 7. Clearly, the calculation
result for bond order using B3LYP/6-31G* [54,55] is better than others. Therefore, this combination of
functional and basis set was chosen. As to the dihedral angles (α) for the central five-membered ring,
this parameter can be obtained directly from the optimized structure of a complex by MM calculation.

Table 7. The values of bond order (B) by different functional and basis sets and correlation results (R2)
with bond lengths (R) from experiments.

Bond
Bond Order (B) Bond Length (R)

B3LYP/6–31G* B3LYP/6–311G** BLYP/6–311G** BP86/6–311G** Experiments

Fe–N1 0.0768 0.0539 0.0755 0.0761 2.391
Fe–N2 0.1466 0.1154 0.1428 0.1429 2.100
Fe–N3 0.1101 0.0926 0.1228 0.1238 2.298

R2 0.963 0.524 0.810 0.800 -

With regard to the minimum distance (D), this was calculated by the molecular dynamics (MD)
simulation. All of the MD simulations were performed in the ensemble of the constant of atom number,
volume and temperature (NVT) using a Dreiding force field implemented in the Material Studio
(6.0, Accelrys Inc., 2011). The nonbonded potential truncation was performed by cubic spline with
a cutoff distance of 1.25 nm. The electrostatic and van der Waals interactions were treated by an atom
based Summation method with a spline width of 0.1 nm. The temperature kept at 300 K by the
Berendsen thermostat with a coupling constant of 0.1 ps. Total simulation time was 4 ns with a time
step of 1 fs.

To illustrate the rationalization of three parameters in the model, the results of the linear
fitting using one, two and three parameters for the bis(imino)pyridyliron (complexes 1–5) and
acenaphthylnickel (complexes 16–20) were compared. It can be seen from the results listed in Table S3
of Supplementary Materials that the fitting results with three parameters for two systems are optimum.
Therefore, the model with three parameters is used to investigate the thermal stability for late transition
metal complexes.

4. Conclusions

The property of thermal stability for late transition metal complex precatalysts is very important
for ethylene polymerization, which greatly influences their potential applications in the field of
industry. In this work, four series of complexes with thermal stability containing typical structures
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were investigated quantitatively by the MLRA method, which was used in our previous studies on the
catalytic activities. Based on the proposed mechanism from experimental observation with respect
to the thermal stability of a catalyst; herein, three parameters were defined and calculated, including
bond order (B), minimum distance (D) and dihedral angle (α). Meanwhile, the parameter (AT) that
calculates the variation degree of catalytic activities between optimum and room temperatures was
used to represent the thermal stability of each complex. By the MLRA method, the fitting equations
were obtained and the calculated values of thermal stabilities were compared with experimental data.
The results show very good correlation with the values of coefficient (R2) ranged from 0.949 to 0.998,
indicating that the thermal stability of a late transition metal complex towards ethylene polymerization
can be quantitatively investigated.

Based on standardized values of three parameters (B, D, α), the contributions of each factor to
the thermal stability of complex were evaluated accordingly. For the bis(imino)pypridyliron(cobalt)
and acenaphthylnickel complexes, the thermal stability was primarily determined by bond order of
metal–nitrogen, while for the phenanthrolinyliron complexes, the dihedral angle plays an important
role. To the best of our knowledge, these results are the first reported on thermal stability of a late
transition metal complex at the molecular level. It is anticipated that the present results can give
guidance for experimental design of a late transition metal complex with high activity at high
reaction temperatures.

Supplementary Materials: The following are available online at www.mdpi.com/2073-4344/7/4/120/s1,
Table S1: The catalytic activities for complexes 1–20 at different temperatures along with the reaction time, Table S2:
The bond lengths and bond angles for metal atoms and atoms coordinated with central metal, which were used as
parameters of modified Dreiding force field, Table S3: The correlation coefficient (R2) results for the models of Fe
and Ni-based complexes that were fitted by one, two and three parameters, respectively.
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